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Highlights 

 

•  Static and dynamic study GPL reinforced curved beam by trigonometric shear deformation theory 

•   Inclusion of various form distributions for the pores and GPLs presence in the beam. 

•  Provided the results for different radii of curvature of beams and different boundary conditions. 

•  Conducted a thorough study considering various geometry and material parameters.  

•  Generated new results for benchmarking the solutions from other numerical/analytical approach. 
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Summary 

In this paper, the bending, vibration and buckling characteristics of functionally graded porous 

graphene-reinforced nanocomposite curved beams are studied based on a trigonometric shear deformation 

theory. The effect of various theories deduced from the proposed formulation on the static and dynamic 

behavior of curved nanocomposite beams is also studied. The governing equilibrium equations are formed 

by applying Lagrangian equations of motion coupled with the finite element approach employing a 3-

noded C1 continuous curved beam element. The methodology developed here is tested for problems 

having known solutions in the open literature. A detailed investigation involving various parameters such 

as coefficient of porosity, type of distribution pattern for the porosity and graphene platelets, radius of 

curvature of curved beam, length-to-thickness ratio, the platelet geometry, and boundary conditions on the 

static bending, free vibration and elastic stability behavior of nanocomposite curved beams is conducted. 

New results for certain boundary conditions of graphene reinforced curved beams are presented. 

Participation of various types of in-plane and transverse bending modes responsible for yielding the 

lowest critical buckling loads/natural frequencies are also highlighted. 

 

Keywords: Higher-order theory; Finite element; Bending; Free vibration; Buckling; Porous curved beams; 

Graphene reinforcement. 
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1. Introduction 

 

  Advancements in manufacturing and material characterization techniques aid designers to create 

efficient designs by tailoring material properties. Advanced composites like porous composite materials 

and in particular, metal foams, are gaining prominence in the electronics and aerospace industries 

especially because of their lightweight, impact resistant and thermal resistant properties [1-4]. Metal 

foams can fall under the category of Functionally Graded Materials (FGM) as the size and density of 

porosity in metal foams can be varied directionally and have been realized in laboratories [5]. Since 

porous composite materials are lightweight and have low structural stiffness, the prediction of the 

mechanical behavior under different situations including the boundary conditions, loads and the 

reinforced-material inclusions like graphene platelets are warranted.  The available appropriate studies are 

discussed in the subsequent paragraph. 

Functionally graded porous straight beams and plates subjected to different environments were 

analyzed both theoretically and experimentally to characterize different mechanical behaviors [6-10]. To 

improve the structural stiffness, micro/nanofillers like Graphene Platelets (GPLs) can be introduced in the 

matrix. The global properties of the materials like strength and stiffness are governed by weight fraction 

and dispersion form of GPLs in the matrix given in Refs. [11-13]. The advantages of using GPLs or 

Carbon Nanotubes (CNTs) reinforcements to improve the vibrational and buckling behavior of beams, 

plates, and shells were dealt in Refs. [14-17]. Furthermore, the nonlinear vibrational characteristics of 

functionally graded CNT reinforced laminates were treated in Refs. [18-20]. Sandwich panels with CNT 

reinforced face sheets were analyzed for flutter study using a higher-order theory by Sankar et al. [21] and 

CNT reinforced shells were analyzed for post-buckling by Shen [22, 23]. 

The flexibility in making differently sized graphene platelets by using the lay-up of 2D form of 

graphite nano-crystals [24, 25] and the recent studies outlining the favorable characteristics of graphene 

platelet reinforce composites has led to an increase in their usage in many critical technologies. Buckling, 

post-buckling, bending and, stability analyses of GPL reinforced straight beams were carried out in [26, 
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27] and [28], respectively. An optimization study was also attempted in Ref. [29] discretely changing 

GPLs dispersion in the direction of thickness. The influence of GPLs on parametric instabilities and 

vibrational properties of beams were studied in Refs. [30, 31] and their impact on bending, vibration, 

dynamic impact response and thermal buckling of such plates were examined in [32-39]. Similar studies 

on GPL reinforced shells were also highlighted in Refs. [40-46]. 

A combination of porosity and GPLs in a metal matrix can help in achieving the desired strength 

and stiffness for a given weight of the structure. Work pertaining to such kind of composite structures 

available in the literature are discussed here. References [47-50] dealt with the vibrational behavior of 

porous GPL reinforced beams and Ref. [50], in particular, accounted for different distribution patterns as 

well. Some work done in literature pertaining to plate and shell structures were detailed in [51-53] where 

Yang et al. [51] employed the Chebyshev-Ritz discretization method to solve for free vibrational and 

buckling properties of plates, and finite element method was employed in Refs. [52,53] to solve the 

similar problems of shells. 

Based on an extensive literature survey, it is evident that a large body of available research work 

on graphene-reinforced structures is limited to straight beams without the inclusion of pores in the 

metal/polymer matrix. Furthermore, all analyses have been carried out using the first-order or classic 

theory. Also, such studies pertaining to the curved beam are not commonly available in the literature, 

except the recent work of Polit et al. [54] which was focused on analytical approach considering bending 

analysis of simply supported case. Comprehensive static and dynamic analyses of graphene reinforced 

curved beam considering different boundary conditions are scarce in the literature. The present paper 

concerns itself with static, stability and free vibration behavior of GPL reinforced porous curved beams 

based on finite element approach introducing a trigonometric refined beam theory proposed by Polit et al. 

[55] and Touratier [56]. Since the trigonometric refined theory used here is a class of higher-order theory, 

it can accurately predict the structural behavior for various types of nanocomposite curved beam with 

graphene reinforcement. Lagrangian equations of motion are employed to develop the governing 

equations that are solved introducing the finite element procedure. The formulation is validated against 
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the available analytical methods.  A detailed numerical experimentation is made varying the design 

parameters such as beam angle, geometry of GPL, beam thickness ratio, dispersion form of porosity and 

GPLs, and boundary conditions. Some new results are provided for various boundary conditions that can 

form benchmark solutions while applying other numerical or analytical approach to study such problems. 

The structure of the paper is outlined as follows: Material part of porosity dispersion and GPL 

form are given in section 2, curved beam theory and governing equations in section 3, results and 

discussion in section 4, and followed by a conclusion. 

 

2. Formulation of effective properties 

 

 The material considered here is a porous curved beam involving metal foam which is reinforced 

with graphene nanoplatelets. The porosity is presumed as closed-cells in nature and is distributed through 

the thickness in different patterns. The graphene platelet properties are governed by their geometric 

parameters and are also distributed through the thickness in different forms. The evaluation of the 

effective properties is briefly outlined here [54, 57-61]. 

2.1. Distribution of porosity  

The material properties of a closed cell porous structure are presumed to change in the thickness 

plane as a function of z coordinate as indicated in Fig. 1. The effective mass density and Young’s 

modulus are written as follows [6,50,53] 

���� = ���1 − 
�����
  
���� = ���1 − 
������                  (1) 

where �� & ��  are the density and Young’s modulus of nanocomposite curved beam, respectively, without 

having any defects like pores/porosity; cm & cp are porosity coefficients pertaining to density and stiffness 

functions, respectively. ���� refers the porosity dispersion patterns that are selected here as uniform, 

symmetric and unsymmetric variations [6], as represented in Fig. 1a and is shown below as 
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���� = ��
� ��cos ���� �
 ! ���"� + $/4�                                                                 (2) 

The coefficient cp related to the stiffness function given in Eq. (1) is treated as 


� = 1 − �'"/�'(                              (3) 

where �)( & �)" are the high and low values of Young’s moduli of GPL reinforced curved beams with the 

presence of non-uniform porous dispersion, respectively. The constant cp is considered to be one of the 

primary parameters for the design of such structures. 

 The relationship between the porosity coefficients cp and cm involved in Eq. (1) can be obtained 

using the curve fitting equation developed for (E(z)/ ��� from the data generated by Gaussian Random 

Field model [62, 63]  as 


� = (.("(,(-�(-./0���� 12.34
0���                              (4) 

Similarly, the fitting data formed for the effective Poisson’s ratio [63] is given as 

5��� = 0.221
����� + 5̂�0.342 �
�����
" − 1.21
����� + 1�                          (5) 

To compute the � 0 value of the uniform porosity distribution case, Eq. (2), it is assumed that the 

total weight of the beam is constant, irrespective of the variation in the porosity distribution. This allows 

one to find the value of �� using a reference distribution such as the symmetric case, and by using Eq. (4) 

in the density equation Eq. (1) as  

�: = (./ ,1 − ;(/ℎ< =���/�� >�?�.("(ℎ/2@ℎ/2 (.("( A".B4                                        (6) 

 With the above details, the equivalent material properties of the GPL reinforced matrix, considering the 

introduction of porosity in a GPL reinforced composite, can be found. To evaluate this, the beam can be 

first considered to be reinforced with GPLs, thus forming as pure nano-composites. The elastic modulus 

�C   of such beam is estimated from the expression of the Halpin-Tsai data model [59] while the density �� 

and Poisson’s ratio 5̂   for the same case are found by using rule of mixtures as shown below. 
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�� = BD E(?FG/HH IG/HH JG/H(-IG/HH JG/H K �� + LD E(?FG/HM IG/HM JG/H(-IG/HH JG/H K ��                                  (7) 

��  = �N�OPN�O + ��P�                                           (8) 
5̂  = 5N�OPN�O + 5�P�                                           (9) 

where P� = 1 − PN�O . 
 The material parameters Vgpl & Vm, respectively, denote the volume fractions of GPLs and matrix 

material presented in the resultant composite, respectively;  5N�O& 5� , �N�O&�� are the mass densities, 

Poisson’s ratios of GPLs and matrix, respectively; �� is the elastic modulus of the matrix. The geometry 

parameters of graphene platelet (QN�OO , QN�OS ) can be written in terms of GPL thickness and aspect ratios;  

TN�OO ,  TN�OS  are related to the elastic modulus ratio of GPL and matrix, and GPL geometric parameters, 

respectively as 

QN�OO = "OG/HUG/H  ;  QN�OS = "SG/HUG/H               (10a) 

TN�OO = WXG/H XY⁄ [-(WXG/H XY⁄ [-FG/HH  ;  TN�OS = WXG/H XY⁄ [-(WXG/H XY⁄ [?FG/HM                          (10b) 

Here, \N�O, ]N�O  & ^N�O  are the GPL thickness, breath, and length, respectively; �N�O is the elatistic 

modulus of the GPL fillers. 

2.2. GPL distribution 

The volume fraction PN�O in Eq. (11) is changed in the thickness direction assuming various 

dispersion forms (uniform, symmetric and unsymmetric cases) as shown in Fig. 1b and can be stated as  

PN�O = ��
� P(_   P"_�1 − cos�$�/ℎ�
PB_ a1 − cos ���"� + $/4�b                          (11) 

where the superscript j indicates the dispersion pattern of porosity.  

The volume fraction Vgpl, in general, can be linked with the GPL weight fraction (cN�O) as 

PN�O = dG/HdG/H?=G/H/=eW(-dG/H[                            (12) 
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The maximum value Pf in Eq. (11) can be computed using Eqs. (11), (12) in conjunction with the 

relative weights calculated from Eq. (1) for the selected porosity and GPL distributions as 

< PN�Oℎ/"-ℎ/"  �1 − h� i���
 j�  = dG/H�dG/H?�=G/H/=Y� �(-dG/H�
 <  �1 − h� i���
 ℎ/"-ℎ/"  j�               (13) 

3. Structural Formulation 

 The beam model considered here is based on a curved one with length L, thickness h, unit width, 

and radius of curvature R having beam included angle k, as illustrated in Fig. 2a. The structural behavior 

is defined following a trigonometric shear deformation theory that utilizes a sinusoidal function in 

representing the deformation of the beam cross-section, referred as the SIN model [54-56]. The 

displacements in the x direction along the length and z l�− �" , �"� direction i.e the thickness direction, are 

represented by u and w respectively and are related to the field variables as follows 

m          n(�o, �, \� = �1 + �p� n��o, \� − � ]q��o, \� + Γ��� s��o, \�    nB�o, �, \� = ]��o, \�                                                                                                                              (14) 

where t is the time, and the transverse shear strain contribution s� can be given as 

             s��o, \� = t�o, \� + ]q��o, \� − (p u��o, \�                                                                                             (15) 

The kinematics assumed here has three field variables as functions of x and t, independent of the thickness 

direction; u0 is the curvilinear axial displacement; w0 is the transverse displacement along the beam neural 

axis; θ is the rotation of the cross-section. Derivatives are denoted by (  �′ = ∂/∂o and (˙) = ∂/∂\. The 

function Γ��� in Eq. (14) is used to deduce different theories, for instance, the classical Euler Bernoulli 

theory by Γ��� = 0, Timoshenko theory by Γ��� = �, and or the SIN theory by Γ��� = �� sin ��� .  

The strains obtained from kinematic equations and the relation between these strains with stresses 

by the constitutive law are stated as follows   
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{|((|BBs(B} = ~u�q + S�p + � ����p − ]�qq� + Γ�z�s�q0Γq�z� s�
�                (16) 

��((�(B� = � �((|((��� s(B�                             (17) 

where �(( = X(-�2 ;    ��� = �                                                   

For the material model considered here, the shear modulus G can be connected to the Young's modulus E 

by E = 2G�1 + v�.  

The porous GPL curved beam is supposed to be under an externally distributed force P3(x, t) 

acting on the top of the beam (z = h/2) whereas the in-plane compressive force P0 (x, t) is assumed to be 

present in the tangent direction along the mid-line of the beam  i.e. such in-plane load may form when the 

curved beam is under uniform pressure [66, 67]. The equations of motion are in general developed 

through the Lagrangian equations of motion by 

��� a���-������� b − a���-������ b = 0, i = 1,2, … n            (18) 

where, δ� is the vector of global degrees of freedom; U� is the total energy consisting of strain energy 

(U��, the potential energy by the compressive axial force P0 (V� and work done by the externally applied 

pressure load P3 (W); T is the kinetic energy. All these energy contributions can be expressed as  

 ¡�¢� = < < �¢|£��j�jo = (" �¢
£�¤
�¢
¥2-¥2
¦�             (19a) 

c�¢� = − < §B ] ¦� jo                                                  (19b) 

P�¢� = − (" < < §� �¨S¨© − ª�p �"�/"-�/"¦� = (" «¢¬£�¤­
«¢¬          (19c) 

®�¢� = (" < < �«n�  ]� ¬«n�  ]� ¬£¥2-¥2
¦�  jo j� =  (" �¢��£�¯
�¢��          (19d) 
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where [M] & [K] are the matrices of global mass and stiffness, respectively. �K±
 is the matrix of global 

geometric stiffness. 

Substituting Eqs (19) in Lagrange’s equation of motion (18), the following governing equations 

for various problems such as bending, vibration, and buckling identified are outlined as 

�K
«δ¬ = «F¬    (bending) 

��K
 − ω"�M
�«δ¬ = «0¬ (free vibration) 

��K
 − P��K±
�«δ¬ = «0¬  (buckling)            (20) 

The different matrices involved in the above governing equations can be developed using finite 

element procedure. In the present work, a C1 continuous 3-noded beam element with Hermite shape 

function for the transverse displacement function, w0 and a quadratic function for axial displacement u0 

and cross-sectional rotation t is proposed to study the problems [55]. The end nodes have 4 degrees of 

freedom (DoF) i.e. u0 w0, w0,x and t, while the mid-node has 2 DoFs i.e u0 and t, as depicted in Fig. 2b. 

The interpolation functions selected here interpolate the membrane/ shear strain energy term in a field-

consistency way to avoid the membrane/shear locking syndrome. All the energy terms were numerically 

calculated adopting full integration. This element performs very well for thick/thin curved beam case. It 

has no artificial mode and produces the correct rigid body modes. The convergence characteristics of the 

element are good. 

 

4. Numerical results and Discussion 

     4. 1 The problems detailed 

Here, the ability of the developed finite element formulation based on the trigonometric shear 

deformation theory using sine function as outlined in the previous section is tested for the known 

problems available in the open literature. A comprehensive study is carried out assuming parameters like 
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length-to-thickness ratio i.e. S = L/h, radius of curvature of curved beam R and beam angle k, GPLs 

distribution and pores dispersion in the thickness direction, and GPL’s geometry on the bending, buckling 

and vibration characteristics of GPL reinforced porous curved composite beams. 

The beam geometry considered here consists of various types of curved beams including the straight one 

and fixing the length L =10m. The curved beam angle k = {150, 600, 1200} is varied o represent the 

shallow/deep curved beam cases. The radius of curvature R can be computed from the relation, ¶ = · ×
k. For thin and thick beams, different values for S = {5, 10, 20} are presumed. 

Boundary Conditions: The following boundary conditions have been employed for the purpose of this 

study: 

•  movable simply supported (HH-movable): ]� = 0   ¹\ o = 0, ¶ 

•  immovable simply supported (HH-immovable): n� = ]� = 0   ¹\ o = 0, ¶ 

•  fully clamped support (CC): n� = t = ]� = ]�′ = 0  ¹\ o = 0, ¶  

•  clamped-hinged support (CH):  n� = t = ]� = ]�q = 0  ¹\ o = 0 ;   n� = ]� = 0 ¹\ o = ¶ 

The properties of GPLs and metal matrix are taken as [64,65]   

•  material: Young’s modulus, Egpl=1.01 TPa;  density, ρgpl= 1062.5 kg/m3; Poisson’s ratio, 

vgpl=0.186 

•  geometry: width, wgpl=1.5 μm, length, lgpl=2.5 μm, thickness, tgpl=1.5 nm,  

•  metal matrix: Copper based metal- Young’s modulus Em=130 GPa; density, ρm= 8960 kg/m3; 

Poisson’s ratio, vm=0.34 

Results: All results presented here, unless mentioned otherwise, the following non-dimensional forms are 

introduced as  

•  bending:    ]¾ = ] (��XY¿�3¦À     ;            �)(( = 10 �(( 2h�3¦2        ;         �)(B = 100 �(B �2�3¦2 

•   buckling:   §.Ä = §� ¦2
mE ¿       
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•  vibration:   È¾  = È¶" É �XY¿   ;  ]ℎhÊh Ë = �ℎ ¹Ìj Í = ℎB/12 

4.2 Assessment of present model 

Based on the progressive mesh refinement, a 32-elements discretization model was found to yield 

the required converged solutions for different boundary conditions and for all the analyses focused in the 

present study as seen from Table 1. Before conducting in-depth analyses, the performance of the model 

was assessed by comparing against existing results in the tabular or graphical form for isotropic curved 

beams, and graphene-reinforced straight beam cases. Tables 2-4 highlight the comparison of the present 

results with those of analytical solutions for the static bending/buckling/ free vibrations of hinged-hinged 

isotropic curved beams. They are found to be in very good agreement. As there is no work seen in the 

literature related to static/dynamic study of graphene-reinforced metal or polymer beams, the available 

analytical solutions for straight beam with such reinforcement are compared with the obtained results 

using the present model in Figs. 3-5, respectively for the static, buckling and free vibration cases. It is 

noticed from Figs. 3-5 that the present numerical solutions are in excellent agreement with those of the 

available analytical methods. 

4.3. Bending analysis 

 The curved beams with (¶/ℎ = 5, 10 & k = 45°) are subjected to uniformly distributed load of 

magnitude §B  �o, � = �"� = ÐB sin �©¦  in the transverse direction. The GPL weight fraction and the 

porosity coefficient are assumed as Wgpl = 1% and cp = 0.5. Considering three different types of dispersion 

for porosity and GPLs in the beam as shown in Fig. 1, the maximum nondimensional displacements of 

beams evaluated for different boundary conditions are shown in Table 5 along with those of straight beam 

cases. It is seen that, in general, the combination of a symmetric GPL and symmetric porosity distribution 

yields the lowest deflection values, thus exhibiting maximum stiffness, next followed by the uniform and 

unsymmetric distribution cases, respectively. The high bending stiffness in symmetric distribution case is 

attributed to the high concentration of GPL and less pores near the upper and lower surfaces of the beam 
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compared to those of around midplane values. It is further viewed that the influence of GPL distribution 

shows significant change in the stiffness for all cases in comparison with those of porosity distributions. 

Also, the effect of radius of curvature of the beam is observed to noticeably reduce the nondimensional 

deflection, irrespective of material and geometric parameters because of the presence of coupling between 

bending and stretching in the curved beam. The clamped case gives lower deflection compared to all 

other supports, as expected. The deflection clamped-hinged beam falls in between the clamped-clamped 

and hinged-hinged case as expected. The detailed investigations, unless otherwise mentioned, are 

conducted by assuming symmetric distributions for the porosity and GPLs in the curved beams. 

Next, the influence of the graphene platelets in the porous nanocomposite curved beam under 

uniform load on the bending deflection while varying the beam included angle k = {150, 600, 1200}, the 

length-to-thickness ratio, S {5, 10, 20} and boundary conditions is investigated and the results are 

depicted in Fig. 6. It can be opined from this figure that the beam bending stiffness increases significantly 

by dispersing the GPLs and, an addition of 1% weight fraction of GPLs results in about 45% decrease in 

maximum beam deflection for all boundary conditions considered here. Furthermore, the resistance of the 

beam against transverse load increases while increasing the beam included angle, and the boundary 

condition significantly affects the deflection. A gradual decease in deflection is also noticed when 

increasing the percentage of weight fraction of GPL.  

The through-thickness plots of shear and normal stresses ��(B , �((� of porous GPL-reinforced 

curved beam having k= 600 & S=5 are presented in Fig. 7 for different boundary conditions assuming 

some values for GPL weight fraction and porosity coefficient (cp =0.5; Wgpl=1%). The effect of different 

types of distributions for GPLs and porosity are also considered. It is noticed from this figure that the 

present model exhibits zero transverse shear stress values at the extreme surfaces of the curved beam as 

required. It is also observed that the variation of pores through the thickness has less effect compared to 

the influence of GPLs dispersion. Furthermore, the location of maximum shear stress value in the 

thickness direction can be different from the physical neutral axis and it is highly dependent on the GPLs 
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dispersion and pores distribution. This is due to the stiffness variation in the thickness direction. Also, it is 

seen that, for the clamped case, the transverse shear stress variation in the thickness direction is noticeably 

high when comparing with those of other boundary conditions. The variation of normal stress �(( in 

direction of the thickness is nonlinear and the degree of nonlinearity is significantly influenced by the 

distribution of GPLs and pores. The location of zero normal stress �(( value can be different from neutral 

axis as seen in the case of the location of the maximum shear stress in the thickness direction. However, 

the influence of boundary conditions on variation of normal stress through the thickness is less. 

Next, the influence of aspect and thickness ratios (l/w, l/t) of graphene platelets on the bending 

behavior is examined assuming the curved porous beam with k =90o & L/h=5, and symmetric dispersion 

for both GPLs and pores. The numerical results obtained are plotted in Fig.8 and it is evident that beams 

with graphene platelets with low aspect ratio and high thickness ratio have predominantly high beam 

stiffness, irrespective of the boundary conditions. 

4.4. Buckling analysis 

The elastic buckling study of porous graphene-reinforced curved beam (cp=0.5 & Wgpl=1%) is 

investigated by various types of dispersion of porosity/GPL in the reinforced metal matrix. The minimum 

critical buckling compressive load is presented in Table 6 for thick curved beams (¶/ℎ = 5, 10 & k =
45°) including the straight beam case. Similar to the static bending study, it is seen that the symmetric 

pattern for both GPLs and porosity offers the maximum stiffness, thus yielding in high critical values. It is 

also seen that the critical buckling load increases significantly while increasing in thickness ratio of the 

beam and this is due to the involvement of higher mode corresponding to the lowest critical load. 

Next, the buckling loads corresponding to the lowest buckling modes are evaluated for various 

thickness ratio values (L/h=5, 10, 20) and curved beam angle (k =15o, 60o, 120o) are detailed in Figs. 9. 

This Figure also brings out the effect of various boundary types on the buckling loads. The buckling 

mode plots with reference to transverse displacement and in-plane displacements (w, u0) for hinged-
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hinged and clamped are described in Fig. 10. From Fig. 9, it is observed that, for the shallow beam case, 

the critical buckling value is less compared to the cases of fairly deep and very deep beams. It is possibly 

due to the low membrane energy contribution to the total potential energy which increases with the beam 

included angle cases. However, for the hinged-hinged case, the total potential energy for the intermediate 

curved beam case k =60o appears to be more compared to the case of deep beam �k =120o). Accordingly, 

the critical buckling value is somewhat more for fairly deep beam case �k =60o), irrespective of thickness 

ratio. But this trend is reversed in the case of clamped beam case, thus yielding higher buckling load for 

deep beam k =120o. This is attributed to the energy contribution due to the membrane and bending 

deformations. It is also viewed from Fig. 10 that, for the shallow curved beam, the lowest mode w for 

buckling mode matches the first symmetric mode whereas the first anti-symmetric mode w dominates the 

lowest critical load for the deep cases. It is also inferred that the enhancement in the compressive resisting 

load is noticeable while adding 1% GPLs in the metal matrix. It is further opined that the increase in the 

minimum critical compressive value is about 80% depending on the thickness ratio of the beam. It can be 

in general opined that the lowest buckling value for the selected curved beam depends on the participation 

of the type mode, symmetric or anti-symmetric mode, and also the boundary conditions. 

4.5. Free vibration analyses 

The free vibration study of the GPLs reinforced nanocomposite porous curved beams is 

investigated assuming symmetric dispersion for GPL and pores in the thickness direction based on the 

bending and buckling analyses. The detailed parametric investigation is made considering nanocomposite 

beams with S=5, 10, 20 and beam angle  k =15o, 60o, 120o. The results for the fundamental frequency are 

plotted in Figs. 11. It is noticed from Fig. 11 that the fundamental frequency value for very deep beam 

case is higher for thick beam compared to the cases of shallow and fairly deep cases but it may change 

with the increase in thickness ratio and boundary condition as seen in Fig. 11. This behavior is 

qualitatively similar to those of buckling case. The vibration mode shapes with respect to transverse and 
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in-plane displacements (w, u0) for hinged-hinged and clamped are shown in Fig. 12. It is viewed from this 

figure that the in-plane vibration modes are in general different from the buckling modes (Fig.10). 

 

5. Conclusion 

The application of finite element approach coupled with higher-order SIN model is carried out for 

bending, buckling and free vibration of graphene platelets reinforced porous curved beams. The 

performance of the numerical model is compared with the analytical method. A comprehensive analysis is 

done to highlight the effect of different design parameters like length-to-thickness ratio and boundary 

conditions, included angle of curved beam on the static and dynamic behavior of curved beams. From the 

present investigation, certain observations made are as follows: 

(i) The type of weight distribution of GPLs influences the beam stiffness considerably while comparing 

with the pores distribution pattern in the metal matrix. 

(ii) The increase in beam included angle decreases the deflection of the curved beam.  

(iii) The transverse shear stress variation in the thickness direction is noticeably high for the clamped 

case. 

(iv)  The change in the normal stress in the thickness direction is nonlinear and the degree of nonlinearity 

depends on the distribution of GPLs and pores. 

(v) The occurrence of the maximum shear stress values and zero normal stress in the thickness direction 

is dependent on the dispersion type of pores and GPLs in the matrix. 

(vi) Graphene platelet geometric parameters significantly affect the structural design of the 

nanocomposite curved beam. 

(vii) Significant enhancement in the buckling value is observed while increasing GPLs weight fraction 

in comparison with the reduction level of static bending deflection of the beam. 

(viii) The buckling value of a curved beam significantly depends on the beam included angle. 
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(ix) The increment in frequency value highly depends on the shallowness and thickness ratio of the 

reinforced porous curved beam. 

(x) The in-plane mode significantly affects the critical buckling and fundamental frequency values 

depending on the curved beam included angle. 

(xi) The results provided for certain boundary conditions can thus form as benchmark solutions while 

dealing with different theories/solution approaches. 
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Legends for Tables 

 

Table 1.  Mesh convergence table for different loading and boundary conditions, C - C and H - H-movable 

(L/h =5, φ  = 60°, cp = 0.5, Wgpl = 1%). 

Table 2. Comparison of nondimensional deflections (n)B) for different L/h, beam angles (φ ), and 

theories (cp = 0, Wgpl = 0%). 

Table 3. Comparison of non-dimensional first, second and third fundamental frequencies of curved 

isotropic beam (H - H-movable boundary condition, φ  = 60°). 

Table 4. Critical buckling load, §)cr, of an isotropic curved beam (H - H-movable) 

Table 5. Non-dimensional deflection (n)B) of curved beams of different porosity and GPLs weight 

distribution types for different boundary conditions (cp = 0.5, Wgpl = 1%).  

Table 6. Non-dimensional buckling load, §)cr of different porosity and GPLs weight distribution types for 

different boundary conditions (cp = 0.5, Wgpl = 1%). 

 

Legends for Figures 

 

Figure 1. Distribution of porosity and GPLs in the thickness direction: (a) Porosity; (b) GPLs. 

Figure 2. a) Geometrical parameters of curved beam; b) Beam element with the degrees of freedom. 

Figure 3. Comparison of non - dimensional deflections against porosity coefficient for the straight 

nanocomposite beam under uniform load for different boundary conditions (L/h = 20, Wgpl = 0%). 

Figure 4. Comparison of critical buckling load increment of straight GPL reinforced beam against weight 

fraction of GPL for different values for porosity coefficient and different GPL distributions (CC boundary 

condition, L/h=20, symmetric porosity distribution). 

Figure 5. Comparison of fundamental frequency increment of straight GPL reinforced beam against GPL 

weight fraction of GPLs for different GPL distributions and boundary conditions (cp = 0.5, L/h = 20, 

symmetric porosity distribution). 

Figure 6. Non - dimensional deflections of curved beams with different beam angles (φ ) against GPL 

weight fraction (Wgpl) for different thickness ratios and different boundary conditions (cp = 0.5, 

symmetric distribution type for porosity and GPLs).  

Figure 7. Comparison stress plots through the thickness for different porosity and graphene platelet 

distribution types and boundary conditions (k = 60° and L/h = 5; cp =0.5; Wgpl=1%): (a) shear stress, (b) 

normal stress.  
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Figure 8. Non - dimensional deflections of curved beam (k = 90°) against GPLs weight fraction (Wgpl) for 

different values of GPL geometry, (l/w)gpl & (l/t)gpl and boundary conditions (L/h=5, cp = 0.5; symmetric 

distribution type for Porosity and GPLs). 

Figure 9. Non - dimensional critical buckling loads of curved beams with different beam angles 

(φ ) against GPL weight fraction (Wgpl) for different thickness ratios and boundary conditions (cp = 0.5, 

symmetric distribution type for porosity and GPLs). 

Figure 10. Mode shapes (n� and ]�) corresponding to the first buckling mode for different beam angles 

(cp = 0.5, Wgpl=1%, symmetric distribution type for porosity and GPLs). a) H – H boundary condition; b) C 

– C boundary condition 

Figure 11. Fundamental frequencies of curved beams with different beam angles (φ ) against GPL 

weight fractions (Wgpl) for different thickness ratios and boundary conditions (cp = 0.5, symmetric 

distribution type for porosity and GPLs).  

Figure 12. Mode shape (n� and ]�) corresponding to the fundamental free vibration mode for different 

beam angles (cp = 0.5, Wgpl=1%, symmetric distribution type for porosity and GPLs). a) H – H boundary 

condition; b) C – C boundary condition 
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Table 1.  Mesh convergence table for different loading and boundary conditions, C - C and H - H-movable 

(L/h =5, φ  = 60°, cp = 0.5, Wgpl = 1%). 

No. of 

elements 

n)B È¾( §.Ä 

C - C H - H C - C H - H C - C H - H 

2 0.1741 0.2540 28.9013 22.7054 53.5886 38.9586 

4 0.1701 0.2534 28.5536 22.6451 46.2255 33.9416 

8 0.1706 0.2534 28.4374 22.6361 45.7590 33.7491 

16 0.1708 0.2534 28.4055 22.6354 45.7070 33.7357 

32 0.1709 0.2534 28.3989 22.6354 45.7022 33.7348 

64 0.1709 0.2534 28.3981 22.6354 45.7018 33.7347 

 

 

 

Table 2. Comparison of nondimensional deflections (n)B) for different L/h, beam angles (φ ), and 

theories (cp = 0, Wgpl = 0%). 

L/h φ (n)B)  REF. [67] (n)B)  Present 

CLT FSDT SIN CLT FSDT SIN 

5 

30° 1.0871 1.1800 1.1982 1.0871 1.1800 1.1982 

60° 1.3040 1.4152 1.4370 1.3040 1.4152 1.4370 

90° 1.8401 1.9962 2.0269 1.8401 1.9962 2.0268 

10 

30° 1.0863 1.1096 1.1142 1.0863 1.1096 1.1142 

60° 1.3005 1.3283 1.3338 1.3005 1.3283 1.3338 

90° 1.8288 1.8678 1.8756 1.8288 1.8678 1.8756 

20 

30° 1.0862 1.0920 1.0931 1.0862 1.0920 1.0920 

60° 1.2996 1.3065 1.3079 1.2996 1.3065 1.3079 

90° 1.8260 1.8358 1.8377 1.8260 1.8357 1.8376 
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Table 3. Comparison of non-dimensional first, second and third fundamental frequencies of curved 

isotropic beam (H - H-movable boundary condition, φ  = 60°).  

L/h Mode 
Present Hosseini et al. [66] 

CLT FSDT SIN 
 

Soln I Soln II 

10 

È¾( 8.2864 8.2004 8.1837 
 

8.1991 8.2152 È¾" 37.2371 35.8230 35.5630 
 

35.7451 35.8144 È¾B 84.1010 77.7885 76.7076 
 

77.3993 77.5359 

50 

È¾( 8.3213 8.3178 8.3171 
 

8.3177 8.3184 È¾" 37.8341 37.7697 37.7569 
 

37.7658 37.7690 È¾B 87.0629 86.7317 86.6665 
 

86.7084 86.7158 

 

 

 

 

Table 4. Critical buckling load, §)cr, of an isotropic curved beam (H - H-movable) 

Critical buckling load (§)cr) Method Value 

Present FEA 37.37 

Luu et al. [64] IGA 39.40 

Timoshenko and Gere [65] Exact  38.38 

Kang et al. [68] DQM 38.49 

 

 

 

 

 

 

 

 

 

 



27 

 

Table 5. Non-dimensional deflection (n)B) of curved beams of different porosity and GPLs weight distribution types for different boundary 

conditions (cp = 0.5, Wgpl = 1%).  

 

L/h φ  
Porosity 

Dist. Type 

n)B (H – H) n)B (C – H) n)B (C – C) 

GPL Dist. Type GPL Dist. Type GPL Dist. Type 

Sym. Unsym. Uniform Sym. Unsym. Uniform Sym. Unsym. Uniform 

5 

Straight 

Sym. 0.7946 0.9117 0.9334 0.4235 0.4815 0.4688 0.2706 0.2955 0.2849 

Unsym. 0.8824 0.9982 1.0587 0.4647 0.5467 0.5273 0.2881 0.3292 0.3117 

Uniform 0.9134 1.0703 1.1004 0.4656 0.5423 0.5321 0.2866 0.3215 0.3124 

45° 

Sym. 0.3579 0.3208 0.3894 0.2656 0.2676 0.2869 0.2031 0.2219 0.2135 

Unsym. 0.3257 0.3098 0.3559 0.2658 0.2738 0.2893 0.2169 0.2407 0.2308 

Uniform 0.3893 0.3492 0.4185 0.2871 0.2907 0.3116 0.2150 0.2376 0.2298 

10 

Straight 

Sym. 0.6924 0.8234 0.8478 0.3155 0.3883 0.3776 0.1745 0.2120 0.2037 

Unsym. 0.7898 0.9191 0.9815 0.3668 0.4640 0.4449 0.2007 0.2544 0.2381 

Uniform 0.8216 0.9915 1.0238 0.3679 0.4586 0.4500 0.1997 0.2464 0.2392 

45° 

Sym. 0.1316 0.1233 0.1400 0.1139 0.1146 0.1238 0.0942 0.1065 0.1040 

Unsym. 0.1240 0.1219 0.1320 0.1139 0.1156 0.1229 0.1033 0.1152 0.1130 

Uniform 0.1409 0.1316 0.1463 0.1238 0.1234 0.1322 0.1036 0.1159 0.1136 
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Table 6. Non-dimensional buckling load, §)cr of different porosity and GPLs weight distribution types for different boundary conditions (cp = 0.5, 

Wgpl = 1%). 

 

L/h φ 
Porosity 

Dist. Type 

§)cr (H – H) §)cr (C – H) §)cr (C – C) 

GPL Dist. Type GPL Dist. Type GPL Dist. Type 

Sym. Unsym. Uniform Sym. Unsym. Uniform Sym. Unsym. Uniform 

5 

Straight 

Sym. 12.7509 11.1354 10.8551 21.5291 18.7961 19.2864 33.7904 30.6660 31.8268 

Unsym. 11.4974 10.2003 9.5803 19.5156 16.4880 17.0643 31.5406 27.3215 28.9035 

Uniform 11.0922 9.4837 9.2077 19.4633 16.5927 16.8921 31.7123 28.0159 28.8442 

45° 

Sym. 29.2827 30.6251 26.9201 32.0643 31.8196 29.6735 42.2129 39.4165 40.4182 

Unsym. 31.5053 27.2662 28.8727 32.0253 30.8646 29.3272 40.1783 36.5079 37.7502 

Uniform 26.9290 27.9801 25.0513 29.6730 29.1803 27.1097 40.0895 36.7652 37.4818 

10 

Straight 

Sym. 14.6324 12.3327 11.9513 28.2040 22.8551 23.4641 51.0039 41.7201 43.4204 

Unsym. 12.8465 11.0829 10.3351 24.2030 19.1255 19.8820 44.1466 34.6224 37.0038 

Uniform 12.3324 10.2395 9.8967 24.1082 19.2999 19.6352 44.3690 35.7556 36.8310 

45° 

Sym. 50.9782 41.6773 43.3986 60.3205 54.5715 53.2042 83.4023 73.7898 75.3282 

Unsym. 44.1065 34.5757 36.9728 56.5342 47.5889 48.7154 76.2413 64.3994 68.4848 

Uniform 44.3467 35.7215 36.8124 53.8630 47.6591 46.6072 75.7490 66.2759 67.9921 
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Figure 1. Distribution of porosity and GPLs in the thickness direction: (a) Porosity; (b) GPLs. 

 

 

 

Figure 2. a) Geometrical parameters of curved beam & b) Beam element with the degrees of freedom. 
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Figure 3. Comparison of non - dimensional deflections against porosity coefficient for the straight 

nanocomposite beam under uniform load for different boundary conditions (L/h = 20, Wgpl = 0%). 
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Figure 4. Comparison of critical buckling load increment of straight GPL reinforced beam against weight 

fraction of GPL for different values for porosity coefficient and different GPL distributions (C - C 

boundary condition, L/h=20, symmetric porosity distribution). 

 

 

Figure 5. Comparison of fundamental frequency increment of straight GPL reinforced beam against 

weight fraction of GPLs for different GPL distributions and boundary conditions (cp = 0.5, L/h = 20, 

symmetric porosity distribution). 
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Figure 6. Non - dimensional deflections of curved beams with different beam angles (φ ) against GPL 

weight fraction (Wgpl) for different thickness ratios and different boundary conditions (cp = 0.5, 

symmetric distribution type for porosity and GPLs).  
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Figure 7. Comparison stress plots through the thickness for different porosity and graphene platelet 

distribution types and boundary conditions (k = 60° and L/h = 5; cp =0.5; Wgpl=1%): (a) shear stress, (b) 

normal stress.  
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Figure 8. Non - dimensional deflections of curved beam (k = 90°) against GPLs weight fraction (Wgpl) for 

different values of GPL geometry, (l/w)gpl & (l/t)gpl and boundary conditions (L/h=5, cp = 0.5; symmetric 

distribution type for Porosity and GPLs). 
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Figure 9. Non - dimensional critical buckling loads of curved beams with different beam angles 

(φ ) against GPL weight fraction (Wgpl) for different thickness ratios and boundary conditions (cp = 0.5, 

symmetric distribution type for porosity and GPLs). 
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Figure 10. Mode shapes (n� and ]�) corresponding to the first buckling mode for different beam angles 

(cp = 0.5, Wgpl=1%, symmetric distribution type for porosity and GPLs). a) H – H boundary condition; b) C 

– C boundary condition 
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Figure 11. Fundamental frequencies of curved beams with different beam angles (φ ) against GPL 

weight fractions (Wgpl) for different thickness ratios and boundary conditions (cp = 0.5, symmetric 

distribution type for porosity and GPLs).  
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Figure 12. Mode shape (n� and ]�) corresponding to the fundamental free vibration mode for different 

beam angles (cp = 0.5, Wgpl=1%, symmetric distribution type for porosity and GPLs). a) H – H boundary 

condition; b) C – C boundary condition 

 


