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where the second order derivative is multiplied by a small parameter and the shift depends
on the small parameter. Similar boundary value problems are associated with expected
first-exit times of the membrane potential in models of neurons. Here, the study focuses
on the effect of shift on the boundary layer behavior or oscillatory behavior of the solution
via finite difference approach. An extensive amount of computational work has been car-

I];f%/f':roeftsi'al_ difference equation ried out to demonstrate the proposed method and to show the effect of shift parameter
Singular perturbations on the boundary layer behavior and oscillatory behavior of the solution of the problem.
Boundary layer © 2012 Elsevier Inc. All rights reserved.
Oscillations

Finite difference method

1. Introduction

A singularly perturbed differential-difference equation is an ordinary differential equation in which the highest derivative
is multiplied by a small parameter and involving at least one shift or delay term. The determination of the expected time for
the generation of action potentials in nerve cells by random synaptic inputs in the dendrites can be modeled as a first-exit
time problem. The case of inputs distributed as a Poisson process with exponential decay between the inputs was formulated
by Stein [1] and studied by Tuckwell [2,3] and by Wilbur and Rinzel [4]. If, in addition, there are inputs that can be modeled
as a Wiener process with variance parameter ¢ and drift parameter y, then the problem for the expected first-exit time y,
given the initial membrane potential x € (x, X»), can be formulated as a general boundary-value problem for the linear sec-
ond-order differential-difference equation:

/0) + (1= X () + Fey(x-+e) + iyl — ) — (i + i) = 1.

where the values x = x; and x = x, correspond to the inhibitory reversal potential and to the threshold value of membrane
potential for action potential generation, respectively. The first-order derivative term -xy’ corresponds to exponential decay
between synaptic inputs. The undifferentiated terms correspond to excitatory and inhibitory synaptic inputs modeled as
Poisson processes with mean rates /¢ and /,;, respectively, and produce jumps in the membrane potential of amounts ag
and ay, respectively, which are small quantities and could depend on voltage. The boundary condition is y(x)=0, x ¢ (x;,
X3). The singular perturbation analysis of boundary-value problem for differential-difference equations with small shifts
has been given by Lange and Miura [5,6]. In recent years, there has been a growing interest in the numerical study of such
problems owing to its applications in areas such as neurobiology [5], optimal control theory [7,8], in the study of an optically
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bistable devices [9], in describing the human pupil-light reflex [10], in variety of models for physiological processes or dis-
eases [11,12]. The numerical study of second order singularly perturbed differential-difference equation with small shift or
delay has been given in [13-19] and references therein. Amiraliyev and Cimen [20] have given an exponentially fitted dif-
ference scheme on a uniform mesh for singularly perturbed boundary value problem for a linear second order delay differ-
ential equation with a large delay in the reaction term.

In this paper, we present a finite difference method for singularly perturbed differential-difference equations of convec-
tion-diffusion type with a small shift. When the shift parameter is smaller than the perturbation parameter, the term con-
taining the shift is expanded in Taylor series and an exponentially fitted tridiagonal finite difference method is developed. It
is analyzed for convergence. When the shift parameter is larger than perturbation parameter a special type of mesh is used,
so that the term containing shift lies on nodal points after discretization and a fourth order finite difference method is ap-
plied. An extensive amount of computational work has been carried out to demonstrate the proposed method and to show
the effect of shift parameter on the boundary layer behavior and oscillatory behavior of the solution of the problem.

2. Statement of the problem

We consider a linear singularly perturbed differential-difference equation, which contains only negative shift in the con-
vection term

&y"(x) +a(x)y'(x — 0) + bx)y(x) = f(x), (M
on0<x<1,0<e< 1, subject to the interval and boundary conditions

y(x) = ¢x), x<0,

y(1) =p,
where a(x), b(x),f(x) and ¢(x) are known analytic functions and, further, that each function is simple enough so that analytic
differentiation is feasible, f is a constant and d(¢) is a small shifting parameter. For § = 0 the corresponding singular pertur-
bation problem has boundary layer on left side when a(x) > 0 or on right side when a(x) < 0 on the interval [0, 1]. The layer is

maintained at the same end for sufficiently small 4, i.e., when 6 = o(¢). The layer behavior can change its character and even
be destroyed as the shifts increase, i.e., when ¢ = O(¢) [5].

()

3. Layer behavior

When 6 = 0(¢), the use of Taylor’s series expansion for the term containing delay is valid [21]. By using the Taylor approx-
imation to the term containing the delay, the boundary value problem (1) and (2) reduces to

(e —=dax)u"(x) +ax)u'(x) + b(x)ux) =f(x), 0<x<1, (3)
subject to
u(0) = ¢(0) = ¢o(say), u(1)=p. 4)

We assume that (¢ — da(x)) >0, b(x) < —0 < 0, a(x) = M > 0 throughout the interval [0, 1]. Under these assumptions, (3)
has a unique solution u(x) which in general, displays a boundary layer of width O(¢) at x =0 for small values of . Since
u € C?[0, 1] and the delay argument is sufficiently small, the solution u(x) of the problem (3) and (4) provide a good approx-
imation to the solution u(x) of the problem (1) and (2). We denote by L. the differential operator for the above problem (3)
and (4) which is defined for any function y/(x) € C?[0, 1] as L.y(x) = (¢ — da(x) )y (x) + a(X)y/' (x) + b(x)y(x).

Throughout the paper 0 and M denote generic positive constants that are independent of ¢ and in the case of discrete
problems, also independent of the mesh parameter N. ||-|| denotes the global maximum norm over the appropriate domain
of the independent variable, i.e., |[f|| = maxXyejo1|f (X)|-

Lemma 1. Let u(x) be the solution of the problem (3) and (4), then we have

] < 07" [If | + max(|ol, ).

Proof. Let us construct the two barrier functions y* defined by

Y (%) = 07" IF1] + max(|ol, |B]) + u(x).

Then we have

¥*(0) = 07M|If | + max (|l [B1) % u(0) = 07" |If | + max(|epol, [B]) = ¢, since u(0) = ¢ > 0,

Y (1) = 0 Ifl| + max(lgol, 1B) £ u(1) = 07 M|If|| + max(|¢o|, [6]) £ . since u(1)=$ >0,
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and we have

YEx) = (6 - 0a(X) (Y ()" + a(x) (Y~ (%)) + bx)y* (x) = b(x) (0" [If|| + max(|¢o|, |B)) + Leu(x)
= b(x)(07"[If|| + max(|eol, |B])) £ f(x).

We have b(x)0~' < —1, since b(x) < —0 < 0. O
Using this inequality in the above inequality, we get

Loy (x) < (=IIfll £ (%)) + b(x) max(|gol, |B]) < 0 ¥x € (0,1),  since [f]| > f(x).

Therefore by the minimum principle [22], we obtain *(x) > 0 for all x € [0, 1], which gives the required estimate.
3.1. Exponentially fitted tridiagonal finite difference method

From the theory of singular perturbations it is known that the solution of (3) and (4) is of the form [23, pp. 22-26]

_ a0 40 — _[(ax)
) = w0 + gl (000) ~ uo (@) exp { - [ (100 Yae] + 0 5)
where ug(x) is the solution of the reduced problem
a(X)up(x) + b(x)ue(x) = f(x), uo(1) = p. (6)
By taking the Taylor’s series expansion for a(x) about the point ‘0’ and restricting to their first terms, (5) becomes,
() = o) + (9(0) ~ un(0)) exp { - (1200} 000 )

Now we divide the interval [0, 1] into N equal parts with constant mesh length h. Let 0 = xq, X1, X2, . . ., X, = 1 be the mesh
points. Then we have x;=ih,i=0,1,2,...,N.
From (7), we have

(k) = to(x) + (4(0) — uo(0)) exp {— (2505 )} + 0@

ie.,
u(ih) = uo(ih) + (¢(0) — ue(0)) exp {— (%) lh} +0(e).
Therefore
limu(ih) = us(0) + (#(0) — uo(0)) exp{-a(0)ip}, (8)
where p = ;Lo & 5a(0)#0.

Remark. It may be noted that if ¢ — 6a(0) =0, then p — oo and u(x) reduces to ug(x), which is the solution of reduced
problem.

We consider

glx,u,u’) = f(x) —a(x)u'(x) — b(x)u(x). 9)
Then Eq. (3) reduces to
(e —dax))u"(x) =gx,u,u), 0<x<1. (10)

Now, we consider the fourth order finite difference method by Chawla [24] as follows:

U= U1 — Ui

T 2h
= 3t — 4+ Ui
Y ==
=) —Ui 1 +4u; — 33U
Wi =—"">5p
o h
uz = ul _E(gxﬂ _gl )

and
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(6 datw)(o(p) (1250 )

X =ﬁ(§i+1 +108; + &i-1), (11)

where g; = g(x;, u;, ') and w1 = g(Xix1, Uis1, Upy ;).

Here a(p) is a fitting factor which is to be determined in such a way that the solution of (11) converges uniformly in ¢ to
the solution of (3) and (4).

Now, multiplying Eq. (11) by h and taking limit as h — 0, we get

lim {%(um —2u; + Ui q) +%a(ih)(um — u,-,])} =0, since f(x;) — b(x;)u; is bounded.

h—0
;EEF%Qwan+mfzmmy+mm7h»+%mmxmm+hyfmm7h» ~o. (12)

Substituting (8) in (12) and simplifying, we get the fitting factor as

o(p) = a(O)g coth (@),

which is a constant fitting factor.
In general we take a variable fitting factor as

ai(p;) = a(x,)% coth (%), (13)
h
where p; = Py oAt
Eq. (11) is a fourth order tridiagonal finite difference scheme and it can be written as

Eiui_4 —F,»ui+Giui+1 =H;, i:1,2,3,...,N—1, (14)

where
G i0; 107 1 5 h " 3 1
E = 5h coth( 5 ) +ﬁ [b,,l +ﬁa,+1 —Ha, —ia,b,,l 2ha1 1 + a;(aiq +3a;1) |,

4 aip; 1 , 1
Fi=7 coth( 5 ) [ =b; + g (@i = 1) + 350G+ Gia) |

5 h
a; + a; b1+1

Qiv1 + 1 h

2h 2 12 2h

; 1
G = di COth( p) + = |:b,'+1 + = 3 2h

1
a1 + = a1(3‘11+] +al 1):|

1 h
H; = V) (fm +10f; + fi1 +§ai(fi+l *fm))

and a(x;) = a;, b(x;) = b;, f(x;) = fi.
We solve the tridiagonal system (14) where ¢ is given by (13) subject to the boundary conditions (4) by using Thomas
Algorithm.

Remark. When § = o(¢), 0 < (¢ — da(x)) < 1, a(x) < M < 0, b(x) < 0 throughout the interval [0, 1], where M is some negative

constant, the boundary value problem (3) and (4) displays a boundary layer at x = 1. It can be observed that the same variable
fitting factor can be obtained in this case also.

3.2. Convergence analysis

Multiplying Eq. (14) by h and incorporating the boundary conditions we obtain the system of equations in the matrix
form as

(D+P)U+Q +T(h) =0, .
where
—a; coth (£1) 4 coth (1£2) 0 0
@ coth (%L Footh () -ascomh () % coth (%) - 0
D:[f,mth( I2'0’>1—aic0th( ,p) fcoth( 2,0)]: 0

0 o 0 @1 coth (=1fae1)  —ay_q coth (B=fat)
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and
1 Wp 0 S 0
Z; Uy Wy ... 0
P= [ZU Vj./W[] = 0
0o ... 0 ZN-1 UN-1,
where
1 h’ 3 h
Zi=15 {hb, 1+ 50— 5a; - 7aibi—l — 501+ Zai(am +3a;4 )] ;
5h 1 h
v = {f b; — g(am — Q1) — ﬁai(am + GH)} ;
1 3 2 1 h
Wi =15 [hbiy + 5 50is1 + 50+ = - aibiy — 5 i1+ 70i(30i1 + i)
and

Q= [ql + (Clz—l cothalzp1 +zl>¢(0),q2,q3,...,qN 20N 1+< 5 coth%%—w,v 1)[f]T,

where g; = — [A(fii1 +10f +fi) + S ailfir —fin)], i=1.2. ,N=1,

5747

T(h)=0(h*) and U=[Uy, Us, ..., Uy_+1]", T(h) = [T1, To, ..., Tn_1]%, 0=[0, O, ..., 0]" are the associated vectors of Eq. (15).

Let u = [uy, Us, ..., un_1]" = U which satisfies the equation
(D+P)U+Q =0,

Lete;=u;— U;, i=1,2,...,N—1 be the discretization error so that E = [e, €, ..., ex_1]"=u — U.

Subtracting Eq. (15) from Eq. (16) we get
(D + P)E =T(h).
Let [a(x)| < C1: [b(x)| < C
Let p;; be the (i, j)th element of the matrix P, then

1 h? .
[Piial = Wi <12(hcz+6a +2C1C2+hc§>; i=1,2,...,N=2.

2

—h—C1C2+hCﬂ; i=2,...,N-1

1
i1l =z < ﬁIhCZ - 6C; 5

Thus for sufficiently small h,

2coth GPi \ \piin] < %(coth iy >;é0, i=1,2,...,N—2since

lai] < C; - —coth 'p’+|p”1| <cothc1p’ );éo i=1,2,...,N—1.

Hence, the matrix (D + P) is irreducible [25].
Let S; be the sum of the elements of the ith row of the matrix (D + P), then we have

a . ap;  5h h 5 1 h h h h

Si = 751 coth 12/)1 —b;— (1,+1 + 12(1, +8(1, 1+ 12b1+] fﬁaiam *Eaia,‘,1 +ﬁ
ot (W) My Lo D] B A S 19
S1 = 2 COth( 2 ) + 12 bl—] 8a1+1 a1 + 55 24 16a1a1+1 48 a;a;_q 24 albl—l + 6 bl

2

h h .
Si:ﬁ(bi—l+10bi+bi+l) ﬂal(b,ﬂ —b,’,]) forl:2,3,4,...,N—2A
Let C;- = min|a(x)|, C; = max|a(x)|, C» = min|b(x)|, C; = max |b(x)|.

a,»bm fori= 1,

(16)

(17)
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Then0< C- <G <C},0<Cy <G <G

It is easy to verify that for sufficiently small h, (D + P) is monotone [25,26]. Hence (D + P) 'exists and (D +P)"' > 0.
From the error equation (17) we have ||E|| = [|(D + P)~Y||-||T]I.

For sufficiently small h, we have

h2
Si >ﬂC1C2 fori= 17

h? .
Si >ﬂC1C2 fori=N-1and

2
si>g—4clc fori=2,3,4,....N-2. (18)
where C = |bj+; — bi1].
Let (D + P)[,} be the (i, k)th element of (D + P)~! and we define

N-1
|(D+P)~'|| = max > (D +P); and T(h)|| = max [Ty,
S k=1 e

since (D+P);; > 0and >3/ (D+P);}-Sg=1fori=1,2,3,4,.. ., N-1.

ik
-1 1 24
Hence, (D +P);; < 5 <Rocy
1 - 24
Sv RCiGy

Further 3 7(D +P);y < ——< < A_fori=1,2,3,4,..,N-1.

min S, X p2
2cken-2"K h°GiC

D+ P){I\]I—l <

Hence from Eqgs. (17) and (18), we get

HEH _% Lﬁ,iﬁ,# X T( ) —%[L+L+L]
n h2 CiC, CC GG n h2 GG, CC GG
This establishes the convergence of the finite difference scheme (14) and the rate of convergence of the scheme is 2.
From Eq. (19), it is observed that the proposed method is ¢ uniform convergent since the error is of the form [|E|| = C*h?
where C* is independent of perturbation parameter e.

o(h"). (19)

3.3. Numerical examples (boundary layer behavior)

To demonstrate the applicability of the method we consider two boundary value problems of singularly perturbed linear
differential difference equations exhibiting boundary layer at the left of the interval [0, 1], and one problem exhibiting
boundary layer at the right end of the under lying interval. These examples were widely discussed in the literature [14-
16]. Since the exact solutions of the problems for different values of 6 are not known, the maximum absolute errors for
the examples are calculated using the double mesh principle Ey = maXo<icn|yN — ¥3V|. The maximum absolute errors are tab-
ulated in the form of Table 1 for considered examples. From the numerical results, it can be observed that proposed method
is ¢ uniform convergent. Our numerical results are compared with the results given in [14-16]. It has been observed that the
proposed method gives high accurate numerical results and higher order of convergence than the methods proposed in [14-
16]. From the results, it also can be observed that as the grid size h decreases, the maximum absolute errors decrease, which
shows the convergence to the computed solution.

Example 1 [15, p. 700]. ey’(x) +0.25y'(x —J) —y(x) =0, subject to the interval and boundary conditions
yx)=1; =0 <x<0,y(1)=-1.

Example 2 [14, p. 195]. &y"(x) +e*y'(x—J) —xy(x) =0, subject to the interval and boundary conditions
yx)=1; -0 <x<0,y(1)=1.

Example 3 [16, p. 808]. &y’(x) — (1 +x)y'(x — ) —e*y(x) =1, subject to the interval and boundary conditions
yx)=1; -0 <x<0,y(1)=-1.

4. Oscillatory behavior

To discuss the finite difference method, we consider a linear singularly perturbed differential-difference equation of the
form:

&y"(X) + aX)y'(x — 6) + b(x)y(x) = f(x)

on 0<x<1,0<ée< 1, subject to the interval and boundary conditions
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Table 1
The maximum absolute errors Ey for § = 0.5¢ using the exponentially fitted finite difference method (14).
& N
100 200 300 400 500

Example 1

107! 1.5441e-005 1.7156e—006 1.7156e—-006 9.6503e—-007 6.1762e—-007
102 2.4266e—004 6.0723e—-005 2.6941e—-005 1.5157e—-005 9.6976e—006
103 2.7351e-003 7.9548e—004 3.3437e-004 1.7441e-004 1.1457e—-004
104 3.8338e-003 1.9348e—003 1.2825e-003 9.4102e—004 7.2670e—004
10 3.8338e-003 1.9367e—-003 1.2956e—-003 9.7346e-004 7.7960e—004
10710 3.8338e-003 1.9367e—003 1.2956e—-003 9.7346e—-004 7.7960e—004
10720 3.8338e-003 1.9367e—003 1.2956e—003 9.7346e—-004 7.7960e—004
Example 2

107! 2.4266e—004 6.0723e—-005 2.6941e—-005 1.5157e—-005 9.6976e—-006
1072 2.4266e—004 6.0723e—-005 2.6941e-005 1.5157e—-005 9.6976e—006
1073 3.5343e-003 1.3266e—-003 6.7418e—004 4.0273e—004 2.6620e—-004
104 3.8857e-003 1.9634e-003 1.3133e-003 9.8501e—-004 7.8493e—-004
10°° 3.8857e—003 1.9634e—-003 1.3136e—-003 9.8694e—-004 7.9039e—-004
10710 3.8857e—-003 1.9634e—-003 1.3136e—-003 9.8694e-004 7.9039e-004
1020 3.8857e-003 1.9634e-003 1.3136e—-003 9.8694e—-004 7.9039e-004
Example 3

107! 2.9324e-005 7.3329e-006 3.2593e-006 1.8334e-006 1.1734e-006
1072 5.0780e—004 1.2843e—-004 5.7199e-005 3.2198e-005 2.0614e—-005
1073 2.6123e-003 1.0331e—-003 5.2760e—004 3.1404e-004 2.0667e—004
10 2.7246e-003 1.3749e-003 9.1940e—-004 6.9050e—-004 5.5243e-004
10°° 2.7246e-003 1.3749e-003 9.1940e—-004 6.9061e—004 5.5300e—004
10710 2.7246e-003 1.3749e-003 9.1940e-004 6.9061e—004 5.5300e—004
10720 2.7246e-003 1.3749e-003 9.1940e—-004 6.9061e—004 5.5300e—004

y(x)=9¢((x), x<0,
y(1) =p,

where a(x), b(x), f(x) and ¢(x)are known analytic functions and, further, that each function is simple enough so that analytic

differentiation is feasible, p is a constant and §(¢)is a small shifting parameter.

When the shift parameter is bigger one, i.e., 5 = O(¢), the use of Taylor’s series expansion for the term containing the delay
may lead to a bad approximation. In this case a special type of mesh is used, so that the term containing shift lies on nodal

points after discretization and fourth order finite difference method is applied.
We consider g(x, y, y') = f(x) — a(x)y'(x — §) — b(x)y(x), then Eq. (1) reduces to

&Y' (x) = g(x,3,¥"),

0<x<1.

Now we consider the fourth order finite difference method by Chawla [24] as follows:

= Yi1 = Vi

.yi - Zh )

o Wi Wit Yia
yi+1 - 2h ’
7/ —V.. 4 +4y. — 3y,
yi—l — y1+1 yl yl 1

2h

yi=yi —E(gm —&i-1),

= 2Yi +Yiq

8<}’i+1

h2

)

‘l _ = —
) - ﬁ(g,-+1 +10g; + gi-1),

where g; = g(xi,y;,¥;) and gic1 = g(Xix1, Yis1, Viy)-
To handle the delay argument, we construct a special type of mesh, so that the term containing delay lies on nodal points
after discretization. We divide the interval [0, 1] into N equal parts by choosing the mesh parameter h = 2, where m is a po-

sitive integer chosen such that 1 <m<N.

We have

&y" (%) = (X, Y1, ¥1) = F (%) — a(xi)y' (Xi-m) — b(x:)y(%:)-

The boundary conditions can be written as

(20)

(21)
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§1 7(7; or 1 a non positive integer, (22)
N— P

where ¢; = ¢(x;).
We consider the notation

g,y Yi) = & a(xi) = a;, b(x;) = b; and f(x;) = f;.

Then we get
g =fi—ayi_n — by,

_ 3 2 1
81 =fi1 — ﬁaHlJ’pmH +Hai+1yl;m - ﬁaiﬂyi—m—l = bii1yii1,
_ 1 2 3
81 =fia +ﬁai—l)’i—m+l - Eai—lyi—m +2*hai—1y1>m71 = bi1yi 1,

- h h 1 3 1 1
gi=fi+ Eaifi—mﬂ - ﬁaifi,m,l ~ 3p Wim +ﬁai%‘—m—l ~ 20 %Gi-m1Yi-2mi1 +ﬁaiai—m+1yi-2m ~ 20 %iGi-m1Yiam-1
I Lo v _3aa L W
20 i-m+1Yi-m+1 40atal—m—IYz72m+l + 10a1az—m—1y172m 40a1az—m—1y,72m71 +20‘11 i-m-1Yi—m-1 i¥i-

Substituting these in (20) we obtain the difference scheme as follows:

PYig AV 1Y F UV + Vi T WYiimo1 F EYiamer + NYiom + (Yiom = Ri, (23)
where

e 1 2¢e 5 1
bi= h7+ﬁbi+17q,‘ Ty += buﬂ e +ﬁbi717

1 3 5 h
Ui = Zhatﬂ +hal+2alb1 m+1 — Zhax 1

1

Vi = ~Gh (@i — A1),

1/1 5 h
Wi:ﬁ<ﬁai+l _Eai_iaibi—m—l 2ha1 1)

1
fi 48 (3(11 m+1 +a1 m— 1)
1
n= 12 ai(Aimi1 + Gi—m-1),
Ci 48 (al m+1 +3al m— 1)

1 h
R = ﬁ(fm + 10f; + fi1) +ﬂai(fi—m+1 — fiem-1)-

By using the boundary conditions (22), the difference scheme (23) can be written as

DPYip1 + 4y + T = Ri — Ui my1 — Vidim — Wibi_m_1 — &ibiamet — Hibiam — Cihiomq fOr 1<i<m—1,

DPYin + QY 1Yoy Uy = Ri — Vidiim — Widim_1 — &idiomi1 — Nidiom — (idiomy  fOri=m,

DPis1 + 4 + T F UYimir + VYiim = Ri = Wi 1 — &idiomir — Mibiom — Gidiamy fOri=m+1,

PYin + QY +TYi1 + UYi et + V¥iim + Wi iimo1 = Ri — &biomar — Mibiom — Gidiom form+2 <i<2m -1,

PYit + Qi TV H UWYiimir + UVim + Wiiimo1 + $Yiamer = Ri = Mibiom — (iiomq, fori=2m,

DPYis1 +4Yi + i1 F UWYiimit + VYiim + Wit + EYiomit + 1Yiom = Ri = {idiomq fOri=2m+1,

p1y1+1 +q1y1+r1y1 1+u1y1 m+1 + lel m+W!YI m— 1+€LVI 2m+1 +7Ly1 2m+SIYI 2m-1 _R fOI' 2m+2 l n-1. (24)
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The above system of equations is solved by Gauss elimination method with partial pivoting. In fact, any numerical meth-

od or analytical method can be used. An extensive amount of computational work has been carried out to demonstrate the
proposed method to show the effect of shift parameter on the oscillatory behavior of the solution of the problem.

4.1. Calculation of truncation error

From the Taylor series expansions, we have

o / h2 (3) (£ / h2 (3) h
J’i:)’i‘*‘gy (&) :yi+€yi -1203’ ( ) (25)
and
, R RN h? n?
Yis1 = Yin —§y(3) (C(i)3> =Yi1 — |:?y1( ]23’4 ( > ) (26)
/ hz B3 KA 4
= Vit - [ S =Y 43y () | (27)

where all ¢s € (X;_1, Xi1)-
From (21), we have

o v
8ic1 = fir1 — Qi1Vi paq — b1 YVinq-

Now using (26) in the above expression, we get

_ , h w i

8ix1 = &Yiq + Qix1 ?Y,(i)m iﬁy<4) (éi;;m))} . (28)
and hence,

o o /" /1 h2 (3) h3 (4) ( £(i-m) h (i—-m)

8in1 — &1 =W — Y1)+ 3 (Aiy1 — Q1) + 13 %Y (54 ) 3% 1) (f ) (29)

By Taylor’s series expansion we have

/" /" h3 (i
ey — Y1) = 2hey + o° (gén)

and by mean value theorem we have a;.; — a;_1 = 2hd'(11) where 17 € (xi_1, Xi+1)-
Using these in (29) we get,

_ [N
8in — 8 = 2hey)” + 57, (30)
where 7 = 4ey® gz;”?+8a’<m>y§iln+a,-+1y<4>(¢ )+ ay® ().
Using (25) and (30 in y; = y; — 45 (&1 — & 1), We get
h? h*
V= y,+—(5 3g)y?) 240153), (31)

where t{) =2y (&) — 7.
Usmg (31)in g; :f,- ay; ., — biy;, we get
2

g— o - (s 3y, - U (32)
Using (27) in Ziv1 = fie1 — 1Y}y — biz1yinr, e get

8ot = &V + G ’;zy“ sz, + goy@ (éism))}. (33)
Therefore, we have

Bt + 81 = EV1 Y1) +%”2aiy§i>m ;’Orés (34)

where f = 100" (7,)y,, +5a"(1,) + aiay® (&™) + aiay® (€557).
From (32) and (34) we get,
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.
G+ 108+ 8y = 07y + 107 4y 4) + G (e — 1y, + o (4l — 524 ™). (35)
Substituting (35) in the scheme
h* h® ;
it =201+ Y1) = 33 00 + 10V +¥40) = 5259 (&),
we obtain
P _r. S o _ B 0 oim ®) ( £l
it = 2+ Y1) = T3 @1 + 108+ 8i1) = 7506 = VY, — 1775 (478 =578 — 6ey® (&) )). (36)
Hence the truncation error is
h* h® . . .
IT(h)| < T3 laie = VY2l — 55| (478 57 — 60y (&) | (37)

It can be observed that the truncation error of the proposed finite difference scheme is O(h*).

4.2. Numerical examples (oscillatory behavior)

To demonstrate the applicability of the method we consider three boundary value problems of singularly perturbed linear
differential difference equations exhibiting boundary layer and oscillatory behavior for different values of the delay param-
eter. These examples were discussed widely in the literature [5,6,15,16]. Since the exact solutions of the problems for dif-
ferent values of 6 are not known, the maximum absolute errors for the examples are calculated using the double mesh
principle Ey = maxo<icn|yY — ¥3¥|. The maximum absolute error is tabulated in the form of Table 2 for considered examples.
The graphs of the solution of the considered examples for different values of delay parameter are plotted in Figs. 1-8 to
examine the effect of delay on the boundary layer behavior of the solution. The numerical results of the proposed method

Table 2

The maximum absolute error Ey for ¢ = 0.1 using the difference scheme (23).
) N

100 200 300 400 500

Example 4
0.03 6.5852e—004 1.6479e—-004 7.3238e-005 4.1192e-005 2.6365e-005
0.05 8.8337e—-004 2.2131e-004 9.8347e—-005 5.5325e—-005 3.5409e—-005
0.07 1.0907e—-003 2.7253e-004 1.2111e-004 6.8122e-005 4.3598e-005
0.09 2.1240e-003 5.3078e—-004 2.3588e—-004 1.3268e—-004 8.4918e-005
Example 5
0.03 1.0569e—-003 2.6408e—004 1.1736e—-004 6.6010e—005 4.2246e—-005
0.05 1.3788e-003 3.4466e—-004 1.5318e-004 8.6162e—-005 5.5144e-005
0.07 1.6367e—003 4.1000e—004 1.8219e—-004 1.0250e—-004 6.5596e—005
0.09 1.6937e—-003 4.2460e—004 1.8874e—-004 1.0618e—004 6.7958e—005
Example 6
0.03 2.8135e—-004 7.0382e-005 3.1277e-005 1.7592e—005 1.1259e-005
0.05 1.8387e-004 4.5948e—-005 2.0427e-005 1.1490e—-005 7.3535e—-006
0.07 1.3304e—-004 3.3253e-005 1.4778e—005 8.3127e—-006 5.3201e—006
0.09 1.0237e—-004 2.5588e—-005 1.1372e-005 6.3968e—006 4.0940e—-006

Numerical Solution

0 . . L .
0 0.2 0.4 0.6 0.8 1

X

Fig. 1. Numerical solution of example 4 for £¢=0.01 and § = 0.7¢.
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Numerical Solution

0 L . L .
0 0.2 0.4 0.6 0.8 1
X

Fig. 2. Numerical solution of example 4 for ¢=0.01 and § = 1.5¢.

15,000 T T T T

10,000

5,000

-5,000

1 [ ! ! [
0'0000 0.2 0.4 0.6 0.8 1
X

Fig. 3. Numerical solution of example 4 for ¢ = 0.01 and ¢ = 2.5¢.

A —3=0.3¢
""" 8=0.6¢
--=3=0.9¢

Numerical Solution

X

Fig. 4. Numerical solution of example 5 for ¢ = 0.01 for different values of 5.

[=))

Numerical Solution
S~

[}

0 L 1 1 L
0 0.2 0.4 0.6 0.8 1
X

Fig. 5. Numerical solution of example 5 for ¢ =0.01 for 6 = 1.5¢.
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—3=0.3¢
...... $=0.7¢
L ===5=1.5¢
EC
E
=,
z 0
— - S\
g
2 X
O [;
g
Z -0.5 F
-1 L L L L
0 0.2 0.4 0.6 0.8 1

X

Fig. 7. Numerical solution of example 6 for ¢ = 0.01 for different values of 6.

200 T T T T

100

-100

Numerical Solution
(=]

2005 0.2 0.4 0.6 0.8 1
X

Fig. 6. Numerical solution of example 5 for ¢ = 0.01 for = 2.5¢.

2000 T T T

1000

0

-1000

-2000

Numerical Solution

-3000 B

-4000 : : : :
0 02 0.4 . 0.6 038 1

Fig. 8. Numerical solution of example 6 for ¢ = 0.01 for different values of 6.

are compared with the results given in [15,16]. It has been observed that the proposed method gives high accurate numerical
results and higher order of convergence than the methods proposed in [15,16]. We compared the graphs with the graphs
presented in [5,6].

The numerical rate of convergence for all the examples have been calculated by the formula Ry = %[27] and it ob-
served that for all the examples cited below Ry ~ 2.

Example 4 [5, p. 254]. ey”(x) + y"(x — 6) + ¥(x) = 0, subject to the interval and boundary conditions y(x) = 1; -5 <x <0,
y(1)=1.

Example 5 [6, p. 275]. &y"(x)+e %*y'(x —§)+y(x) =0, subject to the interval and boundary conditions
yx)=1;, -0 <x<0,y(1)=1.

Example 6 [16, p. 808]. &y’ (x) — (1 +Xx)y'(x — ) —e*y(x) =1, subject to the interval and boundary conditions
yx)=1; =0 <x<0,y(1)=-1.

5. Conclusions

Boundary value problems for linear second order singularly perturbed differential-difference equations of convection-dif-
fusion type with a small shift in the convection term is considered. To obtain an approximate solution for such type of
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boundary value problems a finite difference method is presented. When the shift parameter is smaller than the perturbation
parameter, the term containing the shift is expanded in Taylor series and an exponentially fitted tridiagonal finite difference
method is developed. It is also analyzed for convergence. The proposed method converges uniformly in &. When the shift
parameter is larger than perturbation parameter a special type of mesh is used, so that the term containing shift lies on nodal
points after discretization and a fourth order finite difference method is applied. The truncation error of the finite difference
scheme is calculated. An extensive amount of computational work has been carried out to demonstrate the proposed method
and to show the effect of shift parameter on the boundary layer behavior and oscillatory behavior of the solution of the
problem.

The maximum absolute error is tabulated in the form of Tables 1 and 2 for the considered examples in support of the
predicted theory. The graphs of the solution of the considered examples for different values of shift parameter are plotted
in Figs. 1-8 to examine the effect of shift on the boundary layer and oscillatory behavior of the solution.

It is observed that when the shift parameter is smaller than the perturbation parameter, the layer behavior is maintained.
As the delay increases, thickness of the layer decreases in the case when the solution exhibits layer behavior on the left side
while in the case of the right side boundary layer, it increases. When the shift parameter is greater than the perturbation
parameter, it is observed that the layer behavior of the solution is no longer maintained and the solution exhibits oscillatory
behavior. Also when the delay further increases the oscillations previously confined to the layer region are extended
throughout the interval. From the results, it can be observed that as the grid size h decreases, the maximum absolute errors
decrease, which shows the convergence to the computed solution. On the basis of the numerical results of a variety of exam-
ples, it is concluded that the present method offers significant advantage for the linear singularly perturbed differential dif-
ference equations.
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