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Abstract. In this paper, an analytical solution for an unsteady (independent of time), MHD 

mixed convection, two-dimensional( x and y ), laminar, viscous flow of an incompressible 

fluid through a vertical permeable plate in a porous medium was developed with these 

assumptions:(i) the suction velocity (which is normal to the plate)and the free stream velocity 

both fluctuate with respect to time with a fixed mean; (ii) the wall temperature is constant;(iii) 

difference between the temperature of the plate and the free stream is moderately large due to 

the free convection currents. Based on the physical configuration of the model, the governing 

equations are derived and are non-dimensionalize using dimensionless parameters. The 

resultant nonlinear partial differential equations are solved using double regular perturbation 

technique analytically. The results are computed numerically to understand the behaviour of 

the fluid(i.e., effects of MHD, viscosity, body force etc.) for various non-dimensional 

parameters involving like Grashof number Gr, Prandtl number Pr, Hartmann number M, 

Eckert number E, the Viscous ratio  and so on for velocity and temperature. These results are 

found to be in good agreement with known results available in the literature in the absence of 

few physical parameters. The numerical values of the above said flow is discussed through 

graphs on velocity and temperature. 

 

1.  Introduction 

The study of fluid flow using heat and mass transfer has a variety of applications in medicine, science 

and technology likeblood flow in a tube, tidal waves, wind power, geothermal reservoirs, drying of 

porous solids, thermal insulation, enhanced oil recovery, packed-bed catalytic reactors, cooling of 

nuclear reactors and underground energy transport" and so on. A comprehensive literature regarding 

the above subject has been mentioned in recent books [1], [2], [3], [4] and [5].Many authors gavea 

large amount of preference to the study of boundary layer phenomena due to their wide range of 

applications in several engineering and industrial fields. The analysis of freeand forced convection 

about a vertical plate embedded in a porous medium for various fluids under different boundary 

conditions was examined by Vafai and Thiyagaraja[6], Kim and Vafai[7,8]. 

Typical practical problems which arise in the aircraft design like "response to atmospheric gusts, 

aerofoil lift hysteresis at the stall, flutter phenomena involving wing, panel,and stalling flutter as well 

as the prediction of flow over helicopter rotor blades and through turbomachineryblade cascades" etc. 

Because of this, Studies on laminar flow due to free-stream fluctuating are of first importance in 

aerodynamic flow problems.Lighthill [9]studied such flows to the external unsteady fluctuations about 

a mean value. Rapits [10] extended his ideas on when the free stream velocity oscillates with respect 
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to time about a constant mean through theinfinite porous plate. Also,Stuartstudied the unsteady 

temperature field along with the velocity field (i) by taking the assumption that there is no heat 

exchange between the plate and the fluid and (ii) there is a difference between the plate and the free 

stream temperature. Based on the conclusions of Rapits [10] an attempt was made by Soundalgekar 

[11], assuming that (i) the plate temperature oscillates with respect to time about a constant mean; (ii) 

the free convective currents are present in the boundary layer and (iii) the flow is very slow and hence 

viscous dissipative effects are negligible. In this problem, the coupled linear differential equations 

were solved by Soundalgekar and observed that the temperature field was not at all affected by the 

free convective currents.   

In many practical problems, porous media have been used to provide effective cooling devices. So 

it is interesting to study the free convection current effects on the oscillatory flow over the boundary 

layer theory This has been demonstrated by many authors in the literature (Cheng and 

Minkowycz[12], Rudraiah and Nataraj [13], Vafai and Tien [14],KimandVafai [15]) by considering 

Darcy/non-Darcy equation with boundary and inertia effects past a vertical plate embedded in a porous 

medium significantly. The works mentioned above are concerned with the study of steady convection 

when an impermeable vertical plate is embedded in a porous medium. It has been observed that a 

suction or injection at the plate control heating by controlling the boundary layer. Unsteady convection 

in the absence of porous media discussed by Rudraiah et.al.[16] and Kaviany[17] with constant 

suction, unsteady free stream velocity and found "reversal of flow at small Prandtl numbers in the 

boundary layer close to a plate and predicted change in the nature of flow due to more cooling/heating 

of the plate". Later on, this problem has been extended by Rudraiah to an infinite vertical porous plate 

with uniform free stream velocity away from the plate. Goma and Taweel[18]illustrated the effects of 

oscillatory flow on heat transfer for both transient and time average heat-transfer rates. Effects of 

"unsteady mixed convection boundary-layer flow along a symmetric wedge with variable surface 

temperature was investigated by Hossain et al. [19] and also the effects of free convection currents on 

"the oscillatory flow of a polar fluid through a porous medium in the presence of variable wall heat 

flux" by Patil [20]. However, for an effective convective cooling/heating, it is important to study "the 

unsteady mixed convection on a vertical heated permeable plate embedded in a high porosity porous 

medium with fluctuating free stream and suction velocities without disturbing the uniform temperature 

maintained at the vertical plate. 

The objective of the present work is, therefore, to study this problem analytically with oscillatory 

suction at the vertical porous plate and oscillatory free stream velocity away from the plate under the 

influence of viscous, body force, porous media and external constraint of themagnetic field. To 

achieve the objective of the present work, the plan of this work is as follows. In the next section, we 

consider a vertical porous plate embedded in a fluid saturated porous medium with oscillatory suction 

velocity at the vertical plate. We also give the conservation equations for momentum and energy with 

suitable boundary and inertia effect by considering Darcy-Lapwood-Brinkman equation. The relevant 

physical parameters are also discussed. These basic equations involve variable coefficients which are 

solved analytically using regular perturbation technique. These solutions are numerically computed 

and the results are discussed in the last section.  

 

2. Mathematical analysis 

We consider a two-dimensional( x and y ), unsteady(independent of time), Boussinesq, viscous fluid 

through a porous medium bounded by a vertical infinite porous plate. We assume an oscillatory 

suction velocity and the free stream velocity away from the porous plate, about a fixed mean value in a 

direction parallel to the x-axis. Here, the porous plateis taken along thex-axis with thedirectionopposite 

to the direction of gravity and the y-axis is the direction normal to the porous plate. The vertical 

porous plate is maintained at a constant temperature. Since the flow extends to infinity in the x-

direction, soall flow variables are functions of y and t only (see Figure.1)except the pressure p. Under 

these approximations, the basic equations of motion are: 
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Figure 1.Physical Configuration 
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We assume the following assumptions to find an approximate analytical solution for the above 

governing equations. (i) x varies from  to , all  physical parameters are independent of x 

except  pressure; (ii) density is constant throughout the momentum equation except for body force; 

(iii) density is constant for incompressible fluid; (iv)
00 HB  ; (v) from the equation of state we 

consider density (ρ) is a function of temperature only, i.e,  )(10  TT ; (vi) the fluctuating 

free-stream and suction velocities respectively as  
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Here, BC's are derived from the above-saidassumptions, that the free stream velocity is fluctuating 

with time and maintaining uniform temperature away from the plate as well as at the plate. The 

governing free stream velocity equation is 
2

0

0 0

1 B UdU p
U

dt x k


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
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
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We solve the above non-linearPDE'susing(2) in (7), we get 
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These equations are made dimensionless using 
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and for simplicity neglect the asterisks (*), we get 
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The resultantBC's in dimensionless form are 
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3.  Method of solution 

In order to solve the abovePDE's (10) and (11), we make use of the double regular perturbation 

method(one for   and another for E),we assume the solutions of the form 
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Where is the perturbation parameter, which is a very small quantity. 
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Substituting equation (20)  in (14) and (17) and comparing like powers of E, we have 

The zeroth order (independent of E) steady equations and its BC's are 
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The first order(coefficient of E ) unsteady equations and its BC's are 
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Similarly, substituting equations (20) in (15) and (18), we get  

The zeroth order (independent of E) steady equations and its BC's are  
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The first order(coefficient of E ) unsteady equations and its BC's are 
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Solving the differential equations (21) to (32) using the corresponding boundary conditions and with 

suitable simplification, we get 
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where,  
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The constants Ai (i=1 to 27) and Bi(i=1 to 20) are the functions of non-dimensional parameters 

involved in the problem. For want of space, the expressions for them are omitted here but given in 

theappendix. However, they are numerically computed and used in computing uand . 

 

4. Results and Discussion 

The numerical computation is performed for velocity and temperature for various values of non-

dimensionalized parameters which are involved in the physical model. The graphical representation of 

velocity and temperature are depicted from Figures 2-10. The variations of velocity and temperature 

for distinct positive and negative values of Grashof number Gr  is shown in Figures 2-3. Figure2 

shows that, the mean velocity of air increases due to more cooling of the vertical permeable plate by 

the free convection currents. Because in the process of cooling the plate the free convection currents 

are carried away from the plate to the free stream as the free stream is in the upward direction" so the 

free convection currents induce the mean velocity to increase. Also,the mean velocity decreases for 

negatives ofGr because the flow of air moving in the upward direction both near and away from the 

vertical permeable plate, is being opposed by the free convection currents traveling towards the 

vertical permeable plate and hence the mean velocity decreases. Thus the mean flow of air is reversed, 

when the vertical permeable wall is heated by the free convection currents is observed from Figure 2. 

Figure 3 represents the plot of temperature for various positive and negative values of Grand is 

observed that for cooling of thevertical permeable wall the temperature decreases from the plate and 

also far away from it. 

Figures4-5 shows that,the variations of velocity and temperature for non-uniform values of Pr for 

the fluids. Figure 4 represents that, the velocity variation for different fluids from air to mercury. For 

small Prandtl number (0.71to7), the variation of velocity is large for cooling of the vertical permeable 

wall. For higher values of Prandtlnumber (Pr 3) , the variation of velocity is very less because of 

viscous dissipation.Figure 5 represents the behavior of temperature for different fluids ( Pr =0.71to7) 

due to more cooling of the vertical permeable wall ( 0)Gr  . From Figure5, the temperature decreases 

near the vertical permeable wall for higher values of Prandtl number.Figures 6-7 shows the variations 

of velocity and temperature for different values ofEckert number E for the fluids. The velocity 

increases near the plate and the temperature decreases as increasing the Eckert number E is observed 

from Figures 6 and 7. 
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Figures 8 and 9 illustrates, the variation of velocity and temperature for different values of 

Hartmann number M which is a measure of Lorentz force to viscous force in a finitely conducting 

fluid. As the Hartmann number M increases due to more cooling of the vertical permeable wall

( 0)Gr  the velocity of the fluid decreases due to an increase of Lorentz force to viscous force. An 

opposite behavior is observed for the temperature of the fluid for the increase of Lorentz force to 

viscous force.Figure10 shows that, the velocity and temperature for dissimilar values of apermeable 

parameter K of the porous media. If the permeability of the porous media increases there is anincrease 

in variation for the velocity of the fluid but much variation is not seen for the temperature of the fluids. 

Similarly, an opposite behavior is being observed for the velocity and temperature due to heating of 

the vertical permeable wall for different values of Pr, ,E M and K . 

 
 

Figure 2.Velocity for non-uniform values of

.Gr (Pr 0.71, 1, 0.01, 0.5, 0.1)M E K       

 

 
 

Figure 3. Temperature for non-uniform values of

.Gr (Pr 0.71, 1, 0.01, 0.5, 0.1)M E K       

 

Figure 4.Velocity for non uniform values of

Pr. ( 5, 1, 0.01, 0.5, 0.1)Gr M E K       
Figure 5.Temperature for non uniform values of

Pr ( 5, 1, 0.01, 0.5, 0.1)Gr M E K       
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Figure 6. Velocity for non-uniform values of

.E ( 5,Pr 0.71, 1, 0.5, 0.1)Gr M K       

 

 
Figure 7.Temperature for non-uniformvalues of

.E ( 5,Pr 0.71, 1, 0.5, 0.1)Gr M K       

Figure 8.Velocity for non-uniform values of M

( 5,Pr 0.71, 0.01, 0.5, 0.1)Gr E K       

 

 
Figure 9.Temperature for non-uniform values of

.M ( 5,Pr 0.71, 0.01, 0.5, 0.1)Gr E K       

 

 

 
Figure 10.Velocity for non-uniform values of .K  

( 5,Pr 0.71, 1, 0.01, 0.1)Gr M E       
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5. Conclusions 

Based on the above analysis, the following conclusions are drawn: 

(i)As Grashof number increases the velocity increases, temperature decreases and in the case of 

negative values the velocity decreases and temperature increases. 

(ii) As Eckert number enhances the velocity increases and temperature decreases. 

(iii) As Prandtl number increases the velocity decreases and temperature increases. In the case of small 

Prandtl numbers the variation is large and for higher values variation is less. 

(iv)Hartmann number increases, the velocity decreases, and temperature increases. 

(v) As increases permeability of the porous medium, there is an increase in the velocity but much 

variation is not seen for the temperature.  
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