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1. Introduction

Singularly perturbed differential equations arise in many areas of applied mathematics and mathematical physics such
as fluid dynamics, quantum mechanics, elasticity, chemical reactor theory, gas porous electrodes theory, meteorology,
oceanography, rarefied gas dynamics, diffraction theory, reaction-diffusion process, non-equilibrium and radiating flows,
Navier-Stokes equations of fluid flow at high Reynolds number, etc. The differential equation depends on a small positive
parameter (&), multiplying the highest derivative term. When the parameter tends to zero (¢ — 0) the problem has a
limiting solution which is called the solution of the reduced problem [ 1] and the regions of non-uniform convergence lie near
the boundary, which are known as boundary layers. These problems have steep gradients in the narrow layer regions of the
domain in consideration. This causes severe hurdles in the computations for classical numerical methods. In order to capture
the layers, a large number of special purpose methods have been developed by the researchers to provide accurate numerical
solutions which cover second order equations with single parameter for smooth [ 1-3] and non smooth data [4-8]. In recent
years, authors have considered singularly perturbed second order ordinary differential equation with two small parameters
(e, n) in smooth data [9-12] and have considered non-smooth data [13,14]. These types of problems are widely found in
many applications, for example the model transport phenomena in chemistry [15], Lubrication theory [ 16], Chemical reactor
theory [17] and also in DC motor analysis [18].

In [19] Vigo Aguiar et al. considered a two point boundary value problem for second order ordinary differential equation.
A boundary value technique is used in parallel computers to reduce the computation time and showed the reliability and

* Corresponding author.
E-mail addresses: leochandru@gmail.com (M. Chandru), prabha.thevaraj@gmail.com (T. Prabha), vshanthi@nitt.edu (V. Shanthi).

http://dx.doi.org/10.1016/j.cam.2016.06.009
0377-0427/© 2016 Elsevier B.V. All rights reserved.


http://dx.doi.org/10.1016/j.cam.2016.06.009
http://www.elsevier.com/locate/cam
http://www.elsevier.com/locate/cam
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cam.2016.06.009&domain=pdf
mailto:leochandru@gmail.com
mailto:prabha.thevaraj@gmail.com
mailto:vshanthi@nitt.edu
http://dx.doi.org/10.1016/j.cam.2016.06.009

12 M. Chandru et al. / Journal of Computational and Applied Mathematics 309 (2017) 11-27

performance of the proposed parallel schemes. In [20], the authors proposed a method for numerical solution of singularly
perturbed two point boundary value problems, in which the second order BVP is converted into a system of IVPs and
second order convergence is shown using exponentially fitted finite difference schemes. P. Das and V. Mehrmann discussed
a singularly perturbed parabolic initial boundary value problem for 1-D convection-diffusion-reaction equation containing
two small parameters. A moving mesh technique by the equidistribution of a positive monitor function is taken to generate
meshes and it shows first order accuracy [21]. A system of coupled singularly perturbed reaction-diffusion problems having
diffusion parameters with different magnitudes is considered in [22]. Central difference scheme is used to discretize the
problem on equidistribution mesh to obtain an optimal second-order parameter uniform convergence.

Motivated by the works of [5,14,23], we have considered a singularly perturbed reaction-convection-diffusion equation
in one dimension with a discontinuous source term of the form:

Ly(x) = ey’ (x) + pa®)y'(x) — b(x)y(x) =f(x), xe - UQ™, (1)
y0) =yo, y(1) =y, (2)
IIf(d]l <C.

It is convenient to introduce the notations £2 = [0, 1], 2~ = (0, d) and 27 = (d, 1), a(x) and b(x) are sufficiently smooth
functions in £2 and f (x) is sufficiently smooth in 2~ U 2% U {0, 1}. Also f (x) and its derivatives have a jump discontinuity
atd € 2 = (0, 1) (denoted by [w](d) = w(d") —w(d™)),0 <& << 1,0 < pu < 1,a(x) > a > 0,b(x) > B > 0and
0 = ming {E }

Under these assumptions, the SPP (1)-(2) has a solution y(x) € C°(22) N C'(£2) N C?(2~ U 2%), when u = 1 the
problem is a well known convection-diffusion problem [7] and when © = 0, we get the reaction-diffusion problem [5,8].
In the present article the following cases are considered /o < /P& and Jap > /PE.

Throughout this article C denotes a generic positive constant independent of nodal points, mesh size (N) and the
perturbation parameters &, ;. We measure all functions in the supremum norm, denoted by

lwlg = sup |lwx)|.
xe2

The structure of the paper is as follows. In Section 2, we establish an existence theorem for (1)-(2), minimum principle,
stability result and some priori estimates on the solution and its derivatives. Section 3 presents a decomposition of the
discrete solution to solve the problem, which generates robust numerical approximation to the solution. Truncation error
analysis is estimated in Section 4. This analysis gears the main theoretical results presented in Section 5, e-u uniform
convergence in the maximum norm of the approximations is generated by the numerical method. Numerical examples are
provided in Section 6 to illustrate the applicability of the method with maximum pointwise errors, and rate of convergence
in the form of tables.

2. A priori bounds on the solution and its derivatives
We commence this section by the following existence theorem.

Theorem 1. The SPP (1)—(2) has a solution y(x) € C'(£2) N C2(2~ U 27).
Proof. The proof is by construction. Let y(x), y»(x) be particular solutions of the differential equations
ey (X) + pa()y;(x) —bx)y1(x) =f(x), x€ £~ and
ey, (%) + pna@y,(x) — by (x) = f(x), x € £2*.
Consider the function

Y = {yl(X) + ¥(0) —y1(0)1(x) +Ada(x), x€ 2~
¥2(x) + Bp1(x) + (¥(1) — y2(1))o(x), x€ 27

where ¢1(x), ¢, (x) are the solutions of the boundary value problems
ed] (%) + pa(x)¢; (x) —bX)p1(x) =0, x€ 2, $1(0) =1, $:1(1) =0
ey (X) + na(x)y(x) — bX)a(x) =0, x € 2, $2(0) =0, $2(1) =1

and A, B are constants to be chosen so that y(x) € C1(£2).
Note that on the open interval (0, 1),0 < ¢; < 1,i = 1, 2. Thus ¢, ¢, cannot have an internal maximum or minimum
and hence

$i(x) <0, $5(x) >0, x€(0,1).
We wish to choose the constants A, B so that, y(x) € C'(£2). That is, we impose
y(d—) =y(d+) and y'(d-) =y'(d+).
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For the constants A, B to exist we require that

60 —py(d)
$3(d) —¢a<d>‘ 7 0.

This follows from ¢, (d)¢1(d) — ¢ (d)p1(d) > 0. O

The operator L of (1) satisfies the following minimum principle on £2.
Lemma 1 (Minimum Principle). Let us suppose that a function y(x) € C°(2) FLCZ(Q‘ U 27) satisfy y(0) > 0, y(1) >
0,Ly(x) <0,Vxe 2 UQR™T, [yl(d) =0and[y'](d) <0.Theny(x) >0, Vx € Q2.

Proof. Let x; be any point at which y(x;) attains its minimum value in £2. If y(x,) > 0, then the result is obvious. Suppose
that y(x;) < O, with the assumptions considered on the boundary value, we have either x, € 2~ U Q" orx, = d. If
X € 27U QT theny (x) = 0,y"(xx) > 0 and hence Ly(x,) = &y’ (x¢) + pnax)y' (x) — b(xp)y(xx) > 0, which is a
contradiction.

The only possibility remaining is that x, = d. Our assumption y(x;) < 0 shows y'(d—) < 0 and y'(d+) > 0. Hence we
have [y'](d) > 0, which is a contradiction.

Henceitis clear thaty(x) > 0Vx e 2. O

An immediate consequence of the minimum principle is the following stability result.

Lemma 2 (Stability Result). Let y(x) be a solution of (1)-(2), then

1
ly®)llg < max [Iyol, yal, ﬂllf(x)llg} :

Lemma 3. Let y(x) be the solution of the problem (1)-(2), where |y(0)| < C, |y(1)| < C. Then
yolg = & {1+ (%)}

k
YO W lza < S {1 + (%) } 2<k<4

Proof. The bounds on the derivatives are proved from [9]. O

Before going into the details about decomposition of y(x) into regular (v(x)) and singular (w(x)) components, we consider
the following observations. Let F be a smooth function in 2~ UQ™T, F and its derivatives have a jump discontinuity atd € £2.
Find y(x) € C'(£2) N C?(£2~ U £21), such that

y0) =«a, y(1)=8. (3)

It can be proved that the problem (3) has a unique solution [7]. Let

F*(k) x) = {F(k) x), x€(0, d)

{Ly(x) =F(x), xe2 Ut

FO@E™) atx=d,
where F® stands for kth derivative of F. Further let y} (x) be the solution of
Ly (x) = F*(x), x€(0,d) )
i@ =ca  yd=y@d.
Similarly one can define y; (x) on the interval [d, 1]. It can be verified that

¥y, xel0,d)
y(x) =1y (d) =y (d),
yix), xe(d, 1]

It can be verified that the solution y(x) of the BVP (1)-(2), can be decomposed as y(x) = v(x) + w;(x) + w,(x), where

Lv=f, xeR UL, (5)
v(0) = y(0), v(1) =y(1) and wv(d7), v(d") are chosen suitably (6)
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and
Lwi(x) =0, xR URT, (7)
wi(0) = y(0) — v(0) — w(0), wi(1) =0,
Lw,(x) =0, x€ - UNT, (8)
and w; (0) is suitably chosen, w; (1) = y(1) — v(1),
[wr ()] = —[v(d)] = [wi(d)], [wi(d)] = —[v'( D] — [wj(D]. 9
Hence, v(x), w;(x) and w; (x) are discontinuous at x = d, but by (9) their sum is in C!(£2).
Note that,

v, xe 2 Jw, ), xe 2™
vx) = {v*(x), xet, wiX) = {w%r(x), xe et

w, (X), x€ 82

and - wr(x) = {w+(x) xe T,

Case(i): Consider \/au < ./pe.

Let v(X) = vo(%) + /ev1(X) + ﬁz vy (x) + ﬁ3v3 (x), where vg(x), v1(x) and v,(x) are the solutions of the following
problems.

—bX)ve(x) = f(x), xe 2 UK,

mmmu)zf%m@%uy+¢hum,xen—ugﬂ
mmwu)zf%umﬁay+v@4ux xeQ Ut
Choose v3(x) € C°(£2) N C1(2) N C3(£2~ U 271), such that
_ ;H’ ’ _ ” — +
Lus(x) = \/Ea(x)vz(x) Vevy(x), xe R UL, (10)

U3(0) = v3(]) =0.

Lemma 4. When \/au < ./pe and for each integer k satisfying 0 < k < 4, the smooth component v(x) satisfies the following
bounds

® () [ 1
V™ Oz §C<1+W>' (11)

Proof. With sufficient smoothness on the co-efficient a(x), b(x) in £ and f(x) in 2~ U 2%, we observed that
vo(x), v1(X), vo(x) are bounded independently. To bound v3(x) define the barrier function

1
@™ (x) = max {|v3(0)|, [vs(D]} + B (IS I+ N1l % v3(x).
Clearly ¢*(0) > 0, *(1) > 0and Lp*(x) < 0. Therefore, by applying minimum principle to ¢* (x), we obtain
1
lvsX)[I < max {|v3(0)], [v3(D|} + B (IS 1+ Ny ol -

Using the bounds on v, (x) we say ||vs(x)|| < C.Using mean value theorem and (10), we obtain

C
G0l < 7 max {lus @l v, @)1, vy Coll}

< - k=1,2
(ve)

Mmmﬁwng—ST,k=&4
(ve)

by using all the bounds derived above in v(x), we have

1
||Uk(x)|| <C <1+W>, for0<k<4. O
&
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Using the defined problem (7), (8) and the methods discussed in [9,11], we have the following lemma.

Lemma 5. When \/au < ./pe, the singular components wj(x) and w, (x) satisfy the bounds

—61x

e xe 2
:  0<k<4
{eel("d), xe ', - -

k
lw @ lgya <

C
,\/Ek

C (el xe @~
(k) _ , s
lw:” C) iy < ﬁk {6_92(1_"), xe ot 0<k<4
where
J/pa J/pa
91 = p and 92 = L (12)
2J¢ 2{¢

Case(ii): Consider /au > ,/pe.
Let v(x) = vo(x) + ev1(x) + 2v,(x) + &3v3(x), where vy (x), v1(x) and v, (x) are the solutions of the problems.
Lyovo(x) =f(x), xe 2 UQRT,
vo(d—, ), vo(1, w), are chosen,
Lyvyi(x) = —vj(x), xe 2 ULt
v1(d—, n), v1(1, ), are chosen,
and L,v,(x) = —v{(x), xe€ 2~ UQRT,
va(d—, u), va(1, u), are chosen,

where L,z(x) = pa(x)z'(x) — b(x)z(x). Choose v3(x) € C°(22) N C'(£2) N C3(2~ U 27), such that

Lvs(x) = —vl(x), xR URT,
{vgﬁm — v;(1) = 0. (13)

Lemmas 6 and 7 can be proved following [9].

Lemma 6. When \/au > ./pe and for each integer k satisfying 0 < k < 4, the smooth component v(x) satisfies the following
bounds

3—k
0% @) gy < € (1 + (%) ) : (14)

Lemma 7. When \/au > ./pe, the singular components w;(x) and w, (x) satisfy the bounds

K Bk femfrx, xe N,
llwy )(X)||§\{d) =C (;) {e—el(x—d) 0<k<4

xe T,
Il Wl < () {g_iji‘f_ii; o 0sk=4
where
elz% and ezzﬁ. (15)

3. Discrete problem

In this section, an appropriate piecewise uniform mesh for the BVP (1)-(2) is introduced, and classical upwind finite
difference schemes are used on this mesh to obtain the numerical solution. On £2 a piecewise uniform mesh of N mesh
intervals is constructed as follows. The domain £2 is divided into six subintervals as 2 = [0, t;]U[71, d — 2] U[d — 12, d] U
[d,d+ 3]U[d+ 13, 1 — 14] U[1 — 14, 1], for some 71, T3, T3 and 74, such that,0 < 71, 7, <d/4and0 < 13, 74 < (1—d)/4.
The interior points of the mesh are denoted by

N N .
—1;U xi:E—i—lflfN—l .
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Clearly xy/», = dand ﬁgm

of N, € and p.

= {x,-}g’ U{d}. It is fitted to the problem by choosing 71, 13, 3 and 4 to be the following functions

. [d 2 o (d 2
Ty =min{ —, —InN¢, 7 =min{ -, —InNy,
4 6, 4 6,

. |1—=d 2 o [1—=d 2
73 =min{ ——, —InN}, T4 =miny ——, —InN},
4 0, 4 6,

(16)

where 61 and 6, are defined in the previous section.

On the subintervals [0, t1], [d — 13, d], [d, d + 73] and [1 — 74, 1] a uniform mesh with N/8 mesh intervals is placed,
whereas [71,d — 73] and [d + 73, 1 — 74] have a uniform mesh with N/4 mesh intervals. The interior points of the mesh
are denoted by the step sizes in each subinterval by hy = 87;/N, h, = 4(d — 11 — ©o)/N, hs = 81,/N, hy = 813/N,
hs =4(1 —d — t3 — 14)/N, and hg = 8t4/N. The mesh points are given by

) . . N
ihq, ifo<i<—,
8
+ih 'fN<'<3N
71 + ihy, if—<i<—,
1 2 3 3
) 3N N
d—T2+lh3, lf*flf—,
v 8 2
1 d +ih 'fN<'<5N
1Ny, nH—-—=1=—_—,
4 2 8
At 15 tihs if2N <i<oN
13 +ihs, if — <i< —,
2T 8 4
. 3N
1 — 14 + ihg, 1fT§I§N—1
Set hi 1 = Xi41 — x;jand hj = (h; + hi1)/2fori =0, 1,2, ..., N — 1. On the piecewise uniform mesh ﬁgm, we discretize

the BVP (1)-(2) as

LV = £8%Y (xi) + pa(x)D*Y (x) — b(x)Y (%) = f(x1), xi € 2},
Yo=y(0), Ynv=y() (17)
D*Y(xnj2) — DY (xns2) = 0.

The above discrete problem (17) is discretized using the combinations of mid-point scheme, upwind scheme and second
order central difference scheme. That is,

LYY (x;) = e8°Y (x;) + pa(x)D°Y (x;) — b(x))Y (%) = f (x;), (18)
LyY (x) = £8%Y () + pa(x)D*Y (x) — b(x)Y (x) = f(x), (19)
LyY (x) = e8%Y (%) + pa(x)D*Y (xi) — b(x)Y (x) = f(x1), (20)
VY (xj2) = €8%Y (x/2) + 14a(xXn2)DTY (tnj2) — b(n2)Y (X j2) = f (X 2) (21)

where,

Z(x) =z (i +x:1)/2),  DYY () = Y1) = Y(xi)

)

hiy
Dy = YY) ey VG = YO
hi hi + hit4
8°Y(x) = El (D*Y(x) —D"Y(x)) and f(xy) = f(xnj2-1) ‘;f(XN/zH).

1

For ,/au < /pé,

LYY (x), ifx € {(0,71), (d, d+ 13)},

L'y x), ifxe{(ti,d—1),d—1,d),d+13,1—14)
and (1 — 74, 1)}, for uhyllall <2e(k=2,3,5,6)

LYY (x), ifx=d.

INY(x) =
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For J/Jau > /pé,

LY (), ifx € {0, ), (d d+ 13},

LYY(x), ifx € {(t1,d — 13), for phyllal| > 2, [|bllhy < 2pcr
and (d + 13, 1 — 74) for uhs|lall > 2e, |[bllhs < 2ual,

Y(x) = {INY (%), ifx € {(t1,d — 12), for whyllal| > 2e, ||b|lhy > 2uc
and (d + 13, 1 — 74) for uhs|lall > 2e, |[bllhs > 2pe},

LYY(x), ifx=d.

At the transition points 7; and d + 73 the scheme is given by

. d 5d
YY), ifx=1= 7 d+ 13 = e
Ny (x) = d
L Y(Xl) - LHN1Y(X,'), iin =T < -
LVY(x;), otherwise.

At the transition points (d — 12) and (1 — t4) the scheme is given by

3d d
YY), ifx=d—1= oo lmm=1-7

4
3d

N ) =
L Y(Xl) - LHN1Y(X,'), iin =d-— Ty < Z, 1-— Ty < 1-— Z,

LVY(x;), otherwise.
On the piecewise uniform mesh 52’/ ,, the scheme is given by

Y (%) = 17 Y (xi1) + 1fY (%) + 1Y (xi1) = QVF (%),

where
— na(x;) +_ ¢ pnax;)
! h,‘Ei ZE' ’ ! h,‘.._]Hi 25,‘ ’
rf = —r —r7 —b(x), ifl" =LV,
— & + € Ma(xi)
r. = r— r. = — -,
' hih; ' hi1h; hitq
rf =—r —r7 —b(x), ifl" =LV,
& e a(x; b(x;
= "f+: 7_{_//0(1)_ (:+1)7
hih; hiy1h; hitq 2
rf=—rf —r7 —b(x), iflN=1L),
& & a(x;
= ri+: 7+ﬂ(1)7
hih; higthi  hiy
rf=—rf —r7 —b(x), ifl" =1Ly,
and

fio fIN=1IY orLl,
QVf(xy) = o, LY =1Ly,
fexp, iftN =1V,
In (0, ;) and (d, d + 73) note that
ullallhi/2e = 4ullallzi/eN < 16]lall InN/aN,
ullallhs/2e = 4pullalirs/eN < 16|lal| InN/aN.

For Jau < /pein (d — 15,d) and (1 — 74, 1),

wnllallhs/2e = 4pllaltz/eN < 16]jal| InN/aN,
wnllallhs/2e = 4pllalta/eN < 16jal| InN/aN,

LyY(x), ifx € {(d — 2, d), for uhsllall > 2¢, and (1 — 14, 1) for phs|lal| > 2e},

5d
2’ for ||b|lh; < 2ua andd + 73 < e for ||b|lhs < 2uc,

17

(22)

(28)
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and for /o > /pein (d — 12, d) and (1 — 74, 1),
[Ibllhs/2apn = 4||bllzz/auN < 16]|b|| InN/aN, (29)
[Ibllhe /20 = 4||bllta/auN < 16]ID|| INN/aN.

To guarantee a monotone difference operator LV, the following mild assumption is imposed on the minimum number of
mesh points

N(nN)~" > 16 max{||all /e, |[bll /etp)}. (30)

Thus the discrete problem is
Y () = QVf(x), x € 2, U{d}, (31)
Y(0) =y(0), Y1) =y). (32)

The following lemma shows that the finite difference operator LV has properties analogous to those of the differential
operator L.

Lemma 8 (Discrete Minimum Principle). Suppose that a mesh function Y (x;) satisfies
Y(0) >0, Y(1)>0, I"Y(x) <0, Vxey, Uld,

thenY(x;) >0, Vx e 52%.
Proof. Here we will show that the operator defined in (22) guarantee a M-matrix. Hence it is important to check the
conditions

rm>0,r">0, rm+rf+r <0, (33)

for all the operators defined in LNY (x;).
The central difference operator LY satisfies the conditions (33), if

- e plall
rl- = —— — —
h;h; 2h;

Consider the cases /au < ./pe or /au > ./pe. For both the cases, LN operator is applied in the left layer region (0, 71)
and (d, d + t3), r; > 0is guaranteed here with the definition on h; and h,. Consider the remaining regions in the case of
Jau < . /pe, Y operator is used, if uh|lall < 2¢ (k = 2, 3,5, 6) respectively to guarantee r; > 0. This can be proved
using (28)-(30).

When \/au > ,/pe, the mid point operator L% is used in the right layer region (d — 75, d) and (1 — 14, 1) if ||b||h3 < 2ua
and ||b|lhe < 2. Hence rl-+ > 0 is satisfied. In the coarse mesh region (ty, d — t3) and (d + 73, 1 — t4) mid point operator
Lm is applied if ||b|lh; < 2ua and ||b|lhs < 2ue on each interval respectively, providing rl.+ > 0.1f |b||hy, ||b|lhs > 2ua, to
guarantee riJr > 0 the upwind operator L’;’ is used.

At x; = d, the mid-point operator L% is used. For Jau < ./pe, r;r > 0 is obvious, r;7 > 0 is guaranteed, since
|Ibl[h3, |Ibllh3 < e/4. When /apu > /pe, r;" > 0is natural and r; > 0 is true since ||b||hs, ||bllhs < per/2, hence
(33) is satisfied for both the cases.

Combining all the above operators defined in various mesh points we say that these operators guarantee M-matrix and
hence VY (x;) satisfies discrete minimum principle [2]. O

> 0.

Lemma 9 (Discrete Stability Result). If Y (x;) is the solution of (31)-(32), then |Y(x;)| < C, forall x; € 5’;’/#.
Proof. Define the mesh function
V(x) =MLY (x)
where M = max {[Y(O)l. Y (D], }1Q"f )y, |
Clearly ¥ (x;) € C°(£2), ¥(0) > 0,¢/(1) > 0.Now for eachx; € 2},
LY () = —bx)M £ LY (%) <0,
similarly,
Iy (x) <0 and L)y (x) <O.
At the point Xy, = d,
Li (xn/2) = —b(xnj2) M £ LYY (x)2) < 0.
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Applying the discrete minimum principle of Lemma 8, it follows that
—N
Y(x) >0 Vx; € ‘Qs/u'
This leads to the required result

Y()| <C, Vxe@,,. O

4. Truncation error analysis

The solution of the discrete problem (31)-(32) can be decomposed as Y (x;) = V (x;) + W;(x;) + W, (x;). Let us denote the

error at each mesh point x; € 52’/# by e(x;) = |Y (x;) — y(x;)|. To bound the nodal error |e(x;)|, the argument is divided into
two main parts. Initially, we define mesh functions V™~ (x;) and V' (x;) which approximate V (x;) respectively to the left and
right sides of the point of discontinuity x; = d. Then, we construct mesh functions W™ (x;), W,Jr (%) and W, (x;), W,F (x;)
to approximate respectively W;(x;) and W, (x;) on each side of x; = d. Using these mesh functions the nodal error |e(x;)] is
bounded separately outside and inside the layers.
Let V™~ (x;) and VT (x;) be respectively, the solutions of the following discrete problems

"V x) =fx), VxeRl,ne,

V7(0)=v(0), V (d=vd),
and

V) =fx), Vxiel, net,

V() = v(d"), V() =v().

Define V (x;) as

_JVT (), 1<i<N/2-1,
Vix) = {v*(x,-), N2+1<i<N-1. (34)
Define W (x;) as
W(x) = Wi(x;) + Wi (x). (35)

Further, let W,™ (x;), W,Jr (%), W (x;) and W,* (x;) be respectively, the solutions of the following problems:
"W (x) =0 onl<i<N/2-1,
W (0) =w (0), W (d) = w; (d),
"W (x)=0 onN/2+1<i<N-1,
W) = wi@). w1 =0,
"W-(x)=0 onl1<i<N/2-1,
Wo(0) =0, W, (d) = w; (d),
"W (x)=0 onN/2+1<i<N-1,
W (d) =0, wH(1) = wi ().
(VT+W + W) @) = (VE+ W+ W) @),
NV +wW +wW) @=Ly (VT +wW+ W) @.
Note that we can define Y (x;) to be

(VoW + W) x), xeRl,ne,
Y) =3 (VT +W +W,) @)= (VM+W'+ W) (@),
(VP + W+ W) ), xe),net

Lemma 10. We have the following bounds on W, (x;), Wfr (%), W (x;) and W (x;)

kq
Wil < Ja+eh) ™ =y, ¥ =C,
j=1
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ky
wrel<c [ a+oam™ =vl  wi,=c
j=N/2+1
N/2

Wyl <C ] A+6m) ™" =i, Yp,=C
Jj=k1+1

N
Wrel<C [ A+ =yt yh=C
Jj=ko+1
where W, (x;), W,+ (1), W, (x;) and W (x;) are defined above. 6; and 6, are chosen from (12) and (15).

Proof. Define the barrier functions

k1
__J[JOa+eamr)™". 1<k <N/
by = =1
1, ](1 =0,
N/2
- 1_[ (1+92h]), 15](1<N/2,
) =k 1
1, ki =N/2,
where,
Z—"W, if Vo < /pe,
o =1 2/° (36)
’;—, if Vo = /pe,
I
VP it Jau < /e,
6, =] 2Ve (37)
2£’ if Vo > /pe.
"

To prove, LN Y <0and N ¥,; < 0.Applying discrete operator (22) on v, we have,

Ny =v - A+6h)r +164+ —— ¢t
1//11 wh <( + 61 l)rl + 1 +1+91hi+1r'>

=y (7 +rf+rT -6, M—h-r_ )
li i i i 1+91hi+1 i

As defined earlier, various discretization methods used in the operator LV are discussed here. Consider the central difference
operator.

U = Vi [2607 (B2 — 1) + (2067 — nady — 2b) + uad (1= Gk "2 + bk | < o.

Hence,

Ly < ¥y, (2667 — paiby — by) < 0.
Applying (36) for both the cases we get

_ _ [ pa Jpo
LV < Vi (7 — 2b; — Maiz\/g>
_ (P
= Vi (7 - 2bi> <0

and

N, — — MZO{

Loy < %-H z(a —a;) —2b; ) <0.
For the upwind scheme, we can show that

LYYy < Vi (€67 — naify — b)) <0
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for the mid point scheme, we can prove
LoV < Vi (607 — naios —bi) <0

we can complete the argument similarly as done for the central difference scheme.
Now consider the right layer barrier function v,;, operating the discrete operator of (22) on ¥; we find

_ hir;”
N i =Yy |:r +rf +r — 6, (1_;:92hi—hi+1ri+>i|-

Applying the central difference scheme to LN/,
I/j_

we get

Ny [2592 (hi/hi — 1) + (2665 + paif2 — 2b;) (1 + 6;h;) — 2665 h;]
< wﬁ (2892 + pait, — 2b;) <0
for the upwind scheme, we can show that
LYy: < ¥y (2605 + paig, — b)) <0
Applying the two cases for (37) we obtain

N 2bi
LN < ¥ (pay —2by) < Y7 - <o.
When we apply the mid point scheme,
Ny < ¥y (67 + pai, — b)) <0
In both cases of (37) we have LY m¥yi < 0.Applying Lemma 8 we can prove that v,; > 0. Similarly we can prove for le and
WJr in the interval (N/2 4 1, N) and obtain the required result. O

Now, examining the truncation error at the interior mesh points x; € .QN \{d} The standard upwinded operator is
always monotone and has a second order truncation error. In fact, we have on arbltrary mesh points

1LY — Dyl < ehilly® || + whillall Iy,
1LY — Dyl < ehilly® || + whicillall ly®,
and on a uniform mesh with step size h

1LY — Dyl < ek?(ly® || + wh?|lall Iy,
Ly — Dy@)ll < eh®ly® | + phllal [yl

Ne(x) =

Ne(x;) =

Lemma 11. At each mesh point x; € 2V, the regular component of the truncation error satisfies the following estimate

e/

IV = v)(x)]| < CN~2.

Proof. When the mesh is uniform, then
ILY(V — )| = IV (x) — QVf (x|

(82—‘1Z>V( )| — |maC ,)<D+_£>V( )
dx? Xi nax; dx Xi

< Ce (g1 — %) vlla — pa(x) Xipr — x) 0]l
IV =)l < N2

When 1; = d/4, it is seen that away from the transition points the mesh is uniform. In all the above cases |[LN (V — v)(x;)| <
CN~2. When the mesh is non-uniform we employ the mid-point scheme to obtain the above result for both the cases

Jap < Jpgand Jau > Jpe. O
Lemma 12. Assume (30). The left singular component of the error satisfies the following estimate for x; € _Qf/ "

CN"'InN)*, if Vo < /pe,

(W —wp )|l < {CN‘Z N, if Jau > /e,
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Proof. Consider the uniform mesh and for /au < J/pé€ intheinterval 1 <i < N/2 — 1, we have
LW —w) ) = 1w = M|
< [oN2ew @00 + [N 2 @ 9
< ON“P(ellwy lla+ pllw [13)
ILNW, — w7 )(x:)| < CN"?/e < C(N"'InN)?.
Similarly for the interval N/2 +1 <i <N —1,
INWT — w)(x)| < C(N"'InN)%.
When /au > /pe,
LYW —w) )| = (W = LMy
< cnzgw;“)(x)‘ n ‘Chzuwfw)(x)
< ON“*(ellwy lla + pllwy l13)
ILNW, — w)(x)| < CN?pt/e® < CuN~?In®N.
Similarly,
INW," — w)(x)] < CuN~?In® N.
In the case of non-uniform mesh over the domain x; € [7;, d). From Lemmas 5 and 7, it is found that,
LYW, — w) )] < W )|+ [w) (x0)]
<C(e”™ +N7?)
<C(e"" +N7?)
LYW — wi) ()] < CN72
Similarly, inx; € [d + 13, 1 — 13),
LYW — wH ol < W)l + w0l
<c (e—¢91(x,-—d) + N‘z)
<c (8—91(d+r3—d) i N‘z)
YW = wH)) < N2
When x; € (0, t7) the truncation error is
LYW = w) @) < LW = wi) ()
< lew; ® + aGpw; ¥ — b(x)w;
— (8% + a(x)uD® — b(xi))W/" |
< |chew; @ 0| + |chdpww @ 0
< CN“2(etf llwy lla + pefllw; Ils)
YW —w) )| < c";av—1 InN)>.
Consider the barrier function [9],
) =C (N2 4+ (N InN(m — xJ%) £ (W — w0
Here, ¥ (0), ¥ () are non-negative and Lﬁ’ ¥ (x;) < 0. Applying Lemma 8, we have ¥ (x;) > 0, hence
W —wD)E)] = C (N2 (v nNyn S
<CN2In®N

and similarly if x; € (d, d + 73), we obtain the same result.
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If J/apu < /pée for x; € (0, t1), we obtain

LYW, — w) ()| < C(N"'InN)? (1 + %)
< C(N7'InN)?
and for x; € (d, d + t3), we get
INW — w)(x)| < C(N"'InN)?.

Combining all the above results, it is now possible to prove

C(N"'InN)?, if Vau < /pe, N
— . < —
1=l = {CN2 N, ifap > vpe. 00N € Lo O

Similarly, we can prove the right singular component in the following lemma.

Lemma 13. Assume (30). The right singular component of the error satisfies the following estimate for x; € .Qf’/ "

CIN"'InN)Y*, if Vo < /pe,

IWy = w) I < {C(Nl NN, if Vau = /pe.

Lemma 14. At the point of discontinuity Xy, = d, the error e(d) satisfies the following estimate.

CN~'InN, Jau < . /pe,
|LN (YN/2 —YN/Z)‘ = {CNI 2N, au > /pe.

Proof. Applying the corresponding arguments from [3,23], we can obtain
|LN (Yny —)’N/z)| = ‘LNYN/Z —f(d)’
< |e8%m2 + na@D* w2 — @2 —f @)

‘(f +by)

IA

+ |(e8%y + Mamy) (d){

d+h+ t
/ ey’ (s)dsdt += / &y’ (s)dsdt
s=d s=d

t=d—h~

d+h+
+ — h+ f juay (s)dsdr—l—— / jay (s)dsdt+[(f+by) (d)]

t=d—h~
1
_h+

vl /[ dd ) / [ey(5) + pay (s)] dsdt + [(f+by) @]

d+h+
/ [y (s) + nay'(s)] dsdt
s=d

d+h*

< / [f+by (s)]dsdt+— e [d f+by) (s)]dsdt+[(f+by) (d)]

S=

d
d+h+ d+h+
/ f L / / f [ +by) @)dpasdt]
s=d t=d—h— Js=d d—h~

h+bd A e h=b(d — h
+ g/ ¥y (t)dt + % y'(t)dt + 0(h*) (38)
t=d—h—

I /\

when /au < /pe, applying (12) and Lemma 3 on (38) we get
LY (Yn2 —yns2)| < CN“'InN.
When /au > ./pé¢, applying (12), Lemma 3 and following the principles from [9,11], we prove

IIN (Ynz —ynj2)| < CNTHIRPN. O
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5. Error estimate

This section presents the main contribution of the article, namely, the theorem which conveys the e-u-uniform
convergence error estimate |e(x;)| = ||Y (x;)) — y(x;) ||

Theorem 2. Let y(x;) be the solution of the continuous problem (1)-(2) and Y (x;) be the solution of the discrete problem
(31)-(32). Then, for sufficiently large N, we have

—1 2
CIN"'InN)?,  Jap < /pe, vheal,.

Y =yl = {CNZ(lnN)3, Jau > vz,

Proof. Define the mesh functions t;(x;) and t,(x;) to be

J N
nep) =[Ja+6h), e =[]0 +6m)7"

i=1 i=j
Consider the following properties of these mesh functions

0
D t1(x) = mfl (x), D t1(x;) = O1t1(x:),
1h

0>
1+6,
61 h;h;
Dt (%) = t1(x)6; (1 + %) , Dty (%) = —t(x:)6> (1 +

i

D™t (x) = —6xt2(xy), D tr(x;) = —

t2(x;)
62hihi )
i

Define the three barrier functions v (;), ¥, (x;) and ¥r3(x;) as follows

Xi
) OSXI'STL
T

Yix) =11, T1=x=<1—14,
l—Xi

, -1 =<x=<1,

T4
t1(X;
L
t1(d — 1)

Yox)) =31, d—1 <x=<d+r13,
ty (X;
bK<,
tr(d + 73)
t1(X;
tl((d')), 0<x<d,

V3(xi) = t](x-)
2 , <x <1.
t(d)

It is to be noted that, when 7; = 7, = d/4 use t;(x;) = x; (or)if, 13 = 14 = (1 —d) /4 use t,(x;) = 1 — x;.
Case (i): /ou < A/ PE€, 01, 0, are considered as in (12). From Lemmas 11-13 we get
1Y =)&)l < CNT2IP N, Vi € 2,,\(d). (39)
From Lemma 14
IN(Y = y)(x)| <CN"'InN, forx;=d
by proper choice of C, define the following mesh function [23]
3

¢ (x) = C(N"'InN)? [1 - wxf)} +e(x).

j=1
It is clear that {f(O) >0, §1i(]) > 0and

INeEx) < 0.
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Table 1
Max. pointwise errors (E}, ) for ju = 104 and & varies from 10~* to 10~ in Example 1.
Number of mesh points N
128 256 512 1024 2048 4096
1072 1.29900E—04 2.24860E—05 3.45280E—06 4.82380E—07 6.38610E—08 8.21860E—09
1074 7.28060E—03 1.60150E—03 3.97790E—04 1.08900E—04 2.61190E—05 4.71860E—06
10~ 4.25040E—03 1.81560E—03 7.61830E—04 3.05430E—04 1.05700E—04 3.57180E—05
10-8 1.60760E—02 6.24470E—03 2.31990E—03 8.39840E—04 2.78980E—04 8.98980E—05
10-10 1.39560E—02 4.81180E—03 1.55790E—03 4.82850E—04 1.43440E—04 4.28280E—05
10~ 12 1.39080E—02 4.79850E—03 1.54500E—03 4.78180E—04 1.42500E—-04 4.24190E—05
10~ 1.39070E—02 4.79840E—-03 1.54490E—-03 4.78140E—-04 1.42490E—-04 4.24150E—-05

Applying the discrete minimum principle to gli (x;), we get
le(x))| < CN~2In®N. (40)
Case (ii): /au > /P&, 01, 6 are considered as in (15).
From Lemmas 11-13 we get
IY =)@ < NP N, Vi € 2,),\{d). (41)
From Lemma 14
IIN(Y = y)(x)| = CN"'In®N, forx;=d

by proper choice of C, define the following mesh function

3
&y (%) = CN"2In° N [1 +y wJ-(xf)} + e(x).

j=1
It is clear that g“zi 0) =0, ;f(l) > 0and
INGE(x) < 0.
Applying the discrete minimum principle to {f (x;), we get
le(x)| < CN~2In®N. (42)
From (40) and (42), we get the required result. O

6. Numerical examples

To show the applicability and efficiency of the present method it is implemented to the following test problem. Consider
the singularly perturbed two parameter BVPs with discontinuous source term.

Example 1.
ey’ () + n(1+x% 0 —yx) =f(x), xe ULt
y© =0, y(1)=0,
where,

Fx) = 2x+ 1, for0 <x <05
T ]1—-Bx+4), for05<x<1.

To calculate the maximum pointwise error and the rate of convergence, we use the double mesh principle, which is
followed in the literature [2,8,11]. The double mesh difference is defined by

EV, = max [YMx) — YNl
Xj EESN/;L

where YN (x;) and Y2V (x;) denote respectively, the numerical solutions obtained using N and 2N mesh intervals. In addition,
the parameter-robust orders of convergence are calculated from

N
RV — ES//L
e/n 08, Ez;\] .
e/

The numerical solution and error plot for Example 1 are given in Figs. 1-2 and maximum pointwise error and order of
convergence are given in Tables 1-2 respectively. The table highlights the error estimates obtained for Theorem 2.
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Rate of convergence (RY,,) for 11 = 10~* and ¢ varies from 1072 to 10~'* in Example 1.

Number of mesh points N

128 256 512 1024 2048 4096
1072 2.530302481 2.703188370 2.839524772 2.917163043 2.957970581 2.978845275
104 2.184633551 2.009344884 1.869003055 2.059832386 2.468668879 2.734399608
1076 1.227152225 1.252905388 1.318627327 1.530866397 1.565252171 1.692343833
1078 1.364204312 1.428569646 1.465876211 1.589952803 1.633800774 1.729889700
10710 1.536236919 1.626974048 1.689955649 1.751127684 1.743821181 1.818667052
1012 1.535259574 1.634976655 1.691981143 1.746591871 1.748179403 1.823360332
1074 1.535185905 1.635039971 1.692008449 1.746572429 1.748214207 1.823344653
7 T T T T T T T
0.04 T T T T T T T
Br —4— Emor = [¥2N . M |4
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3l 0025
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(a) Numerical solutions.
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(b) Error = .|Y”(xj) — Yz.”(xj)l.

Fig. 1. The numerical solutions and the error for e = 107%, u = 10~* and N = 256 for Example 1.
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Fig. 2. The numerical solutions and the error for e = 107%, u = 1072 and N = 256 for Example 1.
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