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A common fixed point theorem of Jungck [G. Jungck, On a fixed point theorem of fisher and

sessa, Internat. J. Math. Math. Sci., 13 (3) (1990) 497–500] is generalized to locally convex

spaces and the new result is applied to extend a result on best approximation.
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1. Introduction

During the last four decades several interesting and valuable results were studied extensively in the field of fixed point
theorems.

In 1990, Jungck [1] obtained the following theorem for compatible mapping:

Theorem 1.1 ([1]). Let T and I be compatible self-maps of a closed convex subset M of a Banach space X. Suppose I is linear,

continuous, and that T (M) ⊆ I(M). If there exists a ∈ (0, 1) such that x, y ∈ M

‖T x − T y‖ ≤ a‖Ix − Iy‖ + (1 − a)max{‖T x − Ix‖, ‖T y − Iy‖}, (1.1)

then T and I have a unique common fixed point in M.

In this paper,we first derive a common fixed point result in locally convex spacewhich generalizes the result of Jungck [1].
This new result is used to prove another fixed point result for best approximation. By doing so,we in fact, extend and improve
the result of Brosowski [2], Meinardus [3], Sahab et al. [4], Singh [5–7] and many others.

2. Preliminaries

In the material to be presented here, the following definitions have been used:
In what follows, (E, τ ) will be a Hausdorff locally convex topological vector space. A family {pα : α ∈ ∆} of seminorms

defined on E is said to be an associated family of seminorms for τ if the family {γU : γ > 0}, where U =
⋂n

i=1 Uαi
, n ∈ N,

and Uαi
= {x ∈ E : pαi

(x) ≤ 1}, forms a base of neighbourhoods of zero for τ . A family {pα : α ∈ ∆} of seminorms
defined on E is called an augmented associated family for τ if {pα : α ∈ ∆} is an associated family with the property that
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the seminorm max{pα, pβ} ∈ {pα : α ∈ ∆} for any α, β ∈ ∆. The associated and augmented families of seminorms will
be denoted by A(τ ) and A

∗(τ ), respectively. It is well known that given a locally convex space (E, τ ), there always exists
a family {pα : α ∈ ∆} of seminorms defined of E such that {pα : α ∈ ∆} = A

∗(τ ) (see [8, pp 203]). A subset M of E is
τ -bounded if and only if each pα is bounded on M.

Suppose that M is a τ -bounded subset of E . For this set M, we can select a number λα > 0 for each α ∈ ∆ such that
M ⊂ λαUα where Uα = {x ∈ M : pα(x) ≤ 1}. Clearly, B =

⋂

α λαUα is τ -bounded, τ -closed, absolutely convex and

containsM. The linear span EB ofB in E is
⋃∞

n=1 nB. TheMinkowski functional ofB is a norm ‖·‖B on EB . Thus, (EB, ‖·‖B)
is a normed space with B as its closed unit ball and supα pα(x/λα) = ‖x‖B for each x ∈ EB . (for details, see [9,8,10]).

Definition 2.1 ([9]). Let I and T be self-maps on M. The map T is called
(i) A

∗(τ )-nonexpansive if for all x, y ∈ M

pα(T x − T y) ≤ pα(x − y),

for each pα ∈ A
∗(τ ).

(ii) A
∗(τ )-I-nonexpansive if for all x, y ∈ M

pα(T x − T y) ≤ pα(Ix − Iy),

for each pα ∈ A
∗(τ ).

For simplicity, we shall callA∗(τ )-nonexpansive (A∗(τ )−I-nonexpansive)maps to be nonexpansive (I-nonexpansive).

Definition 2.2 ([11]). A pair of self-mappings (T , I) of a locally convex space (E, τ ) is said to be compatible, if pα(T Ixn −
IT xn) → 0, whenever {xn} is a sequence in E such that T xn, Ixn → t ∈ E .

Every commuting pair of mappings is compatible but the converse is not true in general.

Definition 2.3. Suppose that M is q-starshaped with q ∈ F (I) and is both T - and I-invariant. Then T and I are called
R-subcommuting [12–14] on M, if for all x ∈ M and for all pα ∈ A

∗(τ ), there exists a real number R > 0 such that
pα(IT x− T Ix) ≤ (R

k
)pα(((1− k)q+ kT x) − Ix) for each k ∈ (0, 1). If R = 1, then the maps are called 1-subcommuting.

The I and T are called R-subweakly commuting [15] on M, if for all x ∈ M and for all pα ∈ A
∗(τ ), there exists a real

number R > 0 such that pα(IT x − T Ix) ≤ Rdpα (Ix, [q, T x]), where [q, x] = (1 − k)q + kx : 0 ≤ k ≤ 1.

Remark 2.4. (1) It is obvious that commutativity implies R-subcommutativity, which in turn implies R-weakly
commutativity [13,14].

(2) It is also well known that commuting maps are R-subweakly commuting maps and R-subweakly commuting maps
are R-weakly commuting but not conversely in general (see [15]).

To clear the above remarks, in the following, we have furnished some examples:

Example 2.5. Let X = R with norm ‖x‖ = |x| and M = [1, ∞). Let T , S : M → M be defined by

T x = x2 and Sx = 2x − 1

for all x ∈ M. Then T and S are R-weakly commuting with R = 2. However, they are not R-subcommuting because

|T Sx − ST x| ≤

(

R

k

)

|(kT x + (1 − k)p) − Sx|

does not hold for x = 2 and k = 2
3
, where p = 1 ∈ F (S).

Example 2.6. Let X = R with norm ‖x‖ = |x| and M = [1, ∞). Let T , S : M → M be defined by

T x = 4x − 3 and Sx = 2x2 − 1

for all x ∈ M. Then M is p-starshaped with p = 1 ∈ F (S) and is both T and S-invariant. Also, |T Sx − ST x| = 24(x − 1)2.
Further,

|T Sx − ST x| ≤

(

R

k

)

|(kT x + (1 − k)p) − Sx|

for all x ∈ M, where R = 12 and p = 1 ∈ F (S). Thus, T and S are R-subcommuting on M but are not commuting
on M.

Example 2.7. Let X = R
2 with norm ‖(x, y)‖ = max{|x|, |y|}, and let T and S be defined by

T (x, y) = (2x − 1, y3) and S(x, y) = (x2, y2)

for all (x, y) ∈ X. Then T and S are R-subweakly commuting on M = {(x, y) : x ≥ 1, y ≥ 1} but they are not commuting
on M.
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Definition 2.8. Suppose that M is q-starshaped with q ∈ F (I). Define
∧

q(I, T ) = {
∧

(I, Tk) : 0 ≤ k ≤ 1} where

Tkx = (1 − k)q + kT x and
∧

(I, Tk) = {{xn} ⊂ M : limnIxn = limnTkxn = t ∈ M ⇒ limnpα(IT kxn − TkIxn) = 0}, for all
sequences {xn} ∈

∧

q(I, T ). Then I and T are called subcompatible [16,17] if

lim
n

pα(IT xn − T Ixn) = 0

for all sequences xn ∈
∧

q(I, T ).

Obviously, subcompatible maps are compatible but the converse does not hold, in general, as the following example
shows.

Example 2.9. Let X = R with usual norm and M = [1, ∞). Let I(x) = 2x − 1 and T (x) = x2, for all x ∈ M. Let q = 1.
Then M is q-starshaped with Iq = q. Note that I and T are compatible. For any sequence {xn} in M with limnxn = 2, we
have, limnIxn = limnT 2

3
xn = 3 ∈ M ⇒ limn‖IT 2

3
xn − T 2

3
Ixn‖ = 0. However, limn‖IT xn − T Ixn‖ 6= 0. Thus I and T are

not subcompatible maps.

Note that R-subweakly commuting and R-subcommuting maps are subcompatible. The following simple example
reveals that the converse is not true, in general.

Example 2.10. Let X = R with usual norm and M = [0, ∞). Let I(x) = x

2
if 0 ≤ x < 1 and Ix = x if x ≥ 1, and T (x) = 1

2

if 0 ≤ x < 1 and T x = x2 if x ≥ 1. Then M is 1-starshaped with I1 = 1 and
∧

q(I, T ) = {{xn} : 1 ≤ xn < ∞}. Note that I

and T are subcompatible but not R-weakly commuting for all R > 0. Thus I and T are neither R-subweakly commuting
nor R-subcommuting maps.

Definition 2.11 ([9]). Let x0 ∈ E and M ⊆ E . Then for 0 < a ≤ 1, we define the set Da of best (M, a)-approximant to x0 as
follows:

Da = {y ∈ M : apα(y − x0) = dpα (x0, M), for all pα ∈ A
∗(τ )},

where

dpα (x0, M) = inf{pα(x0 − z) : z ∈ M}.

For a = 1, definition reduces to the set D of best M-approximant to x0.

Definition 2.12. The map T : M → E is said to be demiclosed at 0 if for every net {xn} in M converging weakly to x and
{T xn} converging strongly to 0, we have T x = 0.

Throughout, this paper F (T ) (resp. F (I)) denotes the fixed point set of mapping T (resp. (I)).

3. Main result

To prove the main result, a lemma is presented below:

Lemma 3.1. Let T and I be compatible self-maps of a τ -bounded subset M of a Hausdorff locally convex space (E, τ ). Then T

and I be compatible on M with respect to ‖ · ‖B .

Proof. By hypothesis for each pα ∈ A
∗(τ ),

pα(T Ixn − IT xn) → 0, (3.1)

whenever {xn} is a sequence in M such that

pα(T xn − t) → 0, pα(Ixn − t) → 0

for some t ∈ M.
Taking supremum on both sides,

sup
α

pα

(

T Ixn − IT xn

λα

)

→ 0

i.e.,

‖T Ixn − IT xn‖B → 0

whenever {xn} is a sequence in M such that

sup
α

pα

(

T xn − t

λα

)

→ 0, sup
α

pα

(

Ixn − t

λα

)

→ 0,
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i.e.,

‖T xn − t‖B → 0, ‖Ixn − t‖B → 0. �

A technique of Tarafdar [10] to obtain the following common fixed point theorem which generalizes Theorem 1.1.

Theorem 3.2. Let M be a nonempty τ -bounded, τ -sequentially complete and convex subset of a Hausdorff locally convex space

(E, τ ). Let T and I be compatible self-maps of M such that T (X) ⊆ I(X), I is linear and nonexpansive, and satisfying

pα(T x − T y) ≤ apα(Ix − Iy) + (1 − a)max{pα(T x − Ix), pα(T y − Iy)} (3.2)

for all x, y ∈ M and pα ∈ A
∗(τ ), and for some a ∈ (0, 1), then T and I have a unique common fixed point.

Proof. Since the norm topology on EB has a base of neighbourhoods of zero consisting of τ -closed sets and M is τ -
sequentially complete, therefore,M is a ‖·‖B-sequentially complete subset of (EB, ‖·‖B) (Theorem1.2, [10]). By Lemma 3.1,
T and I are ‖ · ‖B-compatible maps of M. From (3.2), we obtain for x, y ∈ M,

sup
α

pα

(

T x − T y

λα

)

≤ a sup
α

pα

(

Ix − Iy

λα

)

+ (1 − a)max

{

sup
α

pα

(

T x − Ix

λα

)

, sup
α

pα

(

T y − Iy

λα

)}

.

Thus

‖T x − T y‖B ≤ a‖Ix − Iy‖B + (1 − a)max{‖T x − Ix‖B, ‖T y − Iy‖B}. (3.3)

Note that, if I is nonexpansive on a τ -bounded, τ -sequentially complete subset M of E , then I is also nonexpansive
with respect to ‖ · ‖B and hence ‖ · ‖B-continuous [8]. A comparison of our hypothesis with that of Theorem 1.1 tells
that we can apply Theorem 1.1 to M as a subset of (EB, ‖ · ‖B) to conclude that there exists a unique w ∈ M such that
w = T w = Iw. �

Example 3.3. Let X = R with usual norm and M = [0, 1]. Let T (x) = 1 for 0 ≤ x ≤ 1
2
, and T (x) = 0 for

1
2

< x ≤ 1, I(x) = 0 for 0 < x ≤ 1
2
, and I(x) = 1 for 1

2
< x ≤ 1. Then all the assumptions of Theorem 3.2 are

satisfied, but T and I have no common fixed point.

Theorem 3.4. Let M be a nonempty τ -bounded, τ -sequentially complete and convex subset of a Hausdorff locally convex space

(E, τ ). Let T and I be self-maps of M such that T and I are subcompatible. Suppose that T and I satisfy (3.2), I is linear and

nonexpansive, I(M) = M, q ∈ F (I), then T and I have a common fixed point provided one of the following conditions holds:

(i) M is τ -sequentially compact and T is continuous;

(ii) T is a compact map;

(iii) M is weakly compact in (E, τ ), I is weakly continuous and I − T is demiclosed at 0.

Proof. Choose a monotonically nondecreasing sequence {kn} of real numbers such that 0 < kn < 1 and lim sup kn = 1. For
each n ∈ N, define Tn : M → M as follows:

Tnx = knT x + (1 − kn)q. (3.4)

Obviously, for each n, Tn maps M into itself, since M is convex.

As I is linear, we can have

TmIxn = knT Ixn + (1 − kn)q

and

IT mx = knIT xn + (1 − kn)Iq.

The subcompatibility of I and T and q ∈ F (I) implies that

0 ≤ lim
n

pα(TnIxm − IT nxm)

≤ lim
m

knpα(T Ixm − IT xm) + lim
m

(1 − kn)pα(q − Iq)

= 0,

for any {xm} ⊂ M with limm Tnxm = limm Ixm = t ∈ M.

Hence {Tn} and I are compatible for each n and xn ∈ M and Tn(M) ⊆ M = I(M), I is linear and q ∈ F (I). Therefore
Tn(M) ⊆ I(M).
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For all x, y ∈ M, pα ∈ A
∗(τ ) and for all j ≥ n, (n fixed), we obtain from (3.2) and (3.4) that

pα(Tnx − Tny) = knpα(T x − T y) ≤ kjpα(T x − T y)

≤ pα(T x − T y)

≤ apα(Ix − Iy) + (1 − a)max{pα(Tx − Ix), pα(T y − Iy)}

≤ apα(Ix − Iy) + (1 − a)max{pα(T x − Tnx) + pα(Tnx − Ix), pα(T y − Tny) + pα(Tny − Iy)}

≤ apα(Ix − Iy) + (1 − a)max{(1 − kn)pα(T x − q)

+ pα(Tnx − Ix), (1 − kn)pα(T y − q) + pα(Tny − Iy)}.

Hence for all j ≥ n, we have

pα(Tnx − Tny) ≤ apα(Ix − Iy) + (1 − a)max{(1 − kj)pα(T x − q)

+ pα(Tnx − Ix), (1 − kj)pα(T y − q) + pα(Tny − Iy)}. (3.5)

As lim kj = 1, from (3.5), for every n ∈ N, we have

pα(Tnx − Tny) = lim
j

pα(Tnx − Tny)

≤ lim
j

{apα(Ix − Iy) + (1 − a)max{(1 − kj)pα(T x − q)

+ pα(Tnx − Ix), (1 − kj)pα(T y − q) + pα(Tny − Iy)}}. (3.6)

This implies that for every n ∈ N,

pα(Tnx − Tny) ≤ apα(Ix − Iy) + (1 − a)max{pα(Tnx − Ix), pα(Tny − Iy)}, (3.7)

for all x, y ∈ M and for all pα ∈ A
∗(τ ).

Moreover, I being nonexpansive on M, implies that I is ‖ · ‖B-nonexpansive and, hence, ‖ · ‖B-continuous. Since the
norm topology on EB has a base of neighbourhoods of zero consisting of τ -closed sets and M is τ -sequentially complete,
therefore,M is a ‖·‖B-sequentially complete subset of (EB, ‖·‖B) (see proof in [10, Theorem 1.2]). Thus from Theorem 3.2,
for every n ∈ N, Tn and I have unique common fixed point xn in M, i.e.,

xn = Tnxn = Ixn, (3.8)

for each n ∈ N.

(i) As M is τ -sequentially compact and {xn} is a sequence in M, so {xn} has a convergent subsequence {xm} such that
xm → y ∈ M. As I and T are continuous and

xm = Ixm = Tmxm = kmT xm + (1 − km)q,

so it follows that y = T y = Iy.
(ii) As T is compact and {xn} is bounded, so {T xn} has a subsequence {T xm} such that {T xm} → z ∈ M. Now we have

xm = Tmxm = kmT xm + (1 − km)q.

Proceeding to the limit as m → ∞ and using the continuity of I and T , we have Iz = z = T z.
(iii) The sequence {xn} has a subsequence {xm} converges to u ∈ M. Since I is weakly continuous and so as in (i), we have

Iu = u. Now,

xm = Ixm = Tmxm = kmT xm + (1 − km)q

implies that

Ixm − T xm = (1 − km)[q − T xm] → 0

as m → ∞. The demiclosedness of I − T at 0 implies that (I − T )u = 0. Hence Iu = u = T u. This completes the
proof. �

Example 3.5. Let X = R
2 and M = {0, 1, 1 − 1

n−1
: n ∈ N} be endowed with usual metric. Define T 1 = 0 and

T 0 = T (1 − 1
n−1

) = 1 for all n ∈ N. Clearly, M is not convex. Let Ix = x for all x ∈ M. Now T and I satisfy (3.2)

together with all other conditions of Theorem 3.4(i) except the condition that T is continuous. Note thatF (T )∩F (I) = ∅.

Example 3.6. Let X = R
2 be endowed with the norm defined by ‖(a, b)‖ = |a| + |b|, (a, b) ∈ R

2.
(1) Let M = A ∪ B, where A = {(a, b) ∈ X : 0 ≤ a ≤ 1, 0 ≤ b ≤ 4} and B = {(a, b) ∈ X : 2 ≤ a ≤ 3, 0 ≤ b ≤ 4}.

Define T : M → M by

T (a, b) =

{

(2, b) if (a, b) ∈ A

(1, b) if (a, b) ∈ B
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and I(x) = x for all x ∈ M. All the conditions of Theorem 3.4(ii) are satisfied except that M is not convex. Note that
F (T ) ∩ F (I) = ∅.

(2) M = {(a, b) ∈ X : 2 ≤ a < ∞, 0 ≤ b ≤ 1} and T : M → M is defined by

T (a, b) = {(a + 1, b) : (a, b) ∈ M}.

Define I(x) = x for all x ∈ M. All the conditions of Theorem 3.4(ii) are satisfied except that T (M) is compact. Note
F (T ) ∩ F (I) = ∅. Notice that M, being convex and T -invariant.

(3) If M = {(a, b) ∈ X : 0 ≤ a < 1, 0 ≤ b ≤ 1} and T : M → M is defined by

T (a, b) =

(

a

2
,
b

3

)

and I(x) = x for all x ∈ M.

All of the conditions of Theorem 3.4(ii) are satisfied except the fact that M is closed. However F (T ) ∩ F (I) = ∅.

Example 3.7. Let M = R
2 be endowed with the norm defined by ‖(a, b)‖ = |a| + |b|, (a, b) ∈ R

2. Define T and I on M as
follows:

T (x, y) =

(

1

2
(x − 2),

1

2
(x2 + y − 4)

)

,

I(x, y) =

(

1

2
(x − 2), (x2 + y − 4)

)

.

Obviously, T is I-nonexpansive but I is not linear. Moreover, F (T ) = {−2, 0}, F (I) = {(−2, y) : y ∈ R} and the set of
coincidence points of I and T , that is C(I, T ) = {(x, y) : y = 4 − x2, x ∈ R}. Thus (T , I) is a continuous, which is not
compatible pair, and (−2, 0) is a common fixed point of I and T .

An application of Theorem 3.4, we prove the following more general result in best approximation theory.

Theorem 3.8. Let T and I be self-maps of a Hausdorff locally convex space (E, τ ) and M a subset of E such that T (∂M) ⊆ M,

where ∂M stands for the boundary of M and x0 ∈ F (T ) ∩ F (I). Suppose that I is nonexpansive and linear on Da. Further,

suppose T and I satisfy (3.2) for all x, y ∈ D
′
a = Da ∪ {x0} and pair (T , I) are subcompatible on Da. If Da is nonempty convex

and I(Da) = Da, then T and I have a common fixed point in Da provided one of the following conditions holds:

(i) Da is τ -sequentially compact;
(ii) T is a compact map;
(iii) Da is weakly compact in (E, τ ), I is weakly continuous and I − T is demiclosed at 0.

Proof. First, we show that T is self-maps on Da, i.e., T : Da → Da. Let y ∈ Da, then Iy ∈ Da, since I(Da) = Da. Also, if
y ∈ ∂M, then T y ∈ M, since T (∂M) ⊆ M. Now since T x0 = x0 = Ix0, so for each pα ∈ A

∗(τ ), we have from (3.2)

pα(T y − x0) = pα(T y − T x0)

≤ apα(Iy − Ix0) + (1 − a)max{pα(T y − Iy), pα(T x0 − Ix0)}

≤ apα(Iy − x0) + (1 − a)max{pα(T y − x0) + pα(Iy − x0)}

= pα(Iy − x0) + (1 − a)pα(T y − x0).

So, we have

apα(T y − T x0) ≤ pα(Iy − x0).

Now, T y ∈ M and Iy ∈ Da, this implies that T y is also closest to x0, so T y ∈ Da. Consequently T and I are self-maps
on Da. The conditions of Theorem 3.4((i)–(iii)) are satisfied and, hence, there exists a ν ∈ Da such that T ν = ν = Iν. This
completes the proof. �
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