

Contents lists available at ScienceDirect

Applied Mathematics Letters

journal homepage: www.elsevier.com/locate/aml

An application of fixed point theorem to best approximation in locally convex space

Hemant Kumar Nashine^a, Mohammad Saeed Khan^{b,*}

^a Department of Mathematics, Disha Institute of Management and Technology, Satya Vihar, Vidhansabha-Chandrakhuri Marg, Nardha, Mandir Hasaud, Raipur-492101 (Chhattisgarh), India

^b Department of Mathematics and Statistics, Sultan Qaboos University, P.O. Box 36, PCode 123 Al-Khod, Muscat, Sultanate of Oman, Oman

ARTICLE INFO

Article history: Received 29 July 2007 Received in revised form 8 May 2009 Accepted 8 June 2009

Keywords: Best approximation Demiclosed mapping Fixed point Nonexpansive mapping Locally convex space

1. Introduction

During the last four decades several interesting and valuable results were studied extensively in the field of fixed point theorems.

In 1990, Jungck [1] obtained the following theorem for compatible mapping:

Theorem 1.1 ([1]). Let \mathcal{T} and \mathfrak{l} be compatible self-maps of a closed convex subset \mathcal{M} of a Banach space \mathfrak{X} . Suppose \mathfrak{l} is linear, continuous, and that $\mathcal{T}(\mathcal{M}) \subseteq \mathfrak{l}(\mathcal{M})$. If there exists $a \in (0, 1)$ such that $x, y \in \mathcal{M}$

$$|\mathcal{T}x - \mathcal{T}y|| \le a ||\mathcal{I}x - \mathcal{I}y|| + (1 - a) \max\{||\mathcal{T}x - \mathcal{I}x||, ||\mathcal{T}y - \mathcal{I}y||\},\tag{1.1}$$

then \mathcal{T} and \mathcal{I} have a unique common fixed point in \mathcal{M} .

In this paper, we first derive a common fixed point result in locally convex space which generalizes the result of Jungck [1]. This new result is used to prove another fixed point result for best approximation. By doing so, we in fact, extend and improve the result of Brosowski [2], Meinardus [3], Sahab et al. [4], Singh [5–7] and many others.

2. Preliminaries

In the material to be presented here, the following definitions have been used:

In what follows, (\mathcal{E}, τ) will be a Hausdorff locally convex topological vector space. A family $\{p_{\alpha} : \alpha \in \Delta\}$ of seminorms defined on \mathcal{E} is said to be an associated family of seminorms for τ if the family $\{\gamma \mathcal{U} : \gamma > 0\}$, where $\mathcal{U} = \bigcap_{i=1}^{n} \mathcal{U}_{\alpha_i}, n \in \mathbb{N}$, and $\mathcal{U}_{\alpha_i} = \{x \in \mathcal{E} : p_{\alpha_i}(x) \leq 1\}$, forms a base of neighbourhoods of zero for τ . A family $\{p_{\alpha} : \alpha \in \Delta\}$ of seminorms defined on \mathcal{E} is called an augmented associated family for τ if $\{p_{\alpha} : \alpha \in \Delta\}$ is an associated family with the property that

* Corresponding author.

ABSTRACT

A common fixed point theorem of Jungck [G. Jungck, On a fixed point theorem of fisher and sessa, Internat. J. Math. Math. Sci., 13 (3) (1990) 497–500] is generalized to locally convex spaces and the new result is applied to extend a result on best approximation. © 2009 Published by Elsevier Ltd

E-mail addresses: nashine_09@rediffmail.com, hemantnashine@gmail.com (H.K. Nashine), mohammad@squ.edu.om (M.S. Khan).

^{0893-9659/\$ –} see front matter 0 2009 Published by Elsevier Ltd doi:10.1016/j.aml.2009.06.025

the seminorm $\max\{p_{\alpha}, p_{\beta}\} \in \{p_{\alpha} : \alpha \in \Delta\}$ for any $\alpha, \beta \in \Delta$. The associated and augmented families of seminorms will be denoted by $\mathcal{A}(\tau)$ and $\mathcal{A}^{*}(\tau)$, respectively. It is well known that given a locally convex space (\mathcal{E}, τ) , there always exists a family $\{p_{\alpha} : \alpha \in \Delta\}$ of seminorms defined of \mathcal{E} such that $\{p_{\alpha} : \alpha \in \Delta\} = \mathcal{A}^{*}(\tau)$ (see [8, pp 203]). A subset \mathcal{M} of \mathcal{E} is τ -bounded if and only if each p_{α} is bounded on \mathcal{M} .

Suppose that \mathcal{M} is a τ -bounded subset of \mathcal{E} . For this set \mathcal{M} , we can select a number $\lambda_{\alpha} > 0$ for each $\alpha \in \Delta$ such that $\mathcal{M} \subset \lambda_{\alpha} \mathcal{U}_{\alpha}$ where $\mathcal{U}_{\alpha} = \{x \in \mathcal{M} : p_{\alpha}(x) \leq 1\}$. Clearly, $\mathcal{B} = \bigcap_{\alpha} \lambda_{\alpha} \mathcal{U}_{\alpha}$ is τ -bounded, τ -closed, absolutely convex and contains \mathcal{M} . The linear span $\mathcal{E}_{\mathcal{B}}$ of \mathcal{B} in \mathcal{E} is $\bigcup_{n=1}^{\infty} n\mathcal{B}$. The Minkowski functional of \mathcal{B} is a norm $\|\cdot\|_{\mathcal{B}}$ on $\mathcal{E}_{\mathcal{B}}$. Thus, $(\mathcal{E}_{\mathcal{B}}, \|\cdot\|_{\mathcal{B}})$ is a normed space with \mathcal{B} as its closed unit ball and $\sup_{\alpha} p_{\alpha}(x/\lambda_{\alpha}) = \|x\|_{\mathcal{B}}$ for each $x \in \mathcal{E}_{\mathcal{B}}$. (for details, see [9,8,10]).

Definition 2.1 ([9]). Let \mathcal{I} and \mathcal{T} be self-maps on \mathcal{M} . The map \mathcal{T} is called

(i) $\mathcal{A}^*(\tau)$ -nonexpansive if for all $x, y \in \mathcal{M}$

 $p_{\alpha}(\mathcal{T}x-\mathcal{T}y)\leq p_{\alpha}(x-y),$

for each $p_{\alpha} \in \mathcal{A}^*(\tau)$.

(ii) $\mathcal{A}^*(\tau)$ - \mathcal{I} -nonexpansive if for all $x, y \in \mathcal{M}$

$$p_{\alpha}(\mathcal{T}x - \mathcal{T}y) \leq p_{\alpha}(\mathcal{I}x - \mathcal{I}y),$$

for each $p_{\alpha} \in \mathcal{A}^*(\tau)$.

For simplicity, we shall call $A^*(\tau)$ -nonexpansive ($A^*(\tau) - I$ -nonexpansive) maps to be nonexpansive (I-nonexpansive).

Definition 2.2 ([11]). A pair of self-mappings $(\mathcal{T}, \mathfrak{l})$ of a locally convex space (\mathcal{E}, τ) is said to be compatible, if $p_{\alpha}(\mathcal{T}\mathfrak{l}x_n - \mathfrak{l}\mathcal{T}x_n) \to 0$, whenever $\{x_n\}$ is a sequence in \mathcal{E} such that $\mathcal{T}x_n, \mathfrak{l}x_n \to t \in \mathcal{E}$.

Every commuting pair of mappings is compatible but the converse is not true in general.

Definition 2.3. Suppose that \mathcal{M} is q-starshaped with $q \in \mathcal{F}(\mathfrak{l})$ and is both \mathcal{T} - and \mathfrak{l} -invariant. Then \mathcal{T} and \mathfrak{l} are called \mathcal{R} -subcommuting [12–14] on \mathcal{M} , if for all $x \in \mathcal{M}$ and for all $p_{\alpha} \in \mathcal{A}^*(\tau)$, there exists a real number $\mathcal{R} > 0$ such that $p_{\alpha}(\mathfrak{lT}x - \mathcal{T}\mathfrak{l}x) \leq (\frac{\mathcal{R}}{k})p_{\alpha}(((1-k)q + k\mathcal{T}x) - \mathfrak{l}x)$ for each $k \in (0, 1)$. If $\mathcal{R} = 1$, then the maps are called 1-subcommuting. The \mathfrak{l} and \mathcal{T} are called \mathcal{R} -subweakly commuting [15] on \mathcal{M} , if for all $x \in \mathcal{M}$ and for all $p_{\alpha} \in \mathcal{A}^*(\tau)$, there exists a real number $\mathcal{R} > 0$ such that $p_{\alpha}(\mathfrak{lT}x - \mathcal{T}\mathfrak{l}x) \leq \mathcal{R}d_{p_{\alpha}}(\mathfrak{l}x, [q, \mathcal{T}x])$, where $[q, x] = (1 - k)q + kx : 0 \leq k \leq 1$.

Remark 2.4. (1) It is obvious that commutativity implies \mathcal{R} -subcommutativity, which in turn implies \mathcal{R} -weakly commutativity [13,14].

(2) It is also well known that commuting maps are \mathcal{R} -subweakly commuting maps and \mathcal{R} -subweakly commuting maps are \mathcal{R} -weakly commuting but not conversely in general (see [15]).

To clear the above remarks, in the following, we have furnished some examples:

Example 2.5. Let $\mathcal{X} = \mathbb{R}$ with norm ||x|| = |x| and $\mathcal{M} = [1, \infty)$. Let $\mathcal{T}, \mathscr{S} : \mathcal{M} \to \mathcal{M}$ be defined by

$$\mathcal{T}x = x^2$$
 and $\delta x = 2x - 1$

for all $x \in \mathcal{M}$. Then \mathcal{T} and \mathscr{S} are \mathcal{R} -weakly commuting with $\mathcal{R} = 2$. However, they are not \mathcal{R} -subcommuting because

$$|\mathcal{T} \delta x - \delta \mathcal{T} x| \le \left(\frac{\mathcal{R}}{k}\right) |(k\mathcal{T} x + (1-k)p) - \delta x|$$

does not hold for x = 2 and $k = \frac{2}{3}$, where $p = 1 \in \mathcal{F}(\delta)$.

Example 2.6. Let $\mathcal{X} = \mathbb{R}$ with norm ||x|| = |x| and $\mathcal{M} = [1, \infty)$. Let $\mathcal{T}, \delta : \mathcal{M} \to \mathcal{M}$ be defined by

$$\mathcal{T}x = 4x - 3$$
 and $\delta x = 2x^2 - 1$

for all $x \in M$. Then M is p-starshaped with $p = 1 \in \mathcal{F}(\delta)$ and is both \mathcal{T} and δ -invariant. Also, $|\mathcal{T} \delta x - \delta \mathcal{T} x| = 24(x-1)^2$. Further,

$$|\mathcal{T}\delta x - \delta \mathcal{T}x| \le \left(\frac{\mathcal{R}}{k}\right) |(k\mathcal{T}x + (1-k)p) - \delta x|$$

for all $x \in \mathcal{M}$, where $\mathcal{R} = 12$ and $p = 1 \in \mathcal{F}(\delta)$. Thus, \mathcal{T} and δ are \mathcal{R} -subcommuting on \mathcal{M} but are not commuting on \mathcal{M} .

Example 2.7. Let $\mathcal{X} = \mathbb{R}^2$ with norm $||(x, y)|| = \max\{|x|, |y|\}$, and let \mathcal{T} and \mathscr{S} be defined by

$$\mathcal{T}(x, y) = (2x - 1, y^3)$$
 and $\mathscr{S}(x, y) = (x^2, y^2)$

for all $(x, y) \in \mathcal{X}$. Then \mathcal{T} and \mathscr{S} are \mathscr{R} -subweakly commuting on $\mathscr{M} = \{(x, y) : x \ge 1, y \ge 1\}$ but they are not commuting on \mathscr{M} .

Definition 2.8. Suppose that \mathcal{M} is *q*-starshaped with $q \in \mathcal{F}(\mathfrak{l})$. Define $\bigwedge_q(\mathfrak{l}, \mathcal{T}) = \{\bigwedge(\mathfrak{l}, \mathcal{T}_k) : 0 \le k \le 1\}$ where $\mathcal{T}_k x = (1-k)q + k\mathcal{T}x$ and $\bigwedge(\mathfrak{l}, \mathcal{T}_k) = \{\{x_n\} \subset \mathcal{M} : \lim_n \mathfrak{l}x_n = \lim_n \mathcal{T}_k x_n = t \in \mathcal{M} \Rightarrow \lim_n p_\alpha(\mathfrak{l}\mathcal{T}_k x_n - \mathcal{T}_k \mathfrak{l}x_n) = 0\}$, for all sequences $\{x_n\} \in \bigwedge_\alpha(\mathfrak{l}, \mathcal{T})$. Then \mathfrak{l} and \mathcal{T} are called subcompatible [16,17] if

$$\lim_{n} p_{\alpha} (\mathcal{IT} x_{n} - \mathcal{T} \mathcal{I} x_{n}) = 0$$

for all sequences $x_n \in \bigwedge_a (\mathfrak{1}, \mathcal{T})$.

Obviously, subcompatible maps are compatible but the converse does not hold, in general, as the following example shows.

Example 2.9. Let $\mathcal{X} = \mathbb{R}$ with usual norm and $\mathcal{M} = [1, \infty)$. Let $\mathcal{I}(x) = 2x - 1$ and $\mathcal{T}(x) = x^2$, for all $x \in \mathcal{M}$. Let q = 1. Then \mathcal{M} is *q*-starshaped with $\mathcal{I}q = q$. Note that \mathcal{I} and \mathcal{T} are compatible. For any sequence $\{x_n\}$ in \mathcal{M} with $\lim_n x_n = 2$, we have, $\lim_n \mathcal{I}x_n = \lim_n \mathcal{T}_{\frac{2}{3}}x_n = 3 \in \mathcal{M} \Rightarrow \lim_n ||\mathcal{I}\mathcal{T}_{\frac{2}{3}}x_n - \mathcal{T}_{\frac{2}{3}}\mathcal{I}x_n|| = 0$. However, $\lim_n ||\mathcal{I}\mathcal{T}x_n - \mathcal{T}\mathcal{I}x_n|| \neq 0$. Thus \mathcal{I} and \mathcal{T} are not subcompatible maps.

Note that \mathcal{R} -subweakly commuting and \mathcal{R} -subcommuting maps are subcompatible. The following simple example reveals that the converse is not true, in general.

Example 2.10. Let $\mathcal{X} = \mathbb{R}$ with usual norm and $\mathcal{M} = [0, \infty)$. Let $\mathcal{I}(x) = \frac{x}{2}$ if $0 \le x < 1$ and $\mathcal{I}x = x$ if $x \ge 1$, and $\mathcal{T}(x) = \frac{1}{2}$ if $0 \le x < 1$ and $\mathcal{T}x = x^2$ if $x \ge 1$. Then \mathcal{M} is 1-starshaped with $\mathcal{I}1 = 1$ and $\bigwedge_q(\mathcal{I}, \mathcal{T}) = \{\{x_n\} : 1 \le x_n < \infty\}$. Note that \mathcal{I} and \mathcal{T} are subcompatible but not \mathcal{R} -weakly commuting for all $\mathcal{R} > 0$. Thus \mathcal{I} and \mathcal{T} are neither \mathcal{R} -subweakly commuting nor \mathcal{R} -subcommuting maps.

Definition 2.11 ([9]). Let $x_0 \in \mathcal{E}$ and $\mathcal{M} \subseteq \mathcal{E}$. Then for $0 < a \leq 1$, we define the set \mathcal{D}_a of best (\mathcal{M}, a) -approximant to x_0 as follows:

$$\mathcal{D}_a = \{ y \in \mathcal{M} : ap_{\alpha}(y - x_0) = d_{p_{\alpha}}(x_0, \mathcal{M}), \text{ for all } p_{\alpha} \in \mathcal{A}^*(\tau) \}$$

where

 $d_{p_{\alpha}}(x_0, \mathcal{M}) = \inf\{p_{\alpha}(x_0 - z) : z \in \mathcal{M}\}.$

For a = 1, definition reduces to the set \mathcal{D} of best \mathcal{M} -approximant to x_0 .

Definition 2.12. The map $\mathcal{T} : \mathcal{M} \to \mathcal{E}$ is said to be demiclosed at 0 if for every net $\{x_n\}$ in \mathcal{M} converging weakly to x and $\{\mathcal{T}x_n\}$ converging strongly to 0, we have $\mathcal{T}x = 0$.

Throughout, this paper $\mathcal{F}(\mathcal{T})$ (resp. $\mathcal{F}(\mathfrak{L})$) denotes the fixed point set of mapping \mathcal{T} (resp. (\mathfrak{L})).

3. Main result

To prove the main result, a lemma is presented below:

Lemma 3.1. Let \mathcal{T} and \mathfrak{l} be compatible self-maps of a τ -bounded subset \mathcal{M} of a Hausdorff locally convex space (\mathcal{E}, τ) . Then \mathcal{T} and \mathfrak{l} be compatible on \mathcal{M} with respect to $\|\cdot\|_{\mathcal{B}}$.

Proof. By hypothesis for each $p_{\alpha} \in \mathcal{A}^*(\tau)$,

 $p_{\alpha}(\mathcal{T}Ix_n - I\mathcal{T}x_n) \rightarrow 0,$

whenever $\{x_n\}$ is a sequence in \mathcal{M} such that

$$p_{\alpha}(\mathcal{T}x_n-t) \to 0, \qquad p_{\alpha}(\mathcal{I}x_n-t) \to 0$$

for some $t \in \mathcal{M}$.

Taking supremum on both sides,

$$\sup_{\alpha} p_{\alpha} \left(\frac{\mathcal{T} l x_n - l \mathcal{T} x_n}{\lambda_{\alpha}} \right) \to 0$$

i.e.,

$$\|\mathcal{T}Ix_n - I\mathcal{T}x_n\|_{\mathcal{B}} \to 0$$

whenever $\{x_n\}$ is a sequence in \mathcal{M} such that

$$\sup_{\alpha} p_{\alpha}\left(\frac{\mathcal{T}x_n-t}{\lambda_{\alpha}}\right) \to 0, \qquad \sup_{\alpha} p_{\alpha}\left(\frac{\mathcal{I}x_n-t}{\lambda_{\alpha}}\right) \to 0,$$

(3.1)

i.e.,

$$\|\mathcal{T}x_n - t\|_{\mathcal{B}} \to 0, \qquad \|\mathcal{I}x_n - t\|_{\mathcal{B}} \to 0. \quad \Box$$

A technique of Tarafdar [10] to obtain the following common fixed point theorem which generalizes Theorem 1.1.

Theorem 3.2. Let \mathcal{M} be a nonempty τ -bounded, τ -sequentially complete and convex subset of a Hausdorff locally convex space (\mathcal{E}, τ) . Let \mathcal{T} and \mathfrak{l} be compatible self-maps of \mathcal{M} such that $\mathcal{T}(\mathcal{K}) \subseteq \mathfrak{l}(\mathcal{K})$, \mathfrak{l} is linear and nonexpansive, and satisfying

$$p_{\alpha}(\mathcal{T}x - \mathcal{T}y) \le ap_{\alpha}(\mathcal{I}x - \mathcal{I}y) + (1 - a) \max\{p_{\alpha}(\mathcal{T}x - \mathcal{I}x), p_{\alpha}(\mathcal{T}y - \mathcal{I}y)\}$$
(3.2)

for all $x, y \in \mathcal{M}$ and $p_{\alpha} \in \mathcal{A}^*(\tau)$, and for some $a \in (0, 1)$, then \mathcal{T} and \mathfrak{l} have a unique common fixed point.

Proof. Since the norm topology on $\mathcal{E}_{\mathcal{B}}$ has a base of neighbourhoods of zero consisting of τ -closed sets and \mathcal{M} is τ -sequentially complete, therefore, \mathcal{M} is a $\|\cdot\|_{\mathcal{B}}$ -sequentially complete subset of $(\mathcal{E}_{\mathcal{B}}, \|\cdot\|_{\mathcal{B}})$ (Theorem 1.2, [10]). By Lemma 3.1, \mathcal{T} and \mathfrak{L} are $\|\cdot\|_{\mathcal{B}}$ -compatible maps of \mathcal{M} . From (3.2), we obtain for $x, y \in \mathcal{M}$,

$$\sup_{\alpha} p_{\alpha}\left(\frac{\mathcal{T}x - \mathcal{T}y}{\lambda_{\alpha}}\right) \leq a \sup_{\alpha} p_{\alpha}\left(\frac{\mathfrak{I}x - \mathfrak{I}y}{\lambda_{\alpha}}\right) + (1 - a) \max\left\{\sup_{\alpha} p_{\alpha}\left(\frac{\mathcal{T}x - \mathfrak{I}x}{\lambda_{\alpha}}\right), \sup_{\alpha} p_{\alpha}\left(\frac{\mathcal{T}y - \mathfrak{I}y}{\lambda_{\alpha}}\right)\right\}.$$

Thus

$$\|\mathcal{T}x - \mathcal{T}y\|_{\mathscr{B}} \le a\|\mathcal{I}x - \mathcal{I}y\|_{\mathscr{B}} + (1-a)\max\{\|\mathcal{T}x - \mathcal{I}x\|_{\mathscr{B}}, \|\mathcal{T}y - \mathcal{I}y\|_{\mathscr{B}}\}.$$
(3.3)

Note that, if \mathfrak{l} is nonexpansive on a τ -bounded, τ -sequentially complete subset \mathcal{M} of \mathcal{E} , then \mathfrak{l} is also nonexpansive with respect to $\|\cdot\|_{\mathcal{B}}$ and hence $\|\cdot\|_{\mathcal{B}}$ -continuous [8]. A comparison of our hypothesis with that of Theorem 1.1 tells that we can apply Theorem 1.1 to \mathcal{M} as a subset of $(\mathcal{E}_{\mathcal{B}}, \|\cdot\|_{\mathcal{B}})$ to conclude that there exists a unique $w \in \mathcal{M}$ such that $w = \mathcal{T}w = \mathfrak{l}w$. \Box

Example 3.3. Let $\mathcal{X} = \mathbb{R}$ with usual norm and $\mathcal{M} = [0, 1]$. Let $\mathcal{T}(x) = 1$ for $0 \le x \le \frac{1}{2}$, and $\mathcal{T}(x) = 0$ for $\frac{1}{2} < x \le 1$, $\mathfrak{l}(x) = 0$ for $0 < x \le \frac{1}{2}$, and $\mathfrak{l}(x) = 1$ for $\frac{1}{2} < x \le 1$. Then all the assumptions of Theorem 3.2 are satisfied, but \mathcal{T} and \mathfrak{l} have no common fixed point.

Theorem 3.4. Let \mathcal{M} be a nonempty τ -bounded, τ -sequentially complete and convex subset of a Hausdorff locally convex space (\mathcal{E}, τ) . Let \mathcal{T} and \mathfrak{l} be self-maps of \mathcal{M} such that \mathcal{T} and \mathfrak{l} are subcompatible. Suppose that \mathcal{T} and \mathfrak{l} satisfy (3.2), \mathfrak{l} is linear and nonexpansive, $\mathfrak{l}(\mathcal{M}) = \mathcal{M}, q \in \mathcal{F}(\mathfrak{l})$, then \mathcal{T} and \mathfrak{l} have a common fixed point provided one of the following conditions holds:

(i) \mathcal{M} is τ -sequentially compact and \mathcal{T} is continuous;

(ii) \mathcal{T} is a compact map;

(iii) \mathcal{M} is weakly compact in (\mathcal{E}, τ) , \mathcal{I} is weakly continuous and $\mathcal{I} - \mathcal{T}$ is demiclosed at 0.

Proof. Choose a monotonically nondecreasing sequence $\{k_n\}$ of real numbers such that $0 < k_n < 1$ and $\limsup k_n = 1$. For each $n \in \mathbb{N}$, define $\mathcal{T}_n : \mathcal{M} \to \mathcal{M}$ as follows:

$$\mathcal{T}_n \mathbf{x} = k_n \mathcal{T} \mathbf{x} + (1 - k_n) q. \tag{3.4}$$

Obviously, for each n, T_n maps M into itself, since M is convex.

As $\boldsymbol{\mathcal{I}}$ is linear, we can have

$$\mathcal{T}_m \mathfrak{l} x_n = k_n \mathcal{T} \mathfrak{l} x_n + (1 - k_n) q$$

and

 $\mathcal{IT}_m x = k_n \mathcal{IT} x_n + (1 - k_n) \mathcal{Iq}.$

The subcompatibility of \mathcal{I} and \mathcal{T} and $q \in \mathcal{F}(\mathcal{I})$ implies that

$$0 \leq \lim_{n} p_{\alpha}(\mathcal{T}_{n} \mathfrak{l} x_{m} - \mathfrak{l} \mathcal{T}_{n} x_{m})$$

$$\leq \lim_{m} k_{n} p_{\alpha}(\mathcal{T} \mathfrak{l} x_{m} - \mathfrak{l} \mathcal{T} x_{m}) + \lim_{m} (1 - k_{n}) p_{\alpha}(q - \mathfrak{l} q)$$

$$= 0.$$

for any $\{x_m\} \subset \mathcal{M}$ with $\lim_m \mathcal{T}_n x_m = \lim_m \mathcal{I} x_m = t \in \mathcal{M}$.

Hence $\{\mathcal{T}_n\}$ and \mathfrak{l} are compatible for each n and $x_n \in \mathcal{M}$ and $\mathcal{T}_n(\mathcal{M}) \subseteq \mathcal{M} = \mathfrak{l}(\mathcal{M})$, \mathfrak{l} is linear and $q \in \mathcal{F}(\mathfrak{l})$. Therefore $\mathcal{T}_n(\mathcal{M}) \subseteq \mathfrak{l}(\mathcal{M})$.

124

For all $x, y \in \mathcal{M}, p_{\alpha} \in \mathcal{A}^{*}(\tau)$ and for all $j \geq n$, (*n* fixed), we obtain from (3.2) and (3.4) that

$$p_{\alpha}(\mathcal{T}_{n}x - \mathcal{T}_{n}y) = k_{n}p_{\alpha}(\mathcal{T}x - \mathcal{T}y) \leq k_{j}p_{\alpha}(\mathcal{T}x - \mathcal{T}y)$$

$$\leq p_{\alpha}(\mathcal{T}x - \mathcal{T}y)$$

$$\leq ap_{\alpha}(\mathcal{I}x - \mathcal{I}y) + (1 - a) \max\{p_{\alpha}(\mathcal{T}x - \mathcal{I}x), p_{\alpha}(\mathcal{T}y - \mathcal{I}y)\}$$

$$\leq ap_{\alpha}(\mathcal{I}x - \mathcal{I}y) + (1 - a) \max\{p_{\alpha}(\mathcal{T}x - \mathcal{T}_{n}x) + p_{\alpha}(\mathcal{T}_{n}x - \mathcal{I}x), p_{\alpha}(\mathcal{T}y - \mathcal{T}_{n}y) + p_{\alpha}(\mathcal{T}_{n}y - \mathcal{I}y)\}$$

$$\leq ap_{\alpha}(\mathcal{I}x - \mathcal{I}y) + (1 - a) \max\{(1 - k_{n})p_{\alpha}(\mathcal{T}x - q) + p_{\alpha}(\mathcal{T}_{n}x - \mathcal{I}x), (1 - k_{n})p_{\alpha}(\mathcal{T}y - q) + p_{\alpha}(\mathcal{T}_{n}y - \mathcal{I}y)\}.$$

Hence for all $j \ge n$, we have

$$p_{\alpha}(\mathcal{T}_{n}x - \mathcal{T}_{n}y) \leq ap_{\alpha}(\mathcal{I}x - \mathcal{I}y) + (1 - a) \max\{(1 - k_{j})p_{\alpha}(\mathcal{T}x - q) + p_{\alpha}(\mathcal{T}_{n}x - \mathcal{I}x), (1 - k_{j})p_{\alpha}(\mathcal{T}y - q) + p_{\alpha}(\mathcal{T}_{n}y - \mathcal{I}y)\}.$$
(3.5)

As $\lim k_i = 1$, from (3.5), for every $n \in \mathbb{N}$, we have

$$p_{\alpha}(\mathcal{T}_{n}x - \mathcal{T}_{n}y) = \lim_{j} p_{\alpha}(\mathcal{T}_{n}x - \mathcal{T}_{n}y)$$

$$\leq \lim_{j} \{ap_{\alpha}(\mathcal{I}x - \mathcal{I}y) + (1 - a) \max\{(1 - k_{j})p_{\alpha}(\mathcal{T}x - q)$$

$$+ p_{\alpha}(\mathcal{T}_{n}x - \mathcal{I}x), (1 - k_{j})p_{\alpha}(\mathcal{T}y - q) + p_{\alpha}(\mathcal{T}_{n}y - \mathcal{I}y)\}\}.$$
(3.6)

This implies that for every $n \in \mathbb{N}$,

$$p_{\alpha}(\mathcal{T}_n x - \mathcal{T}_n y) \le a p_{\alpha}(\mathcal{I} x - \mathcal{I} y) + (1 - a) \max\{p_{\alpha}(\mathcal{T}_n x - \mathcal{I} x), p_{\alpha}(\mathcal{T}_n y - \mathcal{I} y)\},\tag{3.7}$$

for all $x, y \in \mathcal{M}$ and for all $p_{\alpha} \in \mathcal{A}^*(\tau)$.

Moreover, \mathfrak{L} being nonexpansive on \mathcal{M} , implies that \mathfrak{L} is $\|\cdot\|_{\mathscr{B}}$ -nonexpansive and, hence, $\|\cdot\|_{\mathscr{B}}$ -continuous. Since the norm topology on $\mathscr{E}_{\mathscr{B}}$ has a base of neighbourhoods of zero consisting of τ -closed sets and \mathcal{M} is τ -sequentially complete, therefore, \mathcal{M} is a $\|\cdot\|_{\mathscr{B}}$ -sequentially complete subset of $(\mathscr{E}_{\mathscr{B}}, \|\cdot\|_{\mathscr{B}})$ (see proof in [10, Theorem 1.2]). Thus from Theorem 3.2, for every $n \in \mathbb{N}$, \mathcal{T}_n and \mathfrak{L} have unique common fixed point x_n in \mathcal{M} , i.e.,

$$x_n = \mathcal{T}_n x_n = \mathcal{I} x_n, \tag{3.8}$$

for each $n \in \mathbb{N}$.

(i) As \mathcal{M} is τ -sequentially compact and $\{x_n\}$ is a sequence in \mathcal{M} , so $\{x_n\}$ has a convergent subsequence $\{x_m\}$ such that $x_m \to y \in \mathcal{M}$. As \mathcal{I} and \mathcal{T} are continuous and

$$x_m = \pounds x_m = \mathcal{T}_m x_m = k_m \mathcal{T} x_m + (1 - k_m) q,$$

so it follows that $y = \mathcal{T}y = \mathcal{I}y$.

(ii) As \mathcal{T} is compact and $\{x_n\}$ is bounded, so $\{\mathcal{T}x_n\}$ has a subsequence $\{\mathcal{T}x_m\}$ such that $\{\mathcal{T}x_m\} \to z \in \mathcal{M}$. Now we have

$$x_m = \mathcal{T}_m x_m = k_m \mathcal{T} x_m + (1 - k_m) q.$$

Proceeding to the limit as $m \to \infty$ and using the continuity of \mathfrak{l} and \mathfrak{T} , we have $\mathfrak{l} z = z = \mathcal{T} z$.

(iii) The sequence $\{x_n\}$ has a subsequence $\{x_m\}$ converges to $u \in \mathcal{M}$. Since \mathfrak{L} is weakly continuous and so as in (i), we have $\mathfrak{L} u = u$. Now,

$$x_m = \pounds x_m = \mathcal{T}_m x_m = k_m \mathcal{T} x_m + (1 - k_m)q$$

implies that

$$\mathfrak{l} x_m - \mathfrak{T} x_m = (1 - k_m)[q - \mathfrak{T} x_m] \to 0$$

as $m \to \infty$. The demiclosedness of l - T at 0 implies that (l - T)u = 0. Hence lu = u = Tu. This completes the proof. \Box

Example 3.5. Let $\mathcal{X} = \mathbb{R}^2$ and $\mathcal{M} = \{0, 1, 1 - \frac{1}{n-1} : n \in \mathbb{N}\}$ be endowed with usual metric. Define $\mathcal{T}1 = 0$ and $\mathcal{T}0 = \mathcal{T}(1 - \frac{1}{n-1}) = 1$ for all $n \in \mathbb{N}$. Clearly, \mathcal{M} is not convex. Let $\mathfrak{I}x = x$ for all $x \in \mathcal{M}$. Now \mathcal{T} and \mathfrak{I} satisfy (3.2) together with all other conditions of Theorem 3.4(i) except the condition that \mathcal{T} is continuous. Note that $\mathcal{F}(\mathcal{T}) \cap \mathcal{F}(\mathfrak{I}) = \emptyset$.

Example 3.6. Let $\mathcal{X} = \mathbb{R}^2$ be endowed with the norm defined by $||(a, b)|| = |a| + |b|, (a, b) \in \mathbb{R}^2$.

(1) Let $\mathcal{M} = \mathcal{A} \cup \mathcal{B}$, where $\mathcal{A} = \{(a, b) \in \mathcal{X} : 0 \le a \le 1, 0 \le b \le 4\}$ and $\mathcal{B} = \{(a, b) \in \mathcal{X} : 2 \le a \le 3, 0 \le b \le 4\}$. Define $\mathcal{T} : \mathcal{M} \to \mathcal{M}$ by

$$\mathcal{T}(a,b) = \begin{cases} (2,b) & \text{if } (a,b) \in \mathcal{A} \\ (1,b) & \text{if } (a,b) \in \mathcal{B} \end{cases}$$

and l(x) = x for all $x \in \mathcal{M}$. All the conditions of Theorem 3.4(ii) are satisfied except that \mathcal{M} is not convex. Note that $\mathcal{F}(\mathcal{T}) \cap \mathcal{F}(l) = \emptyset$.

(2) $\mathcal{M} = \{(a, b) \in \mathcal{X} : 2 \le a < \infty, 0 \le b \le 1\}$ and $\mathcal{T} : \mathcal{M} \to \mathcal{M}$ is defined by

 $\mathcal{T}(a,b) = \{(a+1,b) : (a,b) \in \mathcal{M}\}.$

Define $\mathfrak{l}(x) = x$ for all $x \in \mathcal{M}$. All the conditions of Theorem 3.4(ii) are satisfied except that $\mathcal{T}(\mathcal{M})$ is compact. Note $\mathcal{F}(\mathcal{T}) \cap \mathcal{F}(\mathfrak{l}) = \emptyset$. Notice that \mathcal{M} , being convex and \mathcal{T} -invariant.

(3) If $\mathcal{M} = \{(a, b) \in \mathfrak{X} : 0 \le a < 1, 0 \le b \le 1\}$ and $\mathcal{T} : \mathcal{M} \to \mathcal{M}$ is defined by

$$\mathcal{T}(a,b) = \left(\frac{a}{2}, \frac{b}{3}\right)$$
 and $\mathcal{I}(x) = x$ for all $x \in \mathcal{M}$.

All of the conditions of Theorem 3.4(ii) are satisfied except the fact that \mathcal{M} is closed. However $\mathcal{F}(\mathcal{T}) \cap \mathcal{F}(\mathfrak{L}) = \emptyset$.

Example 3.7. Let $\mathcal{M} = \mathbb{R}^2$ be endowed with the norm defined by ||(a, b)|| = |a| + |b|, $(a, b) \in \mathbb{R}^2$. Define \mathcal{T} and \mathfrak{I} on \mathcal{M} as follows:

$$\mathcal{T}(x, y) = \left(\frac{1}{2}(x-2), \frac{1}{2}(x^2+y-4)\right),$$
$$\mathcal{I}(x, y) = \left(\frac{1}{2}(x-2), (x^2+y-4)\right).$$

Obviously, \mathcal{T} is 1-nonexpansive but 1 is not linear. Moreover, $\mathcal{F}(\mathcal{T}) = \{-2, 0\}, \mathcal{F}(1) = \{(-2, y) : y \in \mathbb{R}\}$ and the set of coincidence points of 1 and \mathcal{T} , that is $\mathcal{C}(1, \mathcal{T}) = \{(x, y) : y = 4 - x^2, x \in \mathbb{R}\}$. Thus $(\mathcal{T}, 1)$ is a continuous, which is not compatible pair, and (-2, 0) is a common fixed point of 1 and \mathcal{T} .

An application of Theorem 3.4, we prove the following more general result in best approximation theory.

Theorem 3.8. Let \mathcal{T} and \mathfrak{l} be self-maps of a Hausdorff locally convex space (\mathfrak{E}, τ) and \mathcal{M} a subset of \mathfrak{E} such that $\mathcal{T}(\partial \mathcal{M}) \subseteq \mathcal{M}$, where $\partial \mathcal{M}$ stands for the boundary of \mathcal{M} and $x_0 \in \mathcal{F}(\mathcal{T}) \cap \mathcal{F}(\mathfrak{l})$. Suppose that \mathfrak{l} is nonexpansive and linear on \mathcal{D}_a . Further, suppose \mathcal{T} and \mathfrak{l} satisfy (3.2) for all $x, y \in \mathcal{D}'_a = \mathcal{D}_a \cup \{x_0\}$ and pair $(\mathcal{T}, \mathfrak{l})$ are subcompatible on \mathcal{D}_a . If \mathcal{D}_a is nonempty convex and $\mathfrak{l}(\mathcal{D}_a) = \mathcal{D}_a$, then \mathcal{T} and \mathfrak{l} have a common fixed point in \mathcal{D}_a provided one of the following conditions holds:

- (i) \mathcal{D}_a is τ -sequentially compact;
- (ii) \mathcal{T} is a compact map;
- (iii) \mathcal{D}_a is weakly compact in (\mathcal{E}, τ) , \mathcal{I} is weakly continuous and $\mathcal{I} \mathcal{T}$ is demiclosed at 0.

Proof. First, we show that \mathcal{T} is self-maps on \mathcal{D}_a , i.e., $\mathcal{T} : \mathcal{D}_a \to \mathcal{D}_a$. Let $y \in \mathcal{D}_a$, then $\mathcal{I}y \in \mathcal{D}_a$, since $\mathcal{I}(\mathcal{D}_a) = \mathcal{D}_a$. Also, if $y \in \partial \mathcal{M}$, then $\mathcal{T}y \in \mathcal{M}$, since $\mathcal{T}(\partial \mathcal{M}) \subseteq \mathcal{M}$. Now since $\mathcal{T}x_0 = x_0 = \mathcal{I}x_0$, so for each $p_\alpha \in \mathcal{A}^*(\tau)$, we have from (3.2)

$$p_{\alpha}(\mathcal{T}y - x_{0}) = p_{\alpha}(\mathcal{T}y - \mathcal{T}x_{0})$$

$$\leq ap_{\alpha}(\mathcal{I}y - \mathcal{I}x_{0}) + (1 - a) \max\{p_{\alpha}(\mathcal{T}y - \mathcal{I}y), p_{\alpha}(\mathcal{T}x_{0} - \mathcal{I}x_{0})\}$$

$$\leq ap_{\alpha}(\mathcal{I}y - x_{0}) + (1 - a) \max\{p_{\alpha}(\mathcal{T}y - x_{0}) + p_{\alpha}(\mathcal{I}y - x_{0})\}$$

$$= p_{\alpha}(\mathcal{I}y - x_{0}) + (1 - a)p_{\alpha}(\mathcal{T}y - x_{0}).$$

So, we have

$$ap_{\alpha}(\mathcal{T}y-\mathcal{T}x_0)\leq p_{\alpha}(\mathcal{I}y-x_0).$$

Now, $\mathcal{T}y \in \mathcal{M}$ and $\mathfrak{l}y \in \mathcal{D}_a$, this implies that $\mathcal{T}y$ is also closest to x_0 , so $\mathcal{T}y \in \mathcal{D}_a$. Consequently \mathcal{T} and \mathfrak{l} are self-maps on \mathcal{D}_a . The conditions of Theorem 3.4((i)–(iii)) are satisfied and, hence, there exists a $\nu \in \mathcal{D}_a$ such that $\mathcal{T}\nu = \nu = \mathfrak{l}\nu$. This completes the proof. \Box

Acknowledgments

The authors are thankful to the referees for their helpful corrections, comments and valuable suggestions in preparation of the paper.

References

- [1] G. Jungck, On a fixed point theorem of fisher and sessa, Internat. J. Math. Math. Sci. 13 (3) (1990) 497-500.
- [2] B. Brosowski, Fix punktsatze in der approximations theorie, Mathematica 11 (1969) 165–220.
- [3] G. Meinardus, Invarianze bei Linearen Approximationen, Arch. Ration. Mech. Anal. 14 (1963) 301–303.
- [4] S.A. Sahab, M.S. Khan, S. Sessa, A result in best approximation theory, J. Approx. Theory 55 (1988) 349–351.
- [5] S.P. Singh, An application of a fixed point theorem to approximation theory, J. Approx. Theory 25 (1979) 89–90.
- [6] S.P. Singh, Application of fixed point theorems to approximation theory, in: V. Lakshmikantham (Ed.), Applied Nonlinear Analysis, Academic Press, New York, 1979.

- [7] S.P. Singh, Some results on best approximation in locally convex spaces, J. Approx. Theory 28 (1980) 329-332.
- [9] G. Köthe, Topological Vector Spaces I, Springer-Verlag, Berlin, 1969.
 [9] A.R. Khan, N. Hussain, An extension of a theorem of Sahab, Khan and Sessa, Internat. J. Math. Math. Sci. 27 (11) (2001) 701–706.
- [10] E. Tarafdar, Some fixed point theorems on locally convex linear topological spaces, Bull. Austral. Math. Soc. 13 (1975) 241-254.
- [11] G. Jungck, Compatible mappings and common fixed points, Internat. J. Math. Math. Sci. 9 (4) (1986) 771–779.
- [11] N. Shahzad, A result on best approximation, Corrections Tamkang J. Math. 29 (3) (1998) 223-226; Tamkang J. Math. 30 (1999) 165.
 [13] N. Shahzad, A result on best approximation, Corrections Tamkang J. Math. 29 (3) (1998) 223-226; Tamkang J. Math. 30 (1999) 165.
 [14] N. Shahzad, On *R*-subcommuting maps and best approximations, Rad. Math. 10 (2001) 77-83.

- [15] N. Shahzad, Invariant approximations and R-subweakly commuting maps, J. Math. Anal. Appl. 257 (2001) 39-45.
- [16] Liu Li Shan, On common fixed points of single valued mappings and setvalued mappings, J. Qufu Norm. Univ. Nat. Sci. Ed. 18 (1) (1992) 6-10.
- [17] Liu Li Shan, Common fixed point theorems for (sub) compatible and set valued generalized nonexpansive mappings in convex metric spaces, Appl. Math. Mech. 14 (7) (1993) 685–692.