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Abstract. Most of the existing modelling techniques for the speaker recog-

nition task make an implicit assumption of sufficient data for speaker modelling

and hence may lead to poor modelling under limited data condition. The present

work gives an experimental evaluation of the modelling techniques like Crisp

Vector Quantization (CVQ), Fuzzy Vector Quantization (FVQ), Self-Organizing

Map (SOM), Learning Vector Quantization (LVQ), and Gaussian Mixture Model

(GMM) classifiers. An experimental evaluation of the most widely used Gaussian

Mixture Model–Universal Background Model (GMM–UBM) is also made. The

experimental knowledge is then used to select a subset of classifiers for obtaining

the combined classifiers. It is proposed that the combined LVQ and GMM–UBM

classifier provides relatively better performance compared to all the individual as

well as combined classifiers.

Keywords. Speaker recognition; limited data; CVQ; FVQ; SOM; LVQ; GMM;
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1. Introduction

The objective of speaker recognition is to recognize the speaker from the speech signal (Atal

1976). State-of-the-art speaker recognition systems assume the availability of sufficient data

for speaker modelling and testing. However, there are certain applications in practice where

the available speech data is limited. For instance, speaker recognition in non-cooperative

scenario and speaker tracking and segmentation. In the present work, sufficient data is used to

denote the case of having speech data of a few minutes (more than one minute). Alternatively,

limited data denotes the case of having speech data of a few seconds (less than 15 seconds)

(Angkititrakul & Hansen 2007). The significance of the amount of speech data for speaker

modelling and testing has been studied earlier (Prasanna et al 2006). This study experimentally

demonstrates that when the speech data for training is less, then the performance is poor

due to poor speaker modelling and also speech data is insufficient to make reliable decision

during testing. Therefore, the objective of speaker recognition under limited data condition

is to obtain as good and reliable performance as possible.
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Speaker recognition can be classified as speaker verification and speaker identifica-

tion. Speaker verification deals with validating the identity claim of the speaker. Speaker

identification deals with identifying the most likely speaker of the test speech data.

Speaker identification can be further classified into closed-set or open-set modes. Closed-

set speaker identification refers to the case where the speaker is a member of the set of N

enrolled speakers. In open-set speaker identification, the speaker may also be from outside

the set of N enrolled speakers. Speaker recognition can be operated in either text-dependent

or text-independent mode. In text-dependent mode, speech for the same text is used for both

training and testing. No such restrictions are imposed in text-independent mode. The present

work focuses on text-independent, closed-set, speaker identification.

Speaker recognition system may be considered to consists of four stages. They include:

speech analysis, feature extraction, speaker modelling and speaker testing. Speech analysis

involves analysing the speech signal using suitable frame size and shift for the feature extrac-

tion. Feature extraction involves extracting speaker-specific features from the speech signal at

reduced data rate. The extracted features are further combined using modelling techniques to

generate speaker models. The speaker models are then tested using the features extracted from

the test speech signal. The improvement in the performance can be achieved by employing

new or improved techniques in one or more of these stages. Earlier we have demonstrated that

the Variable Frame Size and Rate (VFSR) analysis under limited data condition improved per-

formance over the existing Fixed Frame Size and Rate (FFSR) analysis (Jayanna & Prasanna

2006). Similarly, it may be possible to develop new modelling techniques suitable for limited

data condition and use them instead of existing modelling techniques. This may also improve

the speaker recognition performance. Hence the motivation for the present work.

State-of-the-art speaker recognition systems employ various modelling techniques like

Crisp Vector Quantization (CVQ), Fuzzy Vector Quantization (FVQ), Self-Organizing Map

(SOM), Learning Vector Quantization (LVQ) and Gaussian Mixture Model (GMM). The suc-

cess of each of the modelling techniques depends on the principle employed for clustering.

Among theses modelling techniques, the widely used one is GMM (Reynolds 1995). The

success of GMM is due to the availability of sufficient data for speaker modelling (Angkiti-

trakul & Hansen 2007). Recently, some attempts have been made to recognize the speakers

under limited data condition using the concept of Gaussian Mixture Model–Universal Back-

ground Model (GMM–UBM) (Angkititrakul & Hansen 2007) (Prakash & Hansen 2007).

In another attempt the authors have proposed that by selecting those feature vectors which

provide good speaker discrimination, it is possible to identify speakers under limited data

(Kwon & Narayanan 2007).

In this work, first we evaluate the performance of various modelling techniques and then

combine some of them to improve the performance. The modelling techniques may offer

different information about the patterns to be classified due to the difference in the work-

ing principle employed and hence could be used to improve the performance in a combined

modelling system (Kittler et al 1998). This is the motivation for combining the different

models. For instance, in case of CVQ the feature vectors are clustered into non-overlapping

clusters, whereas in case of FVQ, the feature vectors are clustered into overlapping clus-

ters. Thus since the principle of clustering is different, it may be possible to combine these

modelling techniques to obtain a combined modelling technique. The rest of the paper is orga-

nized as follows: Speech database details for the study are discussed in section 2. In section 3,

the speaker recognition studies using different modelling techniques are discussed. Section 4

presents the proposed combined modelling techniques for speaker recognition. Summary of

the present work and the possible future directions are mentioned in section 5.
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2. Speech database

In order to evaluate the performance of the speaker recognition system, the YOHO (Campbell

Jr. 1995) and the TIMIT (Zue & Glass 1990) databases are used. The YOHO database consists

of speech data from 138 speakers. The speech data is sampled at 8 kHz and stored with

16 bits/sample resolution. The training data for each speaker includes 96 speech files, each of

about 3 sec duration. The testing data for each speaker includes 40 speech files each of about

3 sec duration. Since the original database is not meant for limited data condition, we have

taken one, two, four and eight speech files of each speaker to create modified database.

The TIMIT database consists of speech data from 462 speakers in the training set and 168

speakers in the test set. The speech data is collected over microphone, sampled at 16 kHz and

stored with 16 bits/sample resolution. Since most of the speech information is present up to

4 kHz, the speech database is resampled to 8 kHz. The speech data for each speaker includes

10 speech files, each of about 3 sec duration. In this work, we have used one set of first 30

speakers and another set of first 138 speakers from the test set of the TIMIT database. The

first 5 speech files of each speaker are used for training and the remaining for testing. This

database is also not meant for limited data condition and hence we have taken one, two, four

and five speech files of each speaker to create modified database.

3. Speaker recognition studies

In this work, the initial studies are conducted using the training data and test data of one

file (3 sec) from each of the first 30 speakers of the YOHO database. These studies are later

extended to the data of all the 138 speakers from the YOHO database and to the data of first

30 and first 138 speakers from the test set of the TIMIT database. In all our experiments,

speech is analyzed in frames of 20 ms with shifts of 10 ms. For each frame, excluding c0, 13

dimensional Mel-Frequency Cepstral Coefficients (MFCC) are extracted as feature vectors

(Deller et al 1993). Cepstral Mean Subtraction (CMS) is applied to remove the linear channel

effect. Silence and low energy speech frames are removed using an energy-based frame

selection technique (Deller et al 1993). The threshold used for selection of the speech frames

is 0·1 times the average frame energy. The extracted features are used for modelling the

speakers by different modelling techniques. While testing, each feature vector of the test

speech data is compared with all the speakers models. The speaker model which has the

minimum distance (Euclidean distance) or maximum a posteriori probability is recognized

as the tentative speaker of the speech frame. The speaker with the assignment of maximum

number of frames is recognized as the final speaker of the test speech data. The speaker

recognition rate depends on the amount of training and testing data and also on the codebook

size or the number of Gaussian mixtures. The speaker recognition system is therefore evaluated

for different values of these parameters.

3.1 Speaker modelling by Direct Template Matching (DTM)

When the amount of available data is small, the number of feature vectors is also small. For

instance, assuming about 80% speech frames, for 3 sec of speech signal there are about 240

feature vectors. Since the number of feature vectors is insufficient, we can use direct template

matching to find the speaker recognition rate. In DTM technique, during the identification

phase, the test feature vector of an unknown speaker is compared with all the reference training

feature vectors to identify tentative speaker of the speech frame. This process is repeated
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Table 1. Speaker recognition rates (%) for the 30 speakers of
the YOHO database using 3 sec training and testing data for
CVQ modelling technique.

Modelling
Codebook size

technique 16 32 64 128

CVQ 63·33 66·67 70·00 60·00

for all the testing frames. The speaker with maximum number of frames is identified as the

speaker of the test speech data. In the 30 speakers case of the YOHO database, the recognition

rate of 63·33% is obtained for one speech file (3 sec) of training and testing data. Though this

technique is simple and easy to perform, the recognition rate is poor. The poor recognition

rate is due to large intraspeaker and inter speaker variability. This shortcoming may therefore

be reduced using different modelling techniques. The objective of modelling technique is

to better cluster or capture the distribution of the feature vectors according to the speaker

information. Speaker models built contain the feature vectors from different sound units, but

from the same speakers. This may enable dominance of speaker information over speech

information. This aspect is verified in limited data condition using the following speaker

modelling techniques.

3.2 Speaker modelling using CVQ

CVQ is also termed as Vector Quantization (VQ) (Gray 1984). VQ involves finding a subset

of feature vectors termed as Codevectors from the whole set, which can act as representative

vectors. To find the codevectors for a given speaker, CVQ clusters all the feature vectors in

the feature space into non-overlapping clusters with crisp boundaries and hence the name.

The lookup table of codevectors is termed as codebook. The codebooks of different sizes are

built using the binary split and k-means clustering procedures during training (Gray 1984).

The k-means clustering involves grouping the input feature vectors into non-overlapping

k-clusters. For given size, one codebook is built for each speaker in the database. The feature

vectors of the test speech data are compared with the codebooks of different speakers to find

out the most likely speaker of the test speech signal. The experimental results using CVQ for

the 30 speakers of the YOHO database using one speech file (3 sec) for training and testing

data are given in table 1. The highest recognition rate of 70% is achieved using a codebook

size of 64.

As we have already mentioned 3 sec data provides 240 frames. This number is too small

for forming a CVQ codebook of size 64, since as a thumb rule, the number of feature vectors

should be about 10 times the number of non-overlapping clusters (Rabiner & Juang 1993).

Accordingly, CVQ with codebook of size 16 seems to be optimum. However, as per the result

obtained, even higher codebook of sizes like 32 and 64 give higher recognition rates. This

implies that for limited data condition about 5 times the codebook size may be kept as thumb

rule, while deciding the codebook size. Accordingly, further increase in the codebook size to

128 gives poor recognition rate. Better recognition rate of CVQ compared to DTM implies

that, it may be better to use some techniques for modelling. A maximum recognition rate

of only 70% is due to the limited training and testing data and also the modelling technique

employed. Therefore, for given training and test data, to increase the recognition rate, we can

explore alternate modelling techniques.
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Table 2. Speaker recognition rates (%) for the 30 speakers of the YOHO
database using 3 sec training and testing data for FVQ modelling technique.

Learning
Codebook size

rate 16 32 64 128

1·30 70·00 60·00 60·00 60·00
1·31 70·00 63·33 66·67 56·67
1·32 70·00 63·33 60·00 56·67
1·33 70·00 73·33 66·67 60·00
1·34 63·33 70·00 66·67 60·00
1·35 63·33 70·00 63·33 60·00
1·38 63·33 70·00 70·00 60·00
1·39 60·00 76·67 66·67 60·00
1·40 60·00 76·67 70·00 66·67
1·45 66·67 63·33 66·67 63·33
1·50 60·00 76·67 73·33 70·00
1·55 63·33 73·33 73·33 66·67
1·60 56·67 66·67 60·00 60·00

3.3 Speaker modelling using FVQ

FVQ is an alternative to CVQ and employs fuzzy logic principle for clustering. The basic

principle of fuzzy logic is that a given feature vector can be assigned to more than one cluster

with certain degree of association to find the codevectors for a given speaker. FVQ clusters all

the feature vectors in the feature space into overlapping clusters with fuzzy boundaries and

hence the name (Bezdek & Harris 1978). In FVQ each feature vector is assigned to all the

clusters, but with different degrees of association, as dictated by the membership function.

The merit of FVQ compared to CVQ is that, since all the feature vectors are associated with

all the clusters, there are relatively more number of feature vectors for each cluster and hence

the codevectors may be more reliable. The codebooks of different sizes are built using binary

split and fuzzy c-means clustering procedures during training (Bezdek & Harris 1978). Fuzzy

c-means clustering involves grouping the input feature vectors into overlapping c-clusters.

The nature of clustering depends strongly on the learning rate parameter hence it needs to be

tuned for better recognition rate. The feature vectors of the test speech data are compared with

the codebooks of different speakers as in the case of CVQ. The experimental results using

FVQ for the 30 speakers of the YOHO database using one speech file (3 sec) for training and

testing data and different learning rate parameter are given in table 2. The highest recognition

rate of 76·67% is achieved for a codebook of size 32 using a learning rate parameter of 1·39.

For the same amount of speech data (3 sec), we are able to further increase the recognition

rate from 70% of CVQ to 76·67%. This can be attributed to the fuzzy c-means clustering

employed in FVQ.

The better recognition rate by FVQ suggests that by increasing the number of elements

for clustering, the recognition rate also increases. This is achieved by associating the same

set of feature vectors to different clusters, of course, with different membership functions.

This improvement in recognition rate is at the cost of increased computational complexity

of tuning the learning rate parameter. However, it is still preferable due to the small amount

of data. On the similar lines we can also explore other VQ modelling techniques based on

neural networks.
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Table 3. Speaker recognition rates (%) for the 30 speakers of the YOHO database using
3 sec training and testing data for SOM modelling technique.

Codebook Size (CS)

Iterations h η 16 32 64 128

500*CS 1 0·01 60·00 60·00 53·33 66·67
500*CS 1 0·02 53·33 70·00 70·00 66·67
500*CS 1 0·03 60·00 70·00 66·67 66·67
500*CS 1 0·04 56·67 60·00 63·33 70·00
500*CS 1 0·05 70·00 60·00 60·00 63·33
500*CS 1 0·06 66·67 70·00 70·00 73·33
500*CS 1 0·07 70·00 56·67 63·33 53·33
500*CS 1 0·08 66·67 63·33 63·33 53·33
500*CS 1·1 0·06 66·67 70·00 56·67 56·67
500*CS 1·2 0·06 70·00 66·67 56·67 66·67
500*CS 1·4 0·06 66·67 60·00 66·67 56·67
550*CS 1 0·06 73·33 73·33 63·33 56·67
600*CS 1 0·06 53·33 70·00 53·33 70·00
650*CS 1 0·06 63·33 66·67 70·00 60·00

3.4 Speaker modelling using SOM

A neural network counter part of VQ, but with unsupervised learning can be realized using

SOM. The approach for identifying the codevectors is by learning in an unsupervised way. The

clustering is therefore influenced by the actual distribution of feature vectors and hence the

modelling may be different. SOMs are a special class of neural networks based on competitive

learning (Kohonen 1990). Thus, the performance of the SOM depends on the parameters such

as neighbourhood (h), learning rate (η) and number of iterations. The recognition rate for 30

speakers of the YOHO database using one speech file (3 sec) for training and testing data and

different values of h, η and number of iterations are given in table 3. The highest recognition

rate of 73·33% is achieved for a codebook of size 32 using h = 1, η = 0·06, and the number

of iterations equal to 500 times the codebook size.

The recognition rate of 73·33% by SOM using unsupervised learning implies that, even the

feature vectors from limited data provide speaker information in the feature space. Further,

each speaker has a unique distribution of feature vectors which is learnt by SOM. It may be

possible to improve the recognition rate of SOM by using the LVQ.

3.5 Speaker modelling using LVQ

LVQ developed by Kohonen (1990) is used to globally optimize the codebooks after they

are generated with unsupervised learning algorithm like SOM. LVQ is a supervised learning

technique that uses class information to optimize the positions of codevectors obtained by

SOM, so as to improve the quality of the classifier decision regions. An input vector is picked

at random from the input space. If the class label of the input vector and the codevector agree,

then the codevector is moved in the direction of the input vector. Otherwise the codevector is

moved away from the input vector. Therefore, due to this fine tuning there may be improved

recognition rate compared to SOM. The recognition rate for the 30 speakers of the YOHO

database using one speech file (3 sec) for training and testing data and different η and iterations

are given in table 4. The LVQ gives the best recognition rate of 80% for a codebook of size

32 which is better than that of all other VQ techniques discussed so far.
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Table 4. Speaker recognition rates (%) for the 30 speakers of the YOHO
database using 3 sec training and testing data for LVQ modelling technique.

Codebook Size (CS)

Iterations η 16 32 64 128

500*CS 0·01 63·33 60·00 66·67 60·00
500*CS 0·02 60·00 66·67 63·33 53·33
500*CS 0·03 60·00 66·67 73·33 60·00
500*CS 0·04 53·33 63·33 66·67 63·33
500*CS 0·05 63·33 76·67 66·67 66·67
500*CS 0·06 70·00 60·00 70·00 60·00
500*CS 0·08 63·33 70·00 63·33 60·00
550*CS 0·05 63·33 53·33 70·00 63·33
550*CS 0·06 73·33 80·00 60·00 60·00
575*CS 0·06 56·67 66·67 66·67 53·33
600*CS 0·06 63·33 70·00 66·67 63·33
700*CS 0·06 60·00 63·33 73·33 60·00

The improvement in the recognition rate compared to SOM implies that employing super-

vised learning over initially obtained unsupervised codevectors indeed improves the recog-

nition rate. Thus the fine tuning by LVQ is beneficial under limited data condition also.

The aforementioned modelling techniques are based on non-parametric clustering approach.

Speaker modelling by parametric probabilistic approach like GMM and GMM–UBM can

also be explored.

3.6 Speaker modelling using GMM

The GMM is the most widely used probabilistic modelling technique in speaker recognition.

The GMM needs sufficient data (at least one minute) to model the speaker well to yield good

recognition rate (Reynolds & Rose 1995). Unlike the centroids design, as we discussed in the

above modelling techniques, in GMM system the distribution of feature vectors is modelled

by the parameters like weight, mean and covariance (Reynolds & Rose 1995). Since in our

experimental conditions training and testing data are limited, GMM may not be the best choice.

However, we conducted the experiment using VQ initialized GMM to see its effectiveness

under limited data condition. The experimental results for the 30 speakers of the YOHO

database using one speech file (3 sec) for training and testing data and different Gaussian

mixtures are given in table 5. The GMM yields the highest recognition rate of 73·33% using

16 Gaussian mixtures.

The recognition rate of GMM-based system is better compared to CVQ, but poor compared

to all other VQ modelling techniques. This means that the data may be too sparse to model

Table 5. Speaker recognition rates (%) for the 30 speakers of
the YOHO database using 3 sec training and testing data for
GMM modelling technique.

Modelling
Gaussian mixtures

technique 16 32 64 128

GMM 73·33 40·00 36·67 13·33
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Table 6. Speaker recognition rates (%) for the 30 speakers of the YOHO
database using 3 sec training and testing data for GMM–UBM modelling
technique.

Modelling
Gaussian mixtures

technique 16 32 64 128

GMM–UBM–NIE 60·00 60·00 63·33 76·67
GMM–UBM–IE 60·00 66·67 73·33 83·33

by the Gaussian mixtures. To alleviate this problem to some extent the concept of Universal

Background Model (UBM) can be used along with GMM.

3.7 Speaker modelling using GMM–UBM

The concept of GMM–UBM (Reynolds et al 2000) is widely used for speaker recognition

where the availability of training data is sparse (Angkititrakul & Hansen 2007, Prakash &

Hansen 2007). In case of GMM–UBM system, speech data collected from large number of

speakers is pooled and the UBM is trained. The UBM model parameters represent the charac-

teristics of all speakers and hence UBM acts as a speaker-independent model. The speaker-

dependent model can be created by performing maximum a posteriori (MAP) estimation

from the UBM using speaker-specific training speech. The UBM training can be done in two

ways: (i) Speech data pooled from the other database, not used for the speaker recognition

study, provided speech data is collected from the same environment. (ii) Same speech data

for both UBM training and evaluation, provided the speakers set used for recognition is not

included in UBM training (Angkititrakul & Hansen 2007, Prakash & Hansen 2007, Reynolds

et al 2000). We conducted the study using the YOHO database for both UBM training and

evaluation. Since our experimental study considers evaluation set of first 30 and 138 speakers,

experiments are conducted with Not Including Evaluation set (NIE) and Including Evaluation

set (IE) in UBM training. In (Reynolds et al 2000), it is mentioned that the number of speakers

and amount of data to train the UBM are randomly selected. We trained the UBM with roughly

two hours of speech data, equally contributed by speakers selected from the YOHO database.

The experimental results for the 30 speakers of the YOHO database using one speech file

(3 sec) for training and testing data and different Gaussian mixtures are given in table 6. The

GMM–UBM yields the highest recognition rate of 76·67% and 83·33% using 128 Gaussian

mixtures for NIE and IE, respectively.

The recognition rate obtained by not including the speakers in building UBM i.e. GMM–

UBM–NIE is the actual result for GMM–UBM. The recognition rate of 76·67% by the same

implies that UBM does not seem to provide any benefit in terms of improving the recognition

rate. The higher recognition rate of 83·33% for GMM–UBM–IE is due to the data of each of

the speakers used in building the GMM–UBM–IE. Hence there is bias in the UBM towards

each of the speakers.

4. Speaker modelling using combined modelling techniques

The modelling techniques discussed so far are different with respect to their working principle

and hence may be combined to further improve the recognition rate. The proposed combi-

nation technique works as follows: Let x1, x2, . . . , xN be the frame scores obtained for the
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Table 7. Best individual and combined modelling speaker recognition rates
(%) for the 30 speakers of the YOHO database using 3 sec training and test
data for different modelling techniques.

Modelling
Codebook size/Gaussian mixtures

techniques 16 32 64 128

CVQ 63·33 66·67 70·00 60·00
FVQ 70·00 76·67 73·33 70·00
SOM 73·33 73·33 70·00 73·33
LVQ 73·33 80·00 73·33 66·67
GMM 73·33 40·00 36·67 13·33
GMM–UBM–NIE 60·00 60·00 63·33 73·33
GMM–UBM–IE 60·00 66·67 73·33 83·33

LVQ–FVQ 80·00
LVQ–GMM 80·00
LVQ–GMM–UBM–NIE 83·33
LVQ–GMM–UBM–IE 86·67

test data of a speaker using the modelling technique M1 with N. Similarly, y1, y2, . . . , yN are

the frame scores obtained for the same test data using the modelling technique M2. Then, the

corresponding speaker frame scores are linearly added which results in z1, z2, . . . , zN . The

speaker with the combined highest frame score is recognized as the final speaker of the test

speech data. The frame score specifies the score of each speaker for the test speech data and

hence the speaker who scores the highest frames will be the recognized speaker of the test

data. On the other hand, the recognition rate specifies the total number of correctly identified

speakers out of N speakers considered for the study. The best recognition rate of individual

models and the recognition rate of different combined models are given in table 7. Among

the combined modelling techniques, the LVQ–GMM–UBM–IE and LVQ–GMM–UBM–NIE

systems yield the highest recognition rate of 83·33% and 86·67%, respectively. The improve-

ment in the recognition rate is due to the different working principles employed in LVQ and

GMM–UBM. That is, the supervised learning over unsupervised learning involved in LVQ

and other speakers data used as UBM in GMM–UBM. Moreover, LVQ modelling technique

is based on non-parametric approach, whereas GMM–UBM based on parametric approach

and hence this combination gives the best recognition rate. Further, in the other combined

techniques like LVQ–FVQ and LVQ–GMM the working principles are different. However,

the FVQ and LVQ are fine tuned using only the speaker-specific speech data which may not

be optimum and hence the combination techniques using these modelling techniques yield

lower recognition rate compared to LVQ–GMM–UBM.

For the other data sizes of 6, 12 and 24 sec we conducted the study only with LVQ, GMM–

UBM and the combined LVQ–GMM–UBM modelling techniques. The experimental results

are shown in figure 1a. It is evident from the figure that the recognition rate of GMM–UBM–

NIE below 10 sec of training and testing data is less than that of LVQ and GMM–UBM–IE.

This means that the available training data is insufficient to train the speaker-dependent model

in GMM–UBM. Under such conditions the combined system gives better recognition rate

than the individual systems. Also, GMM–UBM–IE recognition rate is higher than that of

the other individual techniques even for data of less than 10 sec duration. This is due to the

availability of speaker-specific sufficient data while training the UBM model. The proposed

combined modelling technique shows significant improvement in the recognition rate up to
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Figure 1. Speaker recognition rates is based on LVQ, GMM–UBM and LVQ–GMM-UBM modelling
for different sizes of training and testing data for (a) first 30 and (b) 138 speakers taken from the YOHO
database.

12 sec and above 12 sec the recognition rate of all modelling techniques approach one another.

Therefore, in order to verify the recognition rate for the whole database, the experiment is

carried out up to 12 sec training and testing data and the results are shown in figure 1b. The

trend in the experimental results shown in figure 1b resemble with figure 1a which imply that

the proposed combined modelling technique shows a similar behaviour for the large database

also.

To verify the robustness of the proposed combined modelling technique, we conducted the

experiments on the TIMIT database also. In the GMM–UBM modelling technique, we used

the TIMIT training set to train the UBM roughly for 2 hours of data. The speaker recognition

experiments are conducted on the TIMIT test set. Experimental studies are conducted as the

YOHO database set-up and the results are shown in figures 2a and b for a set of first 30 and

138 speakers, respectively. The experimental results for the TIMIT database also resemble

those for the YOHO database irrespective of speaker population and amount of data. Hence,

the LVQ–GMM–UBM can be used as a modelling technique for speaker recognition under

limited data condition.

5. Summary and conclusions

In this paper, we explored the different modelling techniques and then proposed combined

LVQ–GMM–UBM modelling technique for speaker recognition under limited data condition.

First, we discussed the working principles and the efficiency of different modelling techniques.

Then, we combined different modelling techniques to see the effectiveness. As a result, we

found that the combined LVQ–GMM–UBM model gives better recognition rate than the

individual and other combined modelling techniques. Therefore, LVQ–GMM–UBM model

can be used for speaker modelling.

In the present work, effectiveness of combined LVQ–GMM–UBM model is verified using

clean speech data. The effectiveness of the combined modelling needs to be verified on noisy

speech data. Further, this work used linear combination of frame scores obtained for the same

test data using different modelling techniques to identify a speaker. Different combination
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Figure 2. Speaker recognition rate based on LVQ, GMM–UBM–NIE and LVQ–GMM–UBM–NIE
modelling for different sizes of training and testing data for a set of (a) first 30 and (b) first 138 speakers
taken from the TIMIT test set.

techniques need to be explored to improve the speaker recognition rate. Also, this work

can be extended further to improve the recognition rate by developing new techniques in

speech analysis, feature extraction and testing stages of the speaker recognition system.

References

Angkititrakul P, Hansen J H L 2007 Discriminative In-Set/Out-of-Set speaker recognition. IEEE Trans.

Audio Speech Language Process. 15(2): 498—508

Atal B S 1976 Automatic recognition of speakers from their voices, Proc. IEEE 64(4): 460—475

Bezdek J C, Harris J D 1978 Fuzzy portions and relations; an axiomatic basis for clustering. Fuzzy

Sets and Systems 1: 111—127

Campbell Jr J P 1995 Testing with the YOHO CD-ROM voice verification corpus. In Proc. IEEE Int.

Conf. Acoust., Speech, Signal Process. Detroit, Michigon 341—344

Deller J, Hansen J, Proakis J 1993 Discrete Time Processing of Speech Signals, 1st ed. IEEE Press

Gray R 1984 Vector quantization IEEE Acoust., Speech, Signal Process. Mag. 1: 4—29

Jayanna H S, Prasanna S R M 2006 Variable segmental analysis based speaker recognition in limited

data condition. In Proc. IEEE-Int. Conf. Signal, Image Process vol. 2 Karnataka, India

Kittler J, Hatef M, Duin R P W, Matas J 1998 On combining classifiers. IEEE Trans. Patt. Anly.

Machine Intelligence 20(3): 226-–239

Kohonen T 1990 The self-organizing map. Proc. IEEE 78(9): 1464-–1480

Kwon S, Narayanan S 2007 Robust speaker identification based on selective use of feature vectors.

Patt. Recog. Lett. 28: 85—89

Prakash V, Hansen J H L 2007 In-Set/Out-of-Set speaker recognition under sparse enrollment. IEEE

Trans. Audio Speech Language Process 15(7): 2044—2051

Prasanna S R M, Gupta C S, Yegnanarayana B 2006 Extraction of speaker-specific excitation infor-

mation from linear prediction residual of speech. Speech Communication 48: 1243—1261

Rabiner L, Juang B H 1993 Fundamentals of Speech Recognition. (Singapore: Pearson Education)

Reynolds D A, Rose R C 1995 Robust text-independent speaker identification using Gaussian mixture

speaker models. IEEE Trans. Speech Audio Process 3(1): 72—83



728 H S Jayanna and S R Mahadeva Prasanna

Reynolds D A 1995 Speaker identification and verification using Gaussian mixture speaker models.

Speech Communication 17: 91—108.

Reynolds D A, Quateri T F, Dunn R B 2000 Speaker verification using adapted Gaussian mixture

models. Digital Signal Processing 10: 19—41

Zue S S V, Glass J 1990 Speech database development at MIT:TIMIT and beyond. Speech Commu-

nication 9: 351-–356


