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ABSTRACT

The nonlinear current vs voltage (I-V) characteristics of solar PV make its modelling difficult.
Optimization techniques are the best tool for identifying the parameters of nonlinear models. Even
though, there are different optimization techniques used for parameter estimation of solar PV, still the
best optimized results are not achieved to date. In this paper, Wind Driven Optimization (WDO) tech-
nique is proposed as the new method for identifying the parameters of solar PV. The accuracy and con-
vergence time of the proposed method is compared with results of Pattern Search (PS), Genetic Algorithm
(GA), and Simulated Annealing (SA) for single diode and double diode models of solar PV. Furthermore,
for performance validation, the parameters obtained through WDO are compared with hybrid Bee
Pollinator Flower Pollination Algorithm (BPFPA), Flower Pollination Algorithm (FPA), Generalized
Oppositional Teaching Learning Based Optimization (GOTLBO), Artificial Bee Swarm Optimization
(ABSO), and Harmony Search (HS). The obtained results clearly reveal that WDO algorithm can provide
accurate optimized values with less number of iterations at different environmental conditions.
Therefore, the WDO can be recommended as the best optimization algorithm for parameter estimation

of solar PV.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Today, due to the necessity of clean energy sources, the applica-
tion of renewable and inexhaustible energy sources is gradually
increasing. Among them, solar energy source seems to constitutes
one of the best alternative solutions for energy provision. However,
for this purpose, precise modeling of solar PV is required as it must
be employ to predict the characteristic curves of solar PV at differ-
ent weather condition of a particular area. This, in turn, is neces-
sary for designing the corresponding inverter with high efficiency
that is suitable for the given location. In addition to that, it will
be beneficial to identify any mismatch in the PV array due to dust
in the solar PV module by calculating the difference in real power
generated by the module and predicted power by the model. This
will enable to carry out maintenance at the right time (Babu et al.,
2016).
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The modeling of solar PV is generally derived using equivalent
diode models. The current vs voltage (I-V) characteristics of solar
PVs are mostly described using two types of diode models: single
diode model and double diode model (Farivar and Asaei, 2011;
Barth et al., 2016; Rezaee Jordehi, 2016). In this work, we focus
on both single diode and double diode models of the solar PV.
The parameters of the solar PV model vary with temperature and
irradiance. Hence, precise estimation of the parameters is required
to model the solar PV accurately. The popular approaches
employed for parameter estimations are broadly categorized as
analytical techniques (Chan and Phang, 1987), numerical extrac-
tion (Wolf and Benda, 2013; Ishaque et al., 2011, 2012; Barukcic
et al.,, 2015) and evolutionary algorithm techniques (Ismail et al.,
2013; Ma et al.,, 2016; Moldovan et al., 2009; Derick et al., 2016;
Rajasekar et al., 2014).

In the analytical technique, mathematical equations are used to
find the parameters. Most of the values in the equations are not
provided in the manufacturer datasheet. As a result, this method
is not deemed accurate (Rezaee Jordehi, 2016). Numerical extrac-
tion technique is based on curve fitting. However, the application
of curve fitting to the nonlinear equation of diode is quite difficult.
Consequently, numerical extraction approach is not so popular
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either (Ishaque et al., 2012). On the other hand, artificial intelli-
gence techniques (Ma et al., 2016) are considered as excellent in
dealing with nonlinear equations. In recent years, different opti-
mization techniques have been introduced to estimate the param-
eters of solar PV; namely, the Genetic Algorithm (GA) (Ismail et al.,
2013; Moldovan et al.,, 2009), Pattern Search (PS) optimization
(Derick et al.,, 2016), Artificial Immune System (AIS) (Xiaoping
et al., 2003), Bacterial Foraging Algorithm (BFA) (Rajesekar et al.,
2013), Simulated Annealing (SA) (EI-Naggar et al., 2012), Differen-
tial Evaluation (DE) (da Costa et al., 2010), Mutative-scale Parallel
Chaos Optimization (MPCOA) (Yuan et al., 2014), Harmony Search
(HS) based algorithm (Askarzadeh and Rezazadeh, 2012), Artificial
Bee Swarm Optimization (ABSO) algorithm (Askarzadeh and
Rezazadeh, 2013), Artificial Bee Colony (ABSO) optimization
(Oliva et al.,, 2014), Flower Pollination Algorithm (FPA) (Alam
et al,, 2015), Levenberb - Marquard Algorithm with Simulated
Annealing (LMSA) (Dkhichi et al., 2014), Cuckoo Search (CS) (Ma
et al., 2013), Bee Pollinator Flower Pollination Algorithm (BPFPA)
(Ram et al., 2017), Fireworks Algorithm (FA) (Babu et al., 2016)
and Generalized Oppositional Teaching Learning Based Optimiza-
tion (GOTLBO) (Chen et al., 2016). However, these algorithms still
require some modifications to find the most optimized parameter
for different solar PV modules (Alam et al., 2015). The most effi-
cient algorithm for finding the optimized value of solar PV param-
eters are yet to be found.

In this work, we proposed Wind Driven Optimization (WDO)
algorithm to optimize parameters of a single diode and double
diode models of solar PV. The idea of WDO is developed by Zikri
Bayraktar for electromagnetic application (Bayraktar et al., 2010).
It is a population based heuristic global optimization technique
for multidimensional problems. The algorithm contains four con-
stants. Optimized values of these constants are generated using
Covariance Matrix Adaptation Evolution Strategy (CMAES) tech-
nique (Bhandari et al., 2014).

The accuracy of the proposed optimization technique is measured
using the value of Root Mean Square Error (RMSE). Convergence time
is evaluated by the time required for the proposed method to reach
the optimizedvalue.Inordertodisplay the potential of the WDO algo-
rithm, its accuracy and convergence time is compared with PS, GA,
and SA available in the MATLAB optimization toolbox. In addition,
the parameters obtained through WDO is compared with results
obtained in recent literature like BPFPA (Ram et al., 2017), FPA
(Alam et al., 2015), ABSO (Askarzadeh and Rezazadeh, 2013), HS
(Askarzadeh and Rezazadeh, 2012). All these investigations provide
an evaluation on the accuracy and time of convergence of the pro-
posed algorithm for parameter estimation of solar PV.

An outline of the paper is as follows: The mathematical modeling
of solar PV is presented in next section. Section 3 presents the prob-
lem formulation. The WDO is explained in detail for solar PV param-
eter estimation in Section 4. This is followed by the discussion of
results in Section 5. Finally, conclusions are presented in Section 6.

2. Mathematical modeling

Many models have been proposed and developed by several
researchers to estimate the solar PV parameters accurately (Barth
etal.,2016). Among them, the most popular and universally adopted
models are the single diode and double diode models. In our work,
both diode models are used to represent the behavior of solar PV
module. In what follows, a description of both models is given.

2.1. Single diode model

Single diode model is commonly used to represent solar PV,
because of its reduced complexity (VIllalva and Gazoli, 2009;

Chatterjee et al., 2011). The equivalent circuit of single diode
model of solar PV is shown in Fig. 1.
By using Kirchhoff’s current law (KCL), one can check that:

I=In—Ip—1, 1)

Here, I is solar PV current, I, is the photon current generated by the
incident light, Ip is the diode current and I, is the current flowing
through parallel resistance (Chatterjee et al., 2011; Bayraktar,
2011).

B V+IR, V+IR,
I_Iph—la<exp (Ns*a'ff> —1) — Rp (2)
. Isc,s-i-Kl(T—Ts)
lo= ex (VocferI(v(T*Ts)) -1 (3)
p NsV¢
G
Iph = (Iph-s + Ki(T — Ts)) G (4)

Here I, is the reverse saturation current of diode, V is solar PV volt-
age, R, is the parallel resistance, R; is the series resistance, Voc_s is
the open circuit voltage at standard test condition, Ky is open circuit
voltage temperature coefficient, Ny is the number of series cell per
module, the temperature at standard test condition Ts = 25%, solar
radiation at standard test condition Gs = 1000 W/m?, K is the short
circuit current temperature coefficient, V, is the thermal voltage of
diode which depends on junction temperature and is given by:

KT
V; :aT (5)

where a denotes the ideality factor of diode. T expresses the
junction temperature in Kelvin (K), q is the electron charge
(1.6021765 x 107'°C) and K is the Boltzmann constant
(1.38065 x 107J/K).

Ih_s is the photon current at standard test condition, and it is
given by

Rp + Rs) ()

Iph_s = Iscfs( R

where Isc_s is the short circuit current at standard test conditions.

From Eq. (2), one can see that we require optimum values of five
parameters Iy, I,, Ry,Rs, and a in order to be able to generate the
same -V characteristic curve as obtained experimentally. Finally,
it is important to note that Eq. (2) is an implicit equation in I.

2.2. Double diode model
In double diode model, two diodes are connected in parallel to
the photon current source. The second diode represents the recom-

bination in the space charge region. The equivalent circuit of dou-
ble diode model is shown in the Fig. 2.

v

T Iph D ! Rp ~

Fig. 1. Single - diode model of solar PV.
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By using KCL

I=Ipn—Ipi —Ip;p =1, (7)
B V +1R;s V + IR
I=1Ip —In (exp( NV ) 1) Io2 (exp ( N.Va, ) 1>
V+ IR
-~ 8)

Here I,; and I, are the reverse saturation currents and V,; and V,,
are thermal voltages of diode 1 and diode 2 respectively. I, can
determined using the Eq. (4)

KT
Vi =a,— 9
a=a )

KT
Vt2 = azF (10)

where a; and a, denotes the ideality factor of diode 1 and diode 2
respectively.

From Eq. (8), it is clear that it is necessary to obtain optimized
values of the seven parameters I, Io1, lo2, Rp, R, a; and a, in order
to have an accurate double diode model of solar PV.

3. Problem formulation

Any solar PV module can be modeled by using the single diode
or double diode models. The main objective of this modeling is to
enable the solar PV model to predict the I-V characteristics of the
PV module. In order to minimize the error between predicted
and actual I-V characteristics of PV module, one has to find the
optimized parameters of the solar PV model. This can be done by
using optimization algorithms.

As mentioned above single diode and double diode models of
solar PV model have five and seven parameters respectively. In this
paper, the values of resistances R,, Ry and ideality factor a are
determined using the proposed algorithm where as I, and I, using
Egs. (3) and (4) in order to reduce the computational complexity.

The objective function is Root Mean Square Error (RMSE)
between the measured and estimated current. The objective func-
tion will aggregate the absolute error and gives the measure of pre-
dictive power. The absolute difference between measured and
estimated output current is the Individual Absolute Error (IAE).
The error function of a single diode and double diode model is
given in Egs. (11) and (12) respectively. The Sum of Squared Error
(SSE) function is given in Eq. (13).

fs(v(m):l(m),x) =IAE = abs(l(m) - (Iph - ID(m) - Ip(m))) (1])

Fa(Vimy I X) = IAE = abs (Im) — (Iph — Ipigm) — Ipagm) — Ipm)))
(12)

N
SSE = >"IAE? (13)

i=1

1 Dll Ip2 l Ipl I Rs

ol

Fig. 2. Double - diode model of solar PV.

D> Rp ~
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In Egs. (11) and (12) the vector X represents the model param-
eters, for single and double diode model of solar PV respectively
and N is the number of experimental data.

The RMSE function is defined as follows:

RMSE = ,/%SSE (14)

The proposed WDO algorithm finds the optimized solar PV
model parameter by minimizing the objective function.

4. Wind driven optimization

Wind driven optimization is a new nature inspired optimization
technique (Bayraktar, 2011). The idea was developed by Zikri
Bayraktar for electromagnetics application (Bayraktar et al,
2010). The motivation for WDO algorithm was based on the
motion of microscopic air parcels in a multidimensional space. In
earth’s troposphere, the solar radiation varies based on the loca-
tion. So, heating the surface of the earth varies according to the
location, type of the region (water body, soil, cloudy), and rotation
of earth (Bhandari et al., 2014). The air pressure will be high at
low-temperature area than high-temperature area. This difference
in air pressure leads horizontal motion of air. The change in
pressure is the pressure gradient (Bayraktar, 2011), and is given
as follows:

OP oP OP

Here the air parcel is assumed to be dimensionless and weight-
less to reduce the computational complexity. Newton’s second law
states that total force (F;) applied on air parcel causes the air parcel
to accelerate with an acceleration a in the same direction of the
force:

p.d@=YF (16)

The four forces that create movement of air parcel are pressure
gradient force (Fp¢), frictional force (Fr), gravitational force (Fg) and
Coriolis force (F¢).

Assuming that air has finite volume (8V), the force due to pres-
sure gradient can be expressed as Eq. (17). The friction force
opposes the air parcel motion started by Fp;. The gravitational
force pulls the air parcel to the center of the coordinate system
from all dimensions. The rotation of the earth causes deflection
in the motion of air parcel and named as Coriolis force. This force
will work in such a way that velocity in one direction is influenced
by velocity in another direction. All these forces can be expressed
as:

.
Fpe = -VP-6V (17)
Fr = —potl (18)
Fe=p-oV.-g (19)
i —

Fc =-20x U (20)

Here p is the air density of a small air parcel, o is frictional
coefficient, W wind velocity vector, g is the gravitational constant,
0 represents the rotation of earth.

So, by including Fpg, Ff, F, Fc and ideal gas equation in total
force Eq. (16), the latter can be rewritten as:

ﬁg+<—VP-RT>+(_(ﬁ)+<_M> 21)

PCUT PCIJT
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Set population size, maximum iterations, dimensions(number of
parameters), lower and upper boundaries of dimensions, maximum allowed
velocity and define the objective function.

v

Initialize parameters of WDO algorithm (a, g, RT, c).

v

Initialization

Randomize velocity and position of each
dimension.

v

:} For iteration = n ‘

v

Call objective function (RMSE). Rank the air parcels, Store the
best objective function value and its dimensions

Update velocity of air parcel according to the rank using Eq. 18,
modify position using Eq.19, check the velocity and position

limits
Call CMAES, update WDO wDO
parameters Evaluation
—. No Stopping
Criterion

‘ Display optimal parameters ‘

End

Fig. 3. Flowchart of wind driven optimization.

In Eq. (21) velocity of air parcel depends on pressure value. Con-
sequently, if pressure value increases the velocity gets updated
impractically. For that, Eq. (21) is modified based on the rank of
the pressure. After every iteration, the air parcels are ranked in
descending order based on their pressure values. If i is the rank
of the air parcel, velocity and position will be updated using the
Egs. (22) and (23) respectively.

N — 1
Upew = (1 - a) U cur _gxcur + <‘1 - 7’ : (xopt - xcur)RT>

€ - Wotherdirecti
+ ( oth;rdzrecnon) (22)
m = W + Unew (23)

Here iU, is the velocity of next iteration, liq, is the velocity of
current iteration, x is the position of the air parcel in search space,
Xopr is optimal position, x,r = current position,c = —2RT, and

— —_—
U otherdirection = Fc.

In this parameter estimation problem, each dimension of an air
parcel is the parameters of solar PV. So, in single diode model, the
air parcel is in a three-dimensional space whereas, in the double
diode model it is in four-dimensional space. The pressure of air
parcels in a search space is evaluated using the objective function.
Next, air parcels are ranked based on their objective function value.

So, the velocity of air parcels is modified using their ranks and
move to another position with that velocity. The air parcels con-
tinue their movement to find the lowest objective function value.
The last step is to find the air parcel with lowest objective function
value and their corresponding parameters.

For each dimension the WDO allows air parcel to travel in a
bound of [-1, 1]. The actual maximum and minimum limits of
the problem are normalized to [-1, 1]. To obtain the optimized
objective function value, the coefficients ¢, g, RT, ¢ in Eq. (22) play
an important role. In order to find the optimized values of these
constants Covariance Matrix Adaptation Evolution Strategy
(CMAES) technique is used. It does not require any inputs other
than population size (Bayraktar et al., 2010). Hence, CMAES is easy
to implement for WDO application. The flow chart of wind the dri-
ven optimization algorithm is shown in Fig. 3.

5. Results and discussion
5.1. Results of WDO is compared with PS, GA, and SA

Wind Driven Optimization algorithm is used to find the opti-
mized parameters of a single diode and double diode solar model.
In order to validate the accuracy of the proposed optimization
algorithm, the result of WDO is compared with results obtained
from PS, GA, and SA available in MATLAB optimization tool box.
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Table 1
Datasheet values of Kyocera - KC200GT 215 module.

Maximum power (Pmax) 200 W (+10%/—5%)

Voltage at maximum power point (Vipp) 263V
Current at maximum power point (Iypp) 7.61A

Open circuit voltage (Voc) 329V

Short circuit current (Isc) 8.21A
Temperature coefficient of Vo ~123x107!
Temperature Coefficient of Isc 318 x 103
Number of cells (Ns) 54

Table 2
Estimated single diode model parameters of Kyocera - KC200GT 215 module.
WDO PS GA SA
a 1.4172 1.7 1.4819 1.6118
Rs (Q) 0.1132 0.0339 0.1067 0.0796
Ry, Q) 747.41 624.382 728.58 713.110
Ion(A) 8.1812 8.2104 8.2112 8.2109
1o (UA) 0.4423 7.1836 0.9220 3.3484
RMSE 0.00084 0.001796 0.00188 0.001875
-3
1
s
WDO
.F:E 4 —— DS |
S GA
=
Z 3 SA |
o
B
5 2r ]
2
)
2 1 N__7.0.000886 |
O 1 1 1 1 1 1 1 1 1
10 20 30 40 50 60 70 80 90 100
Number of iterations
Fig. 4. Convergence characteristics of WDO, PS, GA, and SA.
| WDO estimated data b
10 *  Experimental data A 1000 W/ m )
< 800 W //m
£ 00 W/m?
£E5 400 W/ m
3 2
© 0pW/m
0 . . . . .
0 5 10 15 20 25 30

Voltage (V)

Fig. 5. Comparison of experimental data and WDO estimated data of Kyocera -
KC200GT 215 module at different irradiance (single diode model).

Single diode and double diode models of solar PV is developed
in MATLAB/Simulink to test the optimization techniques. The
results obtained through PS, GA, and SA are compared with the
proposed WDO algorithm results. The experimental data of
multi-crystal PV module Kyocera - KC200GT 215 given in Pauls
(2014) is used to find the objective function. The objective function
is calculated based on the 18 set of experimental data.

Here the ideality factor a has a value between 1 and 2. The value
of series resistance R; is between 0.01Q to 0.5Q, whereas the par-
allel resistance R, has value between 1002 and 1000€2. The I, and
I, values are calculated using Eqs. (3) and (4). The data sheet values
of Kyocera - KC200GT 215 module is given in Table 1.

0
~10} 25°C_ |
<10 A 500C
< - 0n
o 5 WDO estimated data 574
5 L] Experimental data
]

0 1 1 1 1 1
0 5 10 15 20 25 30

Voltage (V)

Fig. 6. Comparison of experimental data and WDO estimated data of Kyocera -
KC200GT 215 module at different temperature (single diode model).

Table 3
Estimated double diode model parameters of Kyocera — KC200GT 215 module.
WDO PS GA SA
a 1.9667 1.01 1.17 1.12
a, 1.5370 1.9 1.4324 1.5631
Rs Q) 0.99 0.031 0.0691 0.01783
Ry, Q) 784.4062 793.215 763.3564 862.97
Ion(A) 8.1914 8.2107 8.2103 8.2102
Io1(A) 4.746 x 107° 522 %1071 129 x 107" 524 x107°
Io2(A) 1.632x10°° 3.12x1071° 53 x 1077 212x107°
RMSE 0.00106 0.0029 0.0029 0.003
' ' WDO estimated data
10 1000 W/ mz* . Measured data

< AN

= 800 W/ m“

o >

S| B0OW /[mTA

3 40w /m°\

200 W / m% A
0 1 1 1 1
0 5 10 15 20
Voltage (V)

Fig. 7. Comparison of experimental data and WDO estimated data of Kyocera -
KC200GT 215 module at different irradiance (double diode model).

WDO estimated data | ' ' ' 0
,.\10 i *  Experimental data 25°CH
< 50°C,
< 75°C
E57 1
>
(@]
0 . . . . .
0 5 10 15 20 25 30

Voltage (V)

Fig. 8. Comparison of experimental data and WDO estimated data of Kyocera -
KC200GT 215 module at different temperature (double diode model).

5.1.1. Case study1: Single diode model

In this section, the validity of the proposed method is tested for
single diode model. Table 2 indicates the values of a,Rs, Ry, Ipn, lo
and RMSE WDO, PS, GA, and SA optimization techniques at stan-
dard test condition. It clearly exhibits that, the WDO gives very less
RMSE value compared to other techniques. So, in terms of accuracy
WDO is the best technique.

The Fig. 4 shows the convergence characteristics of four opti-
mization techniques. From the fitness function curve, it is evident
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Comparison between estimated single diode model parameters of RTC France solar cell using WDO and other recent optimization techniques.

121

WDO BPFPA (Ram et al., GOTLBO (Chen et al., FPA (Alam et al., ABSO (Askarzadeh and HS (Askarzadeh and
2017) 2016) 2015) Rezazadeh, 2013) Rezazadeh, 2012)

a 1.4808 1.4774 1.48382 1.47707 1.47583 1.47538

Rs Q) 0.036768 0.03666 0.036265 0.0365466 0.03659 0.03663

R, Q) 57.74614 57.7156 54.115426 52.8771 52.2903 53.5946

Ip(A) 0.7608 0.76 0.76078 0.76079 0.7608 0.7607

Io(UA) 0.3223 0.3106 03315 0.3106 0.3062 0.30495

RMSE (x107%) 0.08664 7.27 9.8744 7.7301 9.9124 9.951

Table 5

Comparison between estimated double diode model parameters of RTC France solar cell using WDO and other recent optimization techniques.

WDO BPFPA (Ram et al,, GOTLBO (Chen et al., FPA (Alam et al., ABSO (Askarzadeh and HS (Askarzadeh and
2017) 2016) 2015) Rezazadeh, 2013) Rezazadeh, 2012)
a 1.51162 1.4793 1.99973 1.4777 1.46512 1.49439
a 1.38434 2.00 1.448974 2 1.98152 1.49439
Ry Q) 0.037433 0.0364 0.036783 0.0363342 0.03657 0.03545
Ry, Q) 52.6608 59.624 56.075304 52.3475 54.6219 46.82696
Lpn(A) 0.7606 0.7600 0.7607 0.760795 0.76078 0.76176
Io1 (UA) 0.2531 0.3211 0.800195 0.3008 0.26713 0.12545
Iop (UA) 0.04827 0.04528 0.220462 0.166157 038191 0.2547
RMSE (x10°%) 0.065237 7.23 9.83177 7.8425 9.8344 12.6
tion time. The time required for the WDO to find the optimized
o 10° ' ' ' ' values is 5.6 ms while PS and GA are 0.8 ms whereas SA required
g 0.02s.
§ Best Pressure is " 8.664¢e-06 ". The experime.ntal da’Fa in .Pauls (2014) gives solar PV volta.lge
= 1072 1 and current at different irradiance and temperature values. Using
© the experimental data and WDO estimated data I-V characteristics
; of Kyocera - KC200GT 215 Solar PV module is plotted for
8 4 1000 W/m?, 800 W/m?2, 600 W/m?, 400 W/m? and 200 W/m? in
a 107 3 Fig. 5. Similarly, 1-V characteristics for different temperature
© 100, 8.664e-6 25°C, 50°C and 75°C is plotted in Fig. 6. Both Figures reflects
% the fact that the values estimated by the WDO algorithm
107 . . . : give out accurate I-V characteristics which exactly replicate the
0 200 400 600 800 1000 experimental data.

Number of Iterations

Fig. 9. Convergence curve of WDO algorithm for optimizing the parameters of
single diode model.

that the best fitness function value of 0.0008401 is obtained for
WDO with less number of iterations. This clearly reveals that
WDO algorithm performs well in terms of accuracy and computa-

Best Pressure is " 6.5237e-06 ".

2 107 '
§
an
2
£
o
sé 10—4 L ]
g
> 750, 6.524¢-6
=
el
©
B 106 . . . .
0 200 400 600 800 1000

Number of Iterations

Fig. 10. Convergence curve of WDO algorithm for optimizing the parameters of
double diode model.

5.1.2. Case study2: Double diode model

In this section, double diode model is used to represent the
solar PV. The optimized values of parameters such as a;, a,, Ry, Ry,
and the derived values of I,,,I,, RMSE at standard test condition
is presented in Table 3. The I-V characteristic at different irradiance
and temperature are plotted in Figs. 7 and 8 respectively.

From I-V characteristics curves it is observable that the param-
eter values obtained through WDO produce the accurate curve
with insignificant RMSE value for an entire range of voltage in all
irradiance and temperature conditions. Hence, both these case
studies clearly substantiate that, the WDO technique can generate
more accurate results in all weather conditions with a minimal
time of computation.

5.2. Results of WDO is compared with recent literature

In order to further verify the performance of the WDO algo-
rithm, the latter is examined with the experimental data of 57
mm dia RTC France silicon solar cell at 1000 W/m? irradiance
and 33 °C temperature presented in Easwarakhanthan et al.
(1986). The parameters of a single diode and double diode model
of the cell is estimated through WDO algorithm. The lower and
upper boundaries of a, Ry, and R, are assigned as (1-2), (0.01-
0.08) Q, and (25-75) Q respectively. The optimized values of solar
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WDO estimated data
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Fig. 11. Comparison of experimental data and WDO estimated data of RTC France
solar cell at 1000 W/m? and 33 °C for single diode model.
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Fig. 12. Comparison of experimental data and WDO estimated data of RTC France
solar cell at 1000 W/m? and 33 °C for double diode model.

PV parameters along with RMSE for single diode and double diode
models are presented in Tables 4 and 5. It shows the comparison of
results obtained through the optimization techniques presented in

Table 6
The comparison of relative error values of WDO, BPFPA, HS for single diode model.

recent research papers such as BPFPA (Ram et al., 2017), GOTLBO
(Chen et al., 2016), FPA (Alam et al., 2015), ABSO (Askarzadeh
and Rezazadeh, 2013), HS (Askarzadeh and Rezazadeh, 2012) with
WDO algorithm. From Tables 4 and 5 it is clear that WDO algo-
rithm provides the least RMSE value (0.08664 x 10~* and
0.065237 x 10~%) while comparing with other optimization
techniques.

The convergence curve of WDO algorithm for the single diode
and double diode model is shown in Figs. 9 and 10 respectively.
They prove that convergence time for WDO is very less. In parame-
ter estimation of single diode model, WDO reaches a RMSE value of
8.664e—6 after 100 iterations. Whereas, BPFPA and FPA took more
than 500 iterations to obtain RMSE values of 8.456e—4 for same
environmental conditions. Similarly, for double diode model,
WDO algorithm reached a RMSE value of 6.5237e—6 after
750 iterations, whereas BPFPA and FPA reach 7.917e—4 after 500
iterations.

In order to verify the accuracy of WDO determined parameter
values, the I-V characteristics at 1000 W/m2 and 33 °C for single
diode model and double diode model of solar PV are plotted in
Figs. 11 and 12 respectively. They clearly show that the I-V charac-
teristic curve accurately replicates the experimental data provided
in Easwarakhanthan et al. (1986). In order to validate the accuracy
of curve fit between measured and estimated values, error analysis
is used. So, Relative Error (RE) between measured and estimated
values of PV current for the single diode and double diode models
are calculated using the below mentioned formula.

RE = Imeasured - Iestimated

1 measured

The RE value obtained using WDO for the single diode and dou-
ble diode is compared with BPFPA (Ram et al.,, 2017), and HS
(Askarzadeh and Rezazadeh, 2012) and tabulated in Table 6 and
7. From Tables, it is obvious that relative error for WDO is low
while comparing the other optimization techniques considered
for comparison.

Data Vmeasured Imeasured WDO BPFPA (Ram et al., 2017) HS (Askarzadeh and
Rezazadeh, 2012)

Iestimated RE lestimated RE lestimated RE
1 —0.2057 0.764 0.764 0.00016 0.764 0.00012 0.764 —0.00036
2 -0.1291 0.762 0.763 —0.00072 0.762 0.00032 0.762 —0.00109
3 —0.0588 0.761 0.761 —0.00109 0.761 —4.9e-5 0.761 —-0.00133
4 0.0057 0.760 0.760 0.00037 0.759 0.00142 0.760 0.000272
5 0.0646 0.760 0.759 0.00106 0.758 0.00210 0.759 0.001078
6 0.1185 0.759 0.758 0.00098 0.757 0.00203 0.758 0.001113
7 0.1678 0.757 0.757 —0.00048 0.757 0.00057 0.757 —0.00025
8 0.2132 0.757 0.756 0.00069 0.755 0.00174 0.756 0.001015
9 0.2545 0.755 0.755 4.08e-5 0.754 0.00108 0.755 0.000441
10 0.2924 0.754 0.754 —0.00011 0.753 0.00090 0.753 0.000353
11 0.3209 0.750 0.751 -0.0017 0.751 —0.000 0.751 —-0.00126
12 0.3585 0.746 0.747 —-0.0017 0.747 0.0008 0.747 —-0.0012
13 0.3873 0.738 0.740 —0.0028 0.739 —0.0019 0.740 —0.00221
14 0.4137 0.728 0.727 0.0003 0.727 0.00090 0.727 0.000802
15 0.4373 0.706 0.707 —-0.0010 0.706 —0.0006 0.706 —0.00066
16 0.459 0.675 0.675 0.00024 0.675 0.00014 0.675 0.000293
17 0.4784 0.632 0.630 0.00231 0.631 0.00150 0.630 0.001744
18 0.490 0.573 0.571 0.0028 0.572 0.00126 0.572 0.001553
19 0.5119 0.499 0.498 0.00051 0.499 0-0.0013 0.499 —0.00108
20 0.5265 0.413 0.412 0.0011 0.413 —0.00171 0.413 —-0.00134
21 0.5398 0316 0.316 0.00070 0317 —0.00302 0317 —-0.00248
22 0.5521 0212 0.210 0.0047 0.212 —-0.00183 0.212 —0.00076
23 0.5633 0.103 0.102 0.01047 0.103 0.003957 0.102 0.007188
24 0.5736 —-0.010 —0.009 0.01 —0.008 0.12410 —0.009 0.075
25 0.5833 -0.123 -0.124 —0.00821 -0.123 —0.00596 -0.124 -0.01171
26 0.59 -0.210 -0.209 0.003904 —-0.208 0.007587 -0.209 0.003333
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Table 7
The comparison of relative error values of WDO, BPFPA, HS for double diode model.
Data. Vmeasured Imeasured WDO BPFPA (Ram et al., 2017) HS (Askarzadeh and
Rezazadeh, 2012)
Iestimated RE lestimated RE lestimated RE
1 —0.2057 0.764 0.764 3.912e-5 0.764 9.65e—5 0.764 0.00011
2 —0.1291 0.762 0.762 —0.00067 0.762 0.000361 0.762 0.0007
3 —0.0588 0.761 0.761 —0.00089 0.760 —3.9e-5 0.761 0.001
4 0.0057 0.760 0.759 0.00071 0.759 0.0014 0.760 0.0004
5 0.0646 0.760 0.758 0.00153 0.758 0.002 0.759 0.0011
6 0.1185 0.759 0.757 0.001575 0.757 0.0019 0.758 0.00107
7 0.1678 0.757 0.756 0.000214 0.756 0.0004 0.757 0.0003
8 0.2132 0.757 0.755 0.00148 0.755 0.0016 0.756 0.0008
9 0.2545 0.755 0.754 0.00089 0.754 0.00098 0.755 0.0003
10 0.2924 0.754 0.753 0.00077 0.753 0.0008 0.753 0.0002
11 0.3209 0.750 0.751 —0.00094 0.751 —0.0008 0.751 0.0012
12 0.3585 0.746 0.747 —0.00104 0.747 —0.0008 0.747 0.0010
13 0.3873 0.738 0.740 —0.00233 0.739 —0.0019 0.739 0.0019
14 0.4137 0.728 0.727 0.00036 0.727 0.0010 0.727 0.0011
15 0.4373 0.706 0.707 —0.0015 0.706 —0.0045 0.706 0.0002
16 0.459 0.675 0.676 —0.00095 0.675 0.0004 0.675 0.0005
17 0.4784 0.632 0.631 0.00041 0.630 0.0016 0.630 0.00186
18 0.490 0.573 0.572 0.00026 0.572 0.0016 0.572 0.00157
19 0.5119 0.499 0.500 —0.00257 0.499 —0.0010 0.499 0.0011
20 0.5265 0.413 0413 0.00413 0.413 —0.00137 0.413 0.0014
21 0.5398 0.316 0.317 —0.00283 0.317 —0.00266 0.317 0.0024
22 0.5521 0.212 0.211 0.00424 0.212 —0.00126 0.212 0.0005
23 0.5633 0.103 0.102 0.0073 0.102 0.00560 0.102 0.0078
24 0.5736 -0.010 —0.009 0.0100 —0.009 0.09727 0.009 0.0706
25 0.5833 -0.123 -0.125 —0.0020 -0.124 —0.00932 0.124 0.011
26 0.59 -0.210 —0.208 0.0095 —0.208 0.004979 0.209 0.0040

6. Conclusion

Accurate modeling of solar PV is necessary before designing the
entire PV system. The optimized parameter of single and double
diode models plays an important role for accurate modeling. This
paper presented a new Wind Driven Optimization algorithm for
parameter estimation of solar PV. The performance of WDO algo-
rithm was verified by comparing its results with PS, GA, and SA
algorithms using MATLAB optimization tool box. Results of WDO
clearly shows a better performance in terms of accuracy and con-
vergence. In addition, in order to further validate the proposed
algorithm, the WDO is compared with the optimization techniques
presented in recent literature. Compared to recent optimization
algorithms presented in literature such as Bee Pollinator Flower
Pollination Algorithm, Flower Pollination Algorithm, Generalized
Oppositional Teaching Learning Based Optimization, Artificial Bee
Swarm Optimization, and Harmony Search, the WDO shows better
results. As a result, WDO algorithm is recommended as the accu-
rate and fastest optimization algorithm for parameter estimation
of solar PV modules.
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