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Abstract. In this paper, we propose a new pattern classification system by combin-

ing Temporal features with Fuzzy Min–Max (TFMM) neural network based classifier

for effective decision support in medical diagnosis. Moreover, a Particle Swarm Opti-

mization (PSO) algorithm based rule extractor is also proposed in this work for

improving the detection accuracy. Intelligent fuzzy rules are extracted from the tem-

poral features with Fuzzy Min–Max neural network based classifier, and then PSO

rule extractor is used to minimize the number of features in the extracted rules. We

empirically evaluated the effectiveness of the proposed TFMM-PSO system using the

UCI Machine Learning Repository Data Set. The results are analysed and compared

with other published results. In addition, the detection accuracy is validated by using

the ten-fold cross validation.

Keywords. Temporal fuzzy min–max (TFMM) neural network; particle swarm

optimization algorithm (PSOA); pattern classification; rule extraction.

1. Introduction

Data mining is concerned with analysing large volumes of data to automatically discover

interesting relationships which in turn lead to better understanding of the underlying pro-

cesses. Temporal data mining is the application of data mining techniques on temporal

data which is helpful for retrieving the temporal relationships from an ordered data streams

(Laxman & Sastry 2006). Basically, temporal data mining provides facilities for the analysis

of past, present and future data for finding temporal patterns and regularities in sets of tempo-

ral data. Storage, retrieval and mining of temporal patterns from temporal databases pertaining
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to medical applications are gaining popularity recently. This helps to perform temporal pattern

analysis, where temporal databases are used for storing patient histories. These databases pro-

vide features for temporal rules extraction Meamarzadeh et al (2009), which may be further used

for decision support system.

Classification has been an active area of research for many decades in data mining. Recently,

there is a growing interest in developing accurate classifiers by using soft computing paradigms.

From the time, Fuzzy set theory was introduced by Zadeh (1965), pattern recognition and classi-

fication problem have been intensively researched and were solved using fuzzy sets (Zhang et al

2009). The success of this approach is based on the fact that a fuzzy logic system using rules can

suitably model the qualitative aspects of commonsense knowledge and reasoning processes of

human without applying precise quantitative analysis (Wai & Lee 2008). Recently, a great deal

of attention is paid to the integration of fuzzy logic and neural networks for developing effective

intelligent systems (Wai & Lee 2008; Zhang et al 2009).

Fuzzy Min-Max neural network is a classifier that consists of computing the union of fuzzy

membership function values produced from different fuzzy set hyperboxes (Simpson 1992;

1993; Quteishat et al 2010). Moreover, a hyperbox is used to define a pattern for full class mem-

bership, which is a region of the n-dimensional pattern space. A hyperbox is completely defined

by its minimum and maximum points. A membership function in this context is defined with

respect to these hyperbox minimum and maximum points. In the Weighted Fuzzy Min–Max

neural network (WFMM) proposed by Kim & Yang (2005), the membership function assigns

values by considering not only the occurrence of input patterns but also the frequency of the

occurrences. The WFMM works better for datasets with highly uneven distribution of features.

Quteishat et al (2010) proposed a modified FMM neural network with a confidence factor which

is calculated by each hyperbox, where a user-defined threshold was developed for pruning the

hyperboxes with low confidence factors. An Euclidean distance measure was introduced in that

work for predicting the target class associated with new input patterns.

There is a general belief that social sharing of information among individuals of a population,

may provide an evolutionary advantage, and there are numerous examples coming from nature

to Particle Swarm Optimization (PSO). The PSO method is a member of the wide category of

Swarm Intelligence methods (Kennedy & Eberhart 2001). Initially, Kennedy & Eberhart (1995)

proposed a PSO for the simulation of social behaviour and also introduced as an optimization

method. The main advantage of PSO is that it can be easily implemented and is computationally

inexpensive due to its less memory and CPU speed requirements (Eberhart et al 1996). Further-

more, it works without gradient information of the objective function being and hence PSO has

been proved to be an efficient method for numerous general optimization problems. PSO has

been successfully applied in the recent days to a range of problems, from function optimization

to the training of neural networks.

In this paper, we propose a new temporal pattern classification system by extending the Fuzzy

Min–Max (FMM) neural network Quteishat et al (2010) with temporal features from temporal

clinical datasets. In addition, we propose a new PSO-based rule extractor in order to retrieve and

optimize the fuzzy temporal rules. First, temporal FMM neural network is proposed to generate

four hyperboxes. These hyperboxes are pruned based on rules. Second, ‘open hyperboxes’ are

generated from the original hyperboxes in which PSO is used to minimize the number of input

features in the rules and to maximize classification accuracy. Third, the proposed TFMM-PSO

system has been evaluated using University of California Irvine (UCI) Machine Learning Repos-

itory Data Set and the results are analysed and compared with other published results. Finally,

the detection accuracy is validated by using the tenfold cross validation. The remainder of this

paper is organized as follows. Section 2 provides the features of some of the related works.
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Section 3 discusses the system architecture of the proposed work. Section 4 explains about our

proposed temporal constraint based classification and rule extraction technique used in this pro-

posed work. Section 5 analyses the comparative performance of our proposed algorithm with the

other existing classification techniques. Section 6 gives concluding remarks and suggests future

directions.

2. Literature survey

In the past, lots of works have been carried out in classification areas based upon the theory of

statistics, and the theory of databases (Simpson 1992, 1993; Quteishat et al 2010; Oong & Isa

2011). Temporal classification techniques have been paid much attention in the past two decades.

Moreover, representation and analysis of temporal data pertaining to medical diagnosis systems

is gaining importance recently. This helps to perform temporal pattern analysis, where temporal

databases are used for storing patient histories. These databases provide features for temporal

rules extraction Meamarzadeh et al (2009), which may be further used for decision support

system. Most of the existing systems Adlassnig et al (2006) concentrate on mining clinical data

based on snapshot of time points. Since clinical data is a series of observations taken at different

time points, it is necessary to classify the data based on the time period of observation.

Data mining in time series medical databases is becoming increasingly important in the field

of medical diagnosis and in an expert decision making system. Nowicki (2009) presented a new

approach to fuzzy classification within the case of missing information. The rough fuzzy sets

are incorporated into Mamdani-type neuro-fuzzy structures, and therefore the rough neuro-fuzzy

classifier is derived. Han & Qiao (2010) presented a novel growing-and-pruning (GP) approach,

which optimizes the structure of a fuzzy neural network (FNN). Oong & Isa (2011) presented

a novel replacement evolutionary approach known as the Hybrid Evolutionary Artificial Neural

Network (HEANN) for simultaneously evolving a man-made neural networks (ANNs) topol-

ogy and weights. Gui & Qiao (2012) outlined a learning algorithm for nonlinear modelling and

classification with that of radial basis operate neural networks to quicken the learning speed and

optimization method for the RBF neural networks.

In the past, many researchers have proposed various rule extraction methods (Quteishat et al

2010; Taylor & Darrah 2005; Campos et al 2004; Setiono et al 2002) based on ANN models.

A method for extracting IF–THEN rules from a multilayer perceptron network was proposed by

Campos et al (2004), in which the content of the antecedent and consequent parts of the rules

were same as in the original database. Another rule extraction technique proposed by Carpenter

& Tan (1995) comprised of two stages namely pruning and quantization. In pruning, the network

structure was used to remove excessive recognition categories such as weights. In quantizing, the

continuous network weights were applied for translating the system states into a set of rules. A

rule extraction technique was proposed by Setiono et al (2002) activation function was approx-

imated at each hidden neuron using a linear function for converting into three or five pieces. In

Xiuju & Lipo (2002), a data dimensionality reduction technique was introduced for removing

redundant features from the input data. Moreover, a gradient-based rule extraction method was

also used in that work to extract rules.

Quteishat et al (2010) introduced a pattern classification and rule extraction system which

comprises of a modified FMM network and a GA rule extractor which is denoted as FMM-GA.

This FMM-GA (Quteishat et al 2010) system is a modified FMM network in which they used

a pruning procedure to eliminate hyperboxes with low confidence factors. Zhang et al (2011)
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proposed a new algorithm for pattern classification using a new Data Core based Fuzzy Min-

Max Neural Network. Comparing with FMCN, this work is different since the hyperbox can

be expanded and can overlap repeated with the previous hyperboxes. Therefore, it generates

minimum number of hyperboxes for rule extraction.

Comparing with all the works present in the literature, the system proposed in this paper is

different and efficient in many ways. First, a new classification algorithm using Fuzzy temporal

approach has been proposed to capture the dynamic nature of diseases patterns of the medical

dataset. Second, it uses fuzzy rules for effective decision making. Third, it proposes PSO based

rule extraction method for effective classification. Finally, it uses the bench mark dataset and

ten-fold cross validation for proving the efficiency of the proposed system.

3. System architecture

The architecture of the system proposed in this work is shown in figure 1. It consists of six

major components namely, UCI Machine Learning Repository Data Set, data collection agent,

classification module, rule manager, rule base and user interface.

UCI machine learning repository data set: Input to the TFMM-PSO system is referred from

the bench mark UCI Machine Learning Repository Data Set which is used in this work for

carrying out the experiments.

Data collection agent: The Data collection agent collects the necessary data from the data set.

These data are sent to the classification module for classification of the data.

UCI Machine 

Learning 

Repository Data Set

Data 

Collection 

Agent Training Agent Pruning Agent

Decision 

Making Agent

Classification Module

Rule 

Selection

Rule 

Extraction

Rule Manager

Rule Base

User Interface

Figure 1. System architecture.



An intelligent temporal FMM-PSO system for medical diagnosis 287

Classification module: This module is used to classify the data by the help of training and

pruning agents.

(i) Training agent – This agent trains the data which are received from the data collection agent.

(ii) Pruning agent – This agent prunes the data which are received from the training agent.

Rule manager: The rule manager is responsible for rule extraction, rule selection and decision

making. First, rules are extracted based on the information provided by the classification module.

They are stored in the rule base. During testing, the rule selection subsystem selects the suitable

rules and sends them to the decision making agent. The decision making agent classifies the test

data using these rules and makes a suitable decision on diagnosis and planning for therapy.

Rule base: It contains IF THEN fuzzy temporal rules for classifying the data. The data set fea-

tures are classified based on the diagnostic parameters. Fuzzy IF-THEN rules are formed based

on the classification module and stored in the rule base.

User interface: It collects the data from the UCI Machine Learning Repository Data Set and

sends them to decision making agent for classification. Moreover, it performs validation using

ten-fold cross validation whenever the user initiates it.

4. Classification and rule extraction

In this section, we explain the proposed classifier called Temporal Fuzzy Min-Max Network

based pattern classifier which has been developed by extending the Modified Fuzzy Min Max

network (Quteishat et al 2010). In addition, the rule extraction method using Particle Swarm

Optimization proposed in this work is also explained.

4.1 Temporal fuzzy min max pattern classifier

In Temporal Fuzzy Min-Max Pattern Classification algorithm, we introduce timestamp analysis

in addition to the fuzzy min–max procedure. Therefore, instead of two subsets (training and

testing) as in the existing original FMM, the input/output data set is divided into four subsets

namely training, rule extraction, rule selection and testing. After that, the hyperboxes are created

which undergo a pruning process based on a user defined threshold. The training data set is used

for creating relevant hyperboxes in the proposed temporal FMM. The details are as follows.

4.1a Learning in temporal FMM network: Temporal FMM is an incremental and intelligent

learning system. In Temporal FMM, two fundamental techniques of granular computing are

used as shown in figure 2. In this model, time intervals are used to construct hyperboxes and

fuzzy sets are utilized for decision making. In TFMM, hyperboxes with fuzzy sets are formed

to represent the rules learned by the network. Moreover, it learns incrementally in two passes

through the data set and refines the existing pattern classes. It also has the ability to add new

pattern classes whenever it is necessary through the user interface. Learning in TFMM consists

of series of expansion and contraction processes that improve its hyperboxes for establishing

decision boundaries between the available classes. Moreover, we introduce additional boundaries
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Figure 2. Four layer TFMM network.

within the classes based on the timestamps t1 and t2. Whenever overlapping hyperboxes from

different classes occur in the input space, contraction is performed to eliminate the overlapped

regions as in the FMM model (Simpson 1992).

The structure of TFMM consists of four layers of nodes, as shown in figure 2. The first layer

is the input layer. It contains input nodes that are equal to the number of dimensions of the input

pattern. Second layer is the starting hyperbox layer. It contains hidden nodes that are equal to

the number of nodes in the input layers. The second hidden layer is called the ending hyperbox

layer. Each node of this second hidden layer represents a hyperbox temporal fuzzy set. The

nodes in the hidden layers have transfer functions for transforming the hyperbox membership

functions. The minimum and maximum points are stored in matrices V and W, respectively,

where V is computed from starting hyperbox and W is computed from the ending hyperbox. In

decision making, if a soft decision is required, the threshold is kept minimum. If a hard decision

is required, the procedure in Simpson (1992) is extended by identifying the output layer node

with the maximum value and set as the threshold.

The hyperboxes in TFMM have a range between 0 and 1 along each dimension. Hence, the

pattern spaces are represented using n-dimensional unit cube (In). The hyperbox membership

functions are defined with respect to the temporal minimum and maximum points of the hyper-

boxes. They denote the degree to which a pattern fits in the hyperbox. A pattern that is fully

contained in the hyperbox has a membership value of ‘1’. The definition of each hyperbox (Bj )

is extended as

Bj , t1, t2 =
{

X, V1t1, Wj t2f
(

X, Vj t1, Wj t2
)}

∀X ∈ I n, (1)

where, X = (x1,x2, . . . ..,xn) is the input pattern; Vj = (vj1 t11, vj2 t12, . . . . . .., vjn t1n) and

Wj = (wj1 t21, wj2 t22, . . . . . . , wjn t2n) are the minimum and maximum points of Bj , t1, t2,
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respectively; and f (X, Vj , Wj , t1, t2) is the membership function. As an example, figure 3 shows

the minimum and maximum points of a two class problem.

The learning algorithm of TFMM allows temporal overlapping of hyperboxes of the same

class in an interval, but eliminates overlapping of hyperboxes from different classes for the cor-

responding interval. The membership function for the jth hyperbox and t time, i.e. Bj (Ah, th),

where 0 ≤ Bj (Aj , tj ) ≤ 1, measures the degree to which the hth input pattern (Ah) falls outside

hyperbox Bj in the particular time interval [t1, t2] (Simpson 1992). As Bj (Ah, th) approaches

one, the pattern is said to be more ‘contained’ within the hyperbox. The resulting membership

function is,

Bj (Ah, th) =
1

2n

∑n

i−1

[

max
(

0, γ min
(

1, ahi − wji , t1
)

, t2
)

+ max
(

0, 1max (0, 1 − max
(

0, γ min
(

1, vji − ahi , t1
)

, t2
)

, t1
)]

, (2)

where Ah = (ah1, ah1, . . . ..,ahn) ∈ In is the hth input pattern and γ is a sensitivity parameter that

regulates how fast the membership value decreases as the distance between Ah and Bj increases

in the time period [t1, t2]. Applying the definition of fuzzy set in TFMM, the combined fuzzy set

that classifies the K th pattern class (Ck) is defined as

Ck = Uj∈kBj , t1, t2, (3)

where, K is the index set of the hyperboxes associated with class k.

The main processing step in TFMM is concerned with finding and fine tuning the class bound-

aries based on the distances and also fine tuning the boundaries within the class itself based

on the time interval. An example of a decision boundary for a two-class problem is shown in

figure 3. The TFMM learning methodology contains both expansion and contraction procedures.

Let a training set D consists of a set of M ordered pairs {Xh, dh} where, Xh = (xh1, xh2, . . . . . ..,

xhn) ∈ In is the input pattern and dh ∈ {1, 2, . . . .., m} is the index of one of the m classes and

t = [t1, t2].

During learning, an ordered pair from D is selected in the particular time period, and then,

a hyperbox from the same class is selected and included in the input pattern and expanded to

include it as in the existing work (Simpson 1992). If the existing hyperboxes cannot be expanded

C1

C2

C3

C4

Figure 3. Example of FMM hyper boxes placed along the boundary of four class problem.
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to contain the input pattern satisfying the time constraints, new hyperboxes are created. However,

expanding the hyperboxes may lead to overlapping between adjacent hyperboxes. If overlap-

ping occurs between hyperboxes of different classes, then the contraction process is initiated.

However, it is not a problem when overlapping occurs for hyperboxes of the same class. The

TFMM learning algorithm which is extension of MFMM Quteishat et al (2010) is summarized

as follows:

(i) Expansion: Expandable hyperboxes are identified and expanded. If an expandable hyperbox

is not found, a new hyperbox for that class is added with time period. For hyperbox Bj , t2 to

expand, the following constraint must be met:

nθ ≥ n
∑n

i=1
(max(wji , xhi, t2) − min(vji , xhi, t1)), (4)

where, 0 ≤ θ ≤ 1 is a user defined threshold that determines the maximum size of a hyperbox.

If the expansion and temporal constraints are met, the minimum and maximum points of the

hyperbox are adjusted based on the time as follows:

vnew
ji = min

(

vold
ji , xhi, t1

)

∀i, i = 1, 2, . . . .., n, (5)

wnew
ji = max

(

wold
ji , xhi, t1

)

∀i, i = 1, 2, . . . .., n. (6)

(ii) Overlapping test: Overlapping tests are carried out to check whether there is an overlap

between hyperboxes from different classes during an interval [t1, t2], with the assumption

that the overlapping value is initially set to 1, i.e., δold = 1. Therefore, the new overlapping

value δnew is calculated as given in the following cases.

Case 1 : vji < vki < wji < wki,

δnew = min
(

wji − vki, δold , t1
)

,
(7)

Case 2 : vki < vji < wki < wji ,

δnew = min
(

wki − vji, δold , t1
)

,
(8)

Case 3 : vji < vki < wki < wji ,

δnew = min
(

min
(

wki − vji, wji − vki, t1
)

,
(9)

Case 4 : vki < vji < wji < wki ,

δnew = min
(

min
(

wji , vki, wki − vji, t1
)

, δold, t1
)

,
(10)

where, j corresponds to hyperbox Bj , t that has been expanded in the previous step and k cor-

responds to hyperbox Bk , t that represents another class currently being tested for possible

overlapping. If δold – δnew > 0 in the interval [t1, t2], then � = i and δold = δnew in [t1, t2]. If

this is met, there is an overlap in the �th dimension, and the overlap test continues for the next

dimension. Otherwise, the test stops, and the minimum overlap index variable (�) is set to indi-

cate that the next contraction step is not necessary, i.e., � is set to a value smaller than ‘0’ for

the interval [t1, t2].

(iii) Contraction: If there is an existence of overlapping between hyperboxes of different classes,

then the following procedure is used to eradicate it. If � > 0 during [t1, t2], then the �th
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dimension of the two overlapping hyperboxes are adjusted. Any one of the n dimensions

of the hyperbox is adjusted to maintain the hyperbox as large as possible. Four cases are

examined in this work to make sure that a proper adjustment has been made similar to FMM

Quteishat et al (2010) with temporal constraints.

Case 1 : vj� < vk� < wj� < wk� during [t1, t2]

wnew
j� = vnew

k� =
wold

j�
+vold

k�

2
,

(11)

Case 2 : vk� < vj� < wk� < wj� during [t1, t2]

wnew
k� = vnew

j� =
wold

k� +vnew
j�

2
,

(12)

Case 3a : vj� < vk� < wk� < wj� during [t1, t2]
(

wk� − vj�

)

<
(

wj� < vk�

)

, vnew
j� = wold

k� ,
(13)

Case 3b : vj� < vk� < wk� < wj� during [t1, t2]
(

wk� − vj�

)

>
(

wj� < vk�

)

, wnew
j� = vold

k� ,
(14)

Case 4a : vk� < vj� < wj� < wk� during [t1, t2]
(

wk� − vj�

)

<
(

wj� < vk�

)

, wnew
k� = vold

j� ,
(15)

Case 4b : vk� < vj� < wj� < wk� during [t1, t2]
(

wk� − vj�

)

>
(

wj�vk�

)

, vnew
k� = wold

j� .
(16)

4.1b Pruning the TFMM neural network: In this proposed work, a pruning procedure is incor-

porated into the TFMM after its learning phase in order to reduce the search space. The objective

is to form an optimal neural network size with a high temporal pattern classification perfor-

mance. During pruning, a confidence factor (CFj ) for each hyperbox Bj , t in terms of its usage

frequency and predictive accuracy for time interval [t1, t2] on a separate prediction data set is

calculated as follows:

CFj (t) = (1 − γ )Uj , t + γAj , t with t1 ≤ t ≤ t2, (17)

where, Uj , t and Aj , t are the usage and accuracy indices of hyperbox Bj , t and γ ∈ [0, 1] is

a weighting factor. The usage index of a hyperbox is defined as the number of prediction set

patterns classified by any hyperbox Bj , t divided by the maximum number of prediction patterns

classified by any hyperbox with the same classification class in the specified time period. On the

other hand, the accuracy index of a hyperbox is defined as the number of correctly predicted set

of patterns classified by any hyperbox Bj , t divided by the maximum correctly classified patterns

with the same classification class in the given time period.

The confidence factor is used to identify the hyperboxes that are frequently used and

generally accurate in prediction, as well as hyperboxes that are rarely used but nevertheless

highly accurate. Confidence factor of each hyperbox is compared with that of a user defined

threshold and hyperboxes with a confidence factor smaller than a user-defined threshold are

pruned. The confidence factor is also attached to the fuzzy temporal IF–THEN rules extracted

from the corresponding hyperbox in the particular time period. Thus, the degree of certainty of

each fuzzy rule is tagged with a confidence measure to indicate its certainty level to the domain

users. The pruned set of hyperboxes with high confidence values in the given time interval are

used in next section of the proposed TFMM-PSO system.
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4.2 Particle swarm optimization based rule extractor

In this section, the remaining hyperboxes (after pruning) from stage 1 are used to generate ‘open’

hyperboxes. All hyperboxes (closed and open) are fed to the PSO for evolution. The resulting

hyperboxes are used for rule extraction. These procedures are as follows.

Stage 1: Four types of hyperboxes are generated by TFMM namely input, starting hyperbox,

ending hyperbox and output.

Stage 2: This stage is used to evolve and select a set of hyperboxes that yields a good classifica-

tion accuracy rate with a small number of features. Let ‘p’ be the number of hyperboxes

after pruning and ‘d’ is the number of dimensions of each hyperbox in the particular

time interval [t1, t2]. The chromosome (S) of the PSO is a binary string that represents

a solution comprising all the possible open hyperboxes as follows:

S =
{

D1
1, D1

2, . . . . . . , D1
d , D2

1, D2
2, . . . ., D2

d , . . . ., D
p

1 , D
p

2 , . . . ., D
p
d

}

during [t1, t2] . (18)

During a particular time interval [t1, t2], a value ‘1’ for the member in ‘S’ indicates that the

membership grade is calculated from the minimum and maximum points of a closed hyperbox.

On the other hand, a value of ‘0’ for the member in S during [t1, t2] indicates that the dimension

is a ‘dont care’ dimension, and its membership value is set to 1. The number of possible IF–

THEN rules generated is nd , where d is the dimension of the input features and n is the number

of fuzzy partitions in each dimension. This linguistic set of fuzzy partitions of n is set to six

as suggested in Ishibuchi et al (1997) to indicate ‘small,’ ‘medium small,’ ‘medium,’ ‘medium

large,’ ‘large,’ and ‘dont care’. This leads to the ‘curse-of-dimensionality’ problem when a high-

dimensional data set is used. In TFMM-PSO, the length of S and the PSO search space are

subject to the number of hyperboxes, which is controlled by pruning in time. In other words, the

‘curse-of-dimensionality’ problem in TFMM-PSO can be mitigated by pruning.

To achieve the objectives of maximizing classification accuracy and minimizing the number of

input features, the PSO fitness function used an extension of Ishibuchi et al (1997) with temporal

constraints.

Maximize (S, t) = WNCP .NCP (S, t) − Ws, t.|S| Subject to t1 ≤ t ≤ t2, (19)

where, NCP(S, t) is the number of correctly classified patterns by the selected hyperbox set at

time t, |S| is the number of features used, WNCP and WS are positive weights, and 0 < WS ≪

WNCP. The genetic operation implemented consists of the following steps.

Stage 1: Initialize the population strings Npop for the time interval [t1, t2]. The strings are

generated by assigning ‘0’ for ‘dont care’ features and 1 for other features.

Stage 2: The current best fitness achieved by particle S is set as St1 best. The selection

probability P(S, t) of a string S in a population � (t) is specified as

P (S, t) =
{f (S, t) − fmin(�(t))}

∑

S′ǫ� {f (S, t) − fmin(�(t))}
, (20)

where,

fmin(ψ(t)) = min{f (S, t)|S, t ∈ ψ(t)}. (21)
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Stage 3: Evaluate the desired optimization fitness function fp(t) for each particle as the Mean

Square Error (MSE) over a given data set.

Stage 4: Compare the evaluated fitness value f S(t) of each particle with its St1best value. If fs(t)

< St1 best then St1 best = fs(t) and besttS = t, tS is the current coordinates of particle

S, and besttS is the coordinates corresponding to particle S’s best fitness so far.

Stage 5: The objective function value is calculated for new positions of each particle. If a better

position is achieved by an agent, St1 best value is replaced by the current value. As

in Stage 1, t2best value is selected among St1 best values. If the new t2best value is

better than previous t2best value, the t2best value is replaced by the current t2best value

and this value is stored. If fS(t) < t2best then t2best = S, where t2best is the particle

having the overall best fitness over all particles in the swarm.

Stage 6: Change the velocity and location of the particle according to Eqs. 20 and 21,

respectively.

Sv, t1 = 1 → Sv, t1 = −1 with probability Py

Lv, t1 = Sv, t1 × t2 with probability Py .

Stage 7: Fly each particle p according to Eq. 21.

Stage 8: If the maximum number of predetermined iterations (epochs) is exceeded, then stop;

otherwise, Loop to step 3 until convergence. In this work, 50 populations of weights

were evolved for 100 generations.

The hyperbox set evolved and selected by the PSO is used for rule extraction as follows:

4.2a Extracting temporal fuzzy IF–THEN rules: For rule extraction, each hyperbox is trans-

formed into one fuzzy temporal rule. The rule extraction procedure starts by quantizing first the

minimum and maximum values of each input feature during the interval [t1, t2].

For quantization, the interval [t1, t2] with t2 – t1 = Q is divided into q intervals, and the input

feature is assigned to the quantization points evenly with ‘1’ at each of the end points based on

as (Carpenter & Tan 1995).

Aq(t) =
(q − 1)

(Q − 1)
. (22)

The temporal fuzzy IF–THEN rules extracted are in the following format:

Rule Rj : IF xp1, t is Aq , t and . . . xpn, t, is Aq , t,

THEN xp, t is class Cj , t with CF = CFj ,t j = 1, 2, . . . .., N, t1 ≤ t ≤ t2,

where, N is the number of hyperboxes, xp = (xp1, . . . . . , xpn) is an n-dimensional pattern vector,

Aq (t) is the antecedent value, and CFj , t is the confidence factor of the jth hyperbox.

4.2b Rule firing: The rules extracted from the training phase are stored in the rule base. Dur-

ing the testing phase, rules are selected and fired using forward chaining inference for making

effective decisions. The rule manager developed into this work uses fuzzy temporal constraints

in rule matching and hence the decisions on medical datasets are provided with necessary

accuracy. Rule execution is carried out during the testing phase for checking the input data

effectively.
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5. Results and discussion

Our proposed pattern classification approach have been experimented and tested by different

medical dataset from the UCI Machine Learning Repository Data Set (Murphy & Aha 1995).

Due to the specific features of clinical data, we present a brief description of their characteristics.

5.1 Data description of input dataset

5.1a Diabetes data set: This data set is also referred from the UCI Machine Learning Repos-

itory Data Set (Murphy & Aha 1995), which is prepared by Michael Kahn, Washington

University, St. Louis. The DIABETES data sets in this directory are provided for use in 1994,

AI in Medicine symposium submissions. Diabetes files consist of four fields per record such as

Date, Time, Code and Value. The Code field is deciphered in Murphy & Aha (1995) as shown

in table 1.

There are 70 text files in the UCI repository and each file is assigned to one patient and stores

her or his disease history. The patients are insulin deficient. This disease is manifested by many

so-called metabolic effects, the main one being high blood glucose, which can be detected by

measurements. The goal of the therapy is to bring the average blood glucose level of the patient

down to the normal range. However, in spite of insulin injections, due to many reasons, blood

glucose concentrations around the mean can increase to dangerous levels, so the concentration

should be continuously monitored. The exercises performed by patients can cause blood glucose

concentrations to decrease with variable time delays of this effect. Another factor is that a large

meal can cause longer and higher elevations of blood glucose. Controlling glucose in the blood is

a challenging task. The effects of the insulin dose vary with time and can be only approximately

estimated by doctors. The frequency of injections and blood glucose measurements are obviously

very important for the patient.

Table 1. Code field of diabetes data set.

33 = Regular insulin dose

34 = NPH insulin dose

35 = UltraLente insulin dose

48 = Unspecified blood glucose measurement

57 = Unspecified blood glucose measurement

58 = Pre-breakfast blood glucose measurement

59 = Post-breakfast blood glucose measurement

60 = Pre-lunch blood glucose measurement

61 = Post-lunch blood glucose measurement

62 = Pre-supper blood glucose measurement

63 = Post-supper blood glucose measurement

64 = Pre-snack blood glucose measurement

65 = Hypoglycemic symptoms

66 = Typical meal ingestion

67 = More-than-usual meal ingestion

68 = Less-than-usual meal ingestion

69 = Typical exercise activity

70 = More-than-usual exercise activity

71 = Less-than-usual exercise activity

72 = Unspecified special event
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Table 2. Inputs attributes list.

Selected attributes and their depicted values as in Cleveland database

Patient id: patient identification number

Age: age in years

CP: (chest pain type) 1-type1 angina, 2-type 2 angina, 3-non angina, 4-asymptomatic

Trestbps: resting blood pressure

Restecg: resting electrocardio graphic results 0-normal, 1- ST-T wave abnormal, 2-left ventricular

hypertrophy

Thalach: maximum heart rate achieved

Exang: exercise induced angina. 1-yes, 0-No

Oldpeak: ST depression induced by exercise relative to rest

Slope: the slope of the peak exercise ST segment. 1-unsloping, 2-flat,3-downsloping

CA: number of major vessels coloured by fluoroscopy values 0–3

Fbs: fasting blood sugar. 1 > 120 mg/dl

0 < 120 mg/dl

5.1b Heart data set: Clinical dataset contains attributes that are irrelevant, redundant and sim-

ilar and hence it has to be eliminated or clustered in order to build a more efficient model. The

sample Cleveland database consists of a number of 303 patient records which includes a set of

76 attributes of numeric, categorical and different data types. Table 2 shows the list of attributes

for heart dataset.

The main focus of experimental analysis is with heart and diabetic data sets. In addition to

that, some other data sets from the UCI Machine Learning Repository Data Set such as Glass,

Wine and PID are used to test the classification accuracy and the number of rules generated by

TFMM-PSO system. The medical dataset used in this work has the third dimension namely the

time. In addition to the tuples and attributes as the first and second dimension, temporal features

are provided through time stamping and hence the data set considered is of higher dimension.

5.2 Experimental evaluation of TFMM-PSO classifier

In this work, three different networks namely FMM (Simpson 1992), FMM-GA (Quteishat et al

2010) and TFMM-PSO have been constructed and evaluated with ten-fold cross-validation using

the various subsets of UCI Machine Learning Repository Data Sets. All the data samples were

divided into ten subsets, where nine of them were used for training, and the remaining one was

used for testing. As TFMM-PSO required a prediction data set for rule extraction, 10% of the

training data samples were taken to form the prediction data set. This procedure was repeated ten

times until each of the ten subsets was evaluated. To quantify the performance, the experiment

was repeated ten times (each with randomized data sequences), and the results were averaged.

In all the experiments, the pruning threshold was set to 0.7, i.e., hyperboxes with CF smaller

than 0.7 were pruned. The objective is to maintain a small number of hyperboxes, each with a

reasonably high CF with temporal constraints. Open hyperboxes were generated after pruning.

The resulting hyperboxes were sent to the PSO rule extractor for evolution. Finally, fuzzy IF–

THEN rules were extracted from the selected hyperboxes by quantization. To minimize the effort

in fine-tuning the network parameters, the PSO parameters were used in all the experiments were

set as follows:

(i) Population size Npop = 100;
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(ii) Rate of change of velocity = 0.9;

(iii) Location change rate = 0.1;

(iv) Number of hyperboxes replaced in each population = 20;

(v) Stopping condition = 1000 generations, or no change in the maximization function value

for 2 consecutive iterations.

Table 3 shows the classification results (the percentages of test accuracy rates and the number

of hyperboxes) from FMM, pruned FMM, and TFMM-PSO at 5% level. In general, TFMM

performed better than pruned FMM. As pruning with temporal constraints eliminated a large

number of hyperboxes from the network, the numbers of hyperboxes in FMM were at least

91% less than those in FMM. Table 3 also shows the accuracy rates of TFMM-PSO, which is

better than FMM and pruned FMM. With the help of the PSO, TFMM-PSO has improved the

performance of pruned FMM. As pruned FMM and TFMM-PSO used the same numbers of

hyperboxes for classification, the PSO was proven useful for providing better performance.

From table 4, it can be observed that the proposed TFMM-PSO has taken less time when it is

compared with FMM. This decrease in time is due to use of optimization with PSO.

The rules learnt using decision trees and random forest are suitable to classify the complete

data. However, the medical dataset used in this work evolves continuously with respect to

time and it is fuzzy in nature. Therefore, uncertainty has to be considered in decision making.

The classifier proposed in this work can handle uncertain and incomplete medical data effectively

by applying fuzzy temporal constraints. It also uses instant comparison and interval comparison

operators with fuzzy membership function in order to perform effective classification. Hence, it

is essential to have a new classifier instead of applying decision rules and random forests.

5.3 Experimental evaluation on fuzzy temporal rules

5.3a Diabetics data: Diabetic patient data set can be broadly classified into two decision

classes such as diabetic or non-diabetic. The main classification is performed with insulin dosage

to maintain the blood glucose level. The numeric data set can be fuzzified into five linguistic

term set and the rule extractor helps to derive fuzzy temporal IF-THEN rules. When classifiers

are used, they apply the rules based on the classification algorithm. However, generation of rules

help to apply fuzzy and temporal constraints effectively. Moreover, when rules are used, it is pos-

sible to fire both active and passive rules. Rules with priority and rules with exception can also

be added for effective decision making. Rules can be used to perform deductive inference either

using forward chaining or backward chaining control flow mechanism based on the type of data.

Rules matching algorithms are able to generate discriminate networks and are able to perform

rule execution even when rules chaining occur. Therefore, application of fuzzy and temporal

rules helps in making effective decisions.

A sample set of rules for diabetic dataset is presented below:

Rule 1: Dont Care

IF the patient’s blood sugar value is below 120

THEN the patient does not require insulin dosage.

Rule 2: Low

IF the patient’s blood sugar value is in the range of 120 to 150



An intelligent temporal FMM-PSO system for medical diagnosis 297

THEN the patient requires insulin dosage and he/she is suffering from diabetes

slightly.

Rule 3: Medium

IF the patient’s blood sugar value is in the range of 150 to 200

THEN the patient requires insulin dosage and he/she is suffering from diabetes

slightly.

Rule 4: High

IF the patient’s insulin value is 200–250

THEN the patient requires insulin dosage and he/she is suffering from diabetes

severely.

Rule 5: Very High

IF the patient’s insulin value is above 250

THEN the patient requires insulin dosage and he/she is suffering from diabetes

severely.

The rules for severely diabetic patient with NPH 12 units before breakfast, 6 units before dinner

and regular insulin:

Rule 1: IF blood glucose is 70–100 mg/dl THEN it requires 4 units of regular insulin dosage

during pre-breakfast and pre-dinner.

Rule 2: IF blood glucose is 90–145 mg/dl THEN it requires 4–5 units of regular insulin dosage

during pre-breakfast and pre-dinner.

Rule 3: IF blood glucose is 135–190 mg/dl THEN it requires 5–6 units of regular insulin

dosage pre-breakfast and pre-dinner.

Rule 4: IF blood glucose is 185–245 mg/dl THEN it requires 6–7 units of regular insulin

dosage pre-breakfast and pre-dinner.

Rule 5: IF blood glucose is 235–290 mg/dl THEN it requires 7–8 units of regular insulin

dosage pre-breakfast and pre-dinner.

Rule 6: IF blood glucose is 251–300 mg/dl THEN it requires 8–9 units of regular insulin

dosage pre-breakfast, 1 unit of insulin pre-launch and 8 unit of insulin pre-dinner, and

1 unit at bed-time.

Rule 7: IF blood glucose > 300 THEN 9 units of insulin dosage pre-breakfast, 2 units pre

launch, 9 units pre-dinner, and 2 units at bed-time.

5.3b Heart dataset: Heart data includes 4 decision classes according to the type of chest pain.

In the case of heart dataset is possible to have a fourth dimension namely spatial features. In

such a scenario, the spatio-temporal constraints can be provided in the form of rules in order to

perform decision making from high dimensional spatio-temporal data.

In TFMM-PSO, the rules have been extracted by normalizing the input values to a score. The

rule extractor is working based on the score assigned to each of the risk assessing factor as shown

in table 5.
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The probability of the severity of heart disease is diagnosed with respect to the score obtained

from the risk assessing parameters. Since the score values are numeric they are fuzzified to the

range [0, 1] for classifying the type and severity of heart disease based on the following fuzzy

rules.

Rule 1: Dont Care

IF Age is below 45

Chestpain is asymptomatic

No exang

Normal restecg

Slope is from 0 mm to 1 mm

THEN the severity of heart disease is Nil.

Rule 2: Low

IF Age is between 45 and 55

Chestpain is non-angina

No exang

Abnormal restecg

Slope is from 1 mm to 2 mm

THEN the severity of heart disease is low.

Rule 3: Medium

IF Age is between 55 and 65

Chestpain is typical angina

History of exang

Abnormal restecg

Slope is from 1 mm to 2 mm

THEN the severity of heart disease is medium.

Rule 4: High

IF Age is between 60 and 70

Chestpain is typical angina

History of exang

Abnormal restecg

Slope is from 2 mm to 3 mm

THEN the severity of heart disease is high.

Rule 5: Very High

IF Age is above 70

Chestpain is atypical angina

History of exang

Abnormal restecg

Slope is from 2 mm to 3 mm

THEN the severity of heart disease is very high.
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Table 4. Computational time for the bench mark data sets.

Computational time for stage one Computational time for stage one

Data set (FMM learning) (sec) (TFMM learning) (sec)

Diabetic 23.72 23.02

Heart 22.52 21.3

Glass 24.96 24.56

Wine 10.83 10.41

PID 639.72 631.52

Table 5. Score assigned for each risk assessing factor.

Factor Value Score

Age <50 0

50–60 1

60–70 2

>70 3

ChestPain asymptomatic 0

non angina 1

typical angina 2

atypical angina 3

Restecg Normal 0

Abnormal 1

History of Exang Not present 0

present 1

Slope 0–1 mm 1

1–2 mm 2

2–3 mm 3

Table 6. Comparison of number of rules generated for FMM-GA and TFMM-PSO.

Threshold for

hyper box FMM-GA (Quteishat et al 2010) TFMM-PSO

pruning Average number Classification Average number Classification

Data set (0 ≤ θ ≤ 1) of rules accuracy of rules accuracy

Diabetes 0.2 10.3 0.62195 10.01 0.67423

0.4 9.35 0.7082 9.2857 0.70337

0.5 8.55 0.6832 8.2857 0.68539

0.6 7.85 0.7448 6.8 0.7448

0.7 6.4 0.7962 6.02 0.7962

Heart disease 0.2 16.5 0.7103 13.5 0.7305

0.4 15.05 0.73 12.01 0.742

0.5 13.6 0.7502 10.25 0.7702

0.6 12.5 0.7923 10.01 0.8257

0.7 11.25 0.8125 9.8 0.8475
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The above rules which are inferred by TFMM-PSO system suggest the probability of incidents

causing severity of heart disease with the selected set of risk assessment factors from the data

set. The same can be applied to derive the different set of rules with respect to other factor also.

Table 6 shows the comparative analysis of the proposed TFMM-PSO with the existing tech-

nique. From table 6, it is seen that this proposed TFMM-PSO provides better performance than

FMM-GA with respect to the number of rules and classification accuracy. This is because in the

proposed TFMM-PSO, a minimal rule set is obtained by applying PSO experimental results and

it is proved that the proposed system provides better classification accuracy.

6. Conclusion and future enhancement

A pattern classification and rule extraction system has been proposed in this paper. The sys-

tem comprises a Temporal FMM network and a PSO rule extractor. The proposed TFMM-PSO

system has a number of novel properties. First, a modified FMM network that uses a pruning

procedure to eliminate hyperboxes with low confidence factors has been proposed. Second, the

proposed system uses a PSO rule extractor to generate and select a compact rule set with high

classification accuracy. Third, a rule extraction procedure to extract fuzzy IF–THEN rules with

‘dont care’ antecedents has been introduced. The performances of TFMM-PSO have been eval-

uated using five benchmark problems and a real medical diagnosis task. The results have been

compared with pruned FMM, as well as other methods published in the literature. The outcomes

have shown that the classification performances of TFMM-PSO are better than those from other

systems. One of the main advantages of TFMM-PSO is the comprehensibility of the extracted

rules. Future works in this direction can be the proposal of a temporal logic for better reasoning.
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