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632014,India
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Abstract: Unreliable vacation retrial queue and multi stages of service delay in repair is
studied.After completion of the i"G=12,..k) stage of service, the unit may have the option to
choose (i+1)" stage of service with probability 8;, or with p; may join into orbit to give
feedback or may leave the station with probabilityg =1-p -6, (i=1,2,..k—1)and
g =1-p, (i=k) After service completion if the orbit has no units, server takes
avacation.During repair, the unit waiting in the system to complete the remaining service

(delay time) is discussed.We analyzed the system using the method of supplementary variable.
Simulation results are given using MATLAB.

1. Introduction

Retrial queueing system with vacations is very useful while dealing with real time situations. The
survey on retrial queues by Artelijo et al.[1],Artalejo[2], [3]and Falin et al. [7] is followed to frame
this work.Wanget al. [13] have studied the retrial queueing system with single server and second
optional services. Recently, Salehiradat al. [11] and Bagyamet al. [4] have discussed about Bernoulli
feedback.

Service station breakdowns are very common in queueing systems. Keet al. [9], Choudhury et al.
[6] discussed, about two phases of service batch retrial queueing pattern and delaying repair. Chen et
al. [5] analyzed the breakdowm queues.Wang et al. [13] and Zhang M et al. [14] discussed the
vacations in queueing system.Krishnakumar et al. [10] surveyed a queueing systems.

This paper finds applications in communications oriented systems and in industrial organizations, etc.

2. Characteristics of the model

2.1 Arrival process

Units arriving the system in batches with Poisson arrival rate 1. Let X, the number of units in the k™
batch, where k£ =1,2 ,3,... with common distribution Pr[X, =n]=y,, n= 1,2,3...The PGF (probability
generating function) of X is X(z).The first and second moments are E(X)and E(X(X -1)).

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
BY of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOIL.
Published under licence by IOP Publishing Ltd 1
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2.2 Retrial process:

If there is no space to wait, one from the arriving unit begins service (if the server is free) and rest are
waiting in the orbit. If an arriving batch finds the server either busy or on vacation or breakdown, then
the batch joins into an orbit.Herelnter-retrial times form an arbitrary distribution R(x)with

corresponding Laplace-Stieltijes transform (LST) R'(s).

2.3 Service process:
Here aserver gives k stages of service. The First Stage Service (FSS) is followed by istages of service.

The service time Sfori=1,2,...k has a distribution (general) function § (x)having LSTS(s) and first
and second moments are E(S,) and E(S7), (i= 1,2,...k).

2.4 Feedback rule:

After completion of i™ stage of service the customer may go to (i+1)"stage with probability i or may
join into the orbit as feedback customer with probability p; or leaves the system with probability
g =1-0-p fori=1,2,.. k-1. If the customer in the last k"stage may join to the orbit with probability px
or leaves the system with probability g =1-p,. From this model, the service time or the time required

k
by the customer to complete the service cycle is a random variable S is given by S = Z®i—lSi having
i=1

k k
the LST S%(s)= l_l(ai_lS;k (s)and the expected value isE(S)= Z®i—1E(Si)’ where
i=1 i=1
0,=606,.6. and ©,=1.
2.5 Vacation process:
If the orbit has no units, the server takes a single vacation (simply taking break or secondary job etc.,)
of random length V. After finishing the vacation, the server is idle to provide service for primary units

or units from the orbit. Here the distribution function V(x) and LST V"(s) with moments E(V)and
EV?).

2.6 Breakdownand repair-

The service station may down at any time with Poisson rate ¢; where i=1,2,...k during service. The
unit on service has to wait to complete the remaining service. This waiting time is taken as delay time.
The server continues the service for this unit after the repair process.

Here the waiting time is defined as delay time. The delay time D/as density function Di(y) , Laplace-
Stieltijes Transform D;"(s) and finite k" moment ED') (i=1,2,...k and k=1,2). The repair time G; has

the distributions functiongG(y)and LST ¢ '(s)for (i=1,2,...k).Consider various Probability processes

involved in the system are mutually exclusive.

In the steady state, letR(0)=0,R(0)=1S5,(0)=0,S;(0)=1,i=12,..kare continuous at x = 0 and

D,(0)=0,D,()=1,G,(0)=0,G,(0) =1 are continuous at y =0, (1<i<k).Let R (), Sio(t) ,D (nand G (1)
be the elapsed times for retrial, serviceon i" stage, delayinrepairon i stage, repair on i" stage,
(1<i<k)respectively.Now, a random variable at time t,
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0, if the server is idle,
1, if the server is busy on it stage,
C(t) =<2, if the server is repair on i stage,

3, if the server is on delaying repair of i th stage,

4, if the server is on vacation.

The Markov process {C@®), N@®);t =0} describes the system state, where C(t) - the server state
and N (¢) - the number in orbit at time 7, the functions a(x), x(x), y(x), 7.(y) and &(y) are the

conditional completion rates for retrial, service, vacation, delayin repair and repair respectively (1<i <
k).

dR(x) ds; (x) dv(x) dD,(y)
dx="9 ) (ode =200y (0dx = o1 (y)dy = 228
a(x) R () =50 7(x) Vi 17;(y)dy 1—D.(»)
and &£ (y)dy = 4G (Y)  Define B =S5,S,...S; and B, =1.The first moment M, and second moment M,
’ 1-G,(»

of B/ are given by

M, = lin}dBf[A,-(z)]/dz =Y AEX)E(S )(1+ o [E(G)) + E(D))]),
z— =

AE(X (X ~1) +a,[AE(X (X ~I)[EG;)+ ED,)]
i | =My
My, =limd?B[4,(2)] fde* =Y "= (AECO) [EGH + EDD]

J=1 2 5 2
+(AEOES))) ES))(1+a,[EG))+ED))))

where 4,(2) =, (1= G} (0(2)D; (b(2)) ) +b(z) and b(z) = A(1- X (2))

Let {#,; n=1,2,...} be the service period ending time or repair period ending time. In this system,
Z, = {C(tn +), N(t, +)} forms anembeddedMarkov chain which is ergodic< p <1, where

k k -1
p= E(X)(l—R*(/D)*‘(Z@mMU +Zpi®i—1 _Z®iM“j :
pa P P

3. Steady state probability functions
For the process {N@®, 120}, define the probabilities at time ¢ as,

F,(t)- Pr(the system is empty),
At time t and n customers in the orbit,

P (x,t)- Pr(an elapsed retrial time x of the retrial customers),

I, ,(x,1),(1<i<k)- Pr(elapsed service timex on i"™ stage of the customer under service),
Q. (x,1) - Pr(elapsed vacation time xof the customer on vacation),

R, (x,y,1),(1<i<k)- Pr (an elapsed times for service isxand repair is y on i" stage),

D, (x,y,t),(1<i<k) - Pr (elapsed times for serviceisx and delayin repairisy on i stage).

The stability condition existsfor>0, x>0, y>0, n>0 for i = 1,2,...k.
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F =limP ), Pn(x)=limPn(x,t), l'[.n(x)zliml_[.n(x,t),
0, (x)—th (x,0), Q;, (x, y)—th (x,y,1), fort 20.R; , (x, y)—hmR (x,y,t), fort>0.

3.1 Steady state equations
The following equations are obtained by the supplementary variable technique for (i=1,2,..k).

ARy = TQO (x)y(x)dx. (1)
dF, (’“) = AP, () —a(x)P,(x), n =1 . @)
% =—AI1, 5 (x) =TT, 5 (x) — 44, (O, o (x) + Té (MR, o (x, y)dy,n=0. 3)
% = AT, , (x)— a1, (x) — (DI, (x) + /1; 200, (x)+f§ (MR, (x, y)dy,n>1. “)
dQO(x) + 0y (DA +7(x)] =0, n=0. o)
dQ"( 209 | 14 w10, (0 - ﬂ;szn (0, n=12,.. (©)
—dQ"f;x’ Y 0 yA+EGI=0, n=0. @)
BN o it EG)]= /1;'1;9,,"_,( (%) 20 n=1,2,... @®)
Cm%(yx’yh&,o(x, A+ (M]=0, n=0. ©)
‘mf»';l—(yx’y) +R, (x, MIA+E()] = AZRi,n_k V)2, n>1. (10)

Boundary conditions at x = 0 and y = 0 of the steady state system are

P(0)= iqjy 0, (x)dx+i pffy,. (0T, (x)dx + Ty(x)Q,, (0dx, n21. (1D
= = g

IT;,(0) =Ta(x)1—’1 (x)dx+ ByAy,, n=0. (12)
0

I, (0) = Ta(x)P L (Ddx + zz Z j P . (x)dx+PAy,. . n>1. (13)
q =

m,,(0)=6,, T 1, (O, ()dx, n>1, 2<i<k). (14)

0,(0) = leq, [ 40O, (0, =0, (15)

0 .(0)=0,1n=2,3,... (16)
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Q, ,(x,0) =[], , (0], n=1.

R, (6,0)= [7,()Q,, (x, y)dy, n=0.
0

The normalizing condition is

o X © k ®
R, +Zf1’n(x)dx+ ZZjHi,n(x)dx

n=l n=0 i=1 @

17)

(18)

(19)

n=o

(20)

21

(22)

(23)

=1.
o k RN 0w k ©® w0 ©
Sy j j R, (xy)xdy +>. > j IQM (x, y)dxdy + > j 0, (x)dx
n=0 i=1 ¢ o n=0 i=1 ¢ o n=0 (o
The above equations are solved by using generating functions. Multiplying (2) to (18) by Z z"
then,
PED _pix A +a().
ox
T A= X @)+ e+ 4 (O, (5,2 = [ S OOR (. 20
0
D 440 X @)+ 110 ) =0.
‘m"(d;y’y’” HIA = X (@) + &N, (x, y,2) =0,

R (x.7:2) (;’ 2 (A0 - X () + EGIR (x. y.2) =O.

Atx=0andy=0,

k 0 0
P(0.2)= Z{(piz +q,) [T, 24 (x)dx} + [ 00x, )7 (x)dx = 2P, = 0y (0).
0 0

i=1

I1,(0,2) = lja(x)P(x, 2dx + /1&'[13()6, v+ XD p.
Z 0 z z

0

I1,(0,2) = 6 [ 4, (T, (0, (2<i<k).
0

0(0,2) =0, (0)
Q,(x,0,2) =[11,(x,2)].

R.(x,0,2)= j 7, () (x, y,2)dy, n>0.
0

Solving the equations (20) to (24), it follows that for (1 < i< k)

(24)

(25)

(26)

27

(28)
(29)

(30)
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P(x,z)=e ™[1=R(x)]P(0,2).
IT,(x,2)=e @ [1-S,(0)ITT, (0, 2)

O(x,2) =" [1-V(0)]Q(0,2)

Q,(x,y,2) =" [1-D,(»)]IQ (x,0,2)

R.(x,3,2) =" [1=G,(y)IR,(x,0,2),

where, A,(z) = a, (1- G} (b(2)D] (b(2)))+b(2) and b(z) = A(1- X (2)).
From (5), 0, (x) = @, (O)[1-V (x)]e"".

Multiplying (36) by #x) on both sides and integrating with respect to x from 0 to oo,

AR,
Vi)

from (1) , Q,(0) =

AX(2)

From (26) and (31), T1,(0,z)= P(0,z2)
z

[R' =X () +X(2) |+ Z==R .

From (32) and (38), I1,(0,z) = ®, ,IT, (0, z)(B;‘_ (AL (z)]), (i=2,3,..k).
S [A@]

Similarly, €;(x,0,2) =a,11,(0,2) T
(z

From (30) and (34), R.(x,0,z) =Q,(x,0, z)Di* (b(2)).

Using (37) and (39) and (33) in (25), then

P0.9=Y(pz +)L,02(5 [4]) +00 V" [b(z)]—l%—m.
i=l

X(2)Z+z(N(z)-1) }

P0,z2)=APR, x
=A% {z—[R*(/l)(l—X(Z)HX(Z)]w

(V' on-1)

where n(z) = [V*(,l)]

(N@-)[ R (D1-X(@)+ X (@) ][+ X ()

Using (43) in (26), we get, I1,(0,z) = AP,
-[RAI-X@)+X(@)]o

(€19
(32)

(33)
(34)

(35)

(36)

37

(38)

(39)

(40)

(41)

(42)

43)

(44)
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(N@-1)[R' (D1-X @)+ X () [+ X(2)

I1,(0,2) = ABO, ,(B (A, (45)
l( Z) 0~ 1( l( I(Z))) Z—[R*(l)(l—x(z))+x(z):|w
* H £
Q.(x,0,2) = 2,0, (B} (A, (z)))M. (46)
A (2)
From (28), we get 0(0,2) =Q,(0) = AR, 47)
B g > V*(/l)
. * * H] (07 Z)
Using (44) and (40), we get R,(x,0,2) = 2.0, (B} (A,(2)))D; (b(z))A—(). (48)
Using Eqn. (31) to Eqn. (35) andEqn.(43)toEqn. (48),
P(x,2),IT,(x,2),0(x,2), Q,(x,y,2) and R,(x,y,z) are obtained under p < / and given below,
P(x,2) = ARy x X@x+z(N@)-1) (1- R(x))e ¥ (49)
[ R 1-X(@)+X (@) o
0,1 (N@-N[F 01-X @)+ X (@) ]+ x@)(B4 [ 44 ])(1-5; ()e 4
I1;(x,2) = 1, - (50)
R 1-X@)+X(@) o
0(x.2) = Vf—f;)(l V() (51)
Q,(2) = 0, [1-8;(x)]e " [1- D, (y)le " B, (A, ()T (0, 2) (52)
R;(x,y,2) = a;I1;(0,2)B/ [ Ay (2) |D; (b(2))T,(0, 2)[1 - S;(x) e~ D" x[1- G, (y)le ™" (53)

where,  A,(2) = (1-G; (b(2)D] (b(2)) ) +b(2) and b(z) = A(1- X (2)) .

Next the marginal orbit size distributions due is investigated.

Theorem 3.1.Underp < I, the stationary distributions of the numbers in the system when server being
idle, busy duringi™ stage, on vacation, repair on i stage (for 1< i <k) are given by

X(2)Z+z(N(2)-1)
P(z)=(1-R* (1)) B, x ) (54)
( ) 0 {z[R*(ﬂ)(lX(z)HX(Z)]w}
1-57(A2)) | (N@) -1)| R*(H(1- X (2)+ X (2) |+ X (2)
Hi(z)=/IR)®,-1(B,’-’1(A,-1(z)))( ) ( )[ " J . (55)
A(2) [ RWI-X (@) +X ()]0

R (1-v"(b(2)
()= : (56)
V' ]a-x@»
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2,0, (1-5; (4,(2))(1- D] (b(2)))

Qi(2)= A(b(2) B, [Ai—l(Z)]Hl(O’ 2). (57)
0,0, (1-5] (4,))(1-G b)) .
@)= AOb) B[4 @]D 6@, 0.2 (58)
where,
1-E(X)(1-R* (1)) -
i - Beofi-x°)-o]

- .
{[H Zég;](l—(l—R*(i))E(X) —a))+ ;:A@i,,E(Si)(Haj[E(Gj) +E(D)])(E(X)+N'(1) —(I—R*(ﬂ))E(X))}

(59
Proof.Integrating(49) to (53) with respect to xandy, defined the followingfor (1 < i< k)

P(2) = [ P(x, 2)dx, T1,(2) = [T1,(x, 2)dx, 0(2) = [ Q(x, 2)dx. R (x,2) = [ R,(x, v, 2)dy, R,(2) = [ Ry(x, 2)d,

0 0 0 0 0
jQi(x,z) = jQi(x, y,2)dy, Q;(2) = J.Qi (x,z)dx.Since,Pp can  be  determined using  (19).
0 0 0

k
P+P)+0M)+ Z(Hf M+, +R (1)) =1isobtainedby setting z =1 in (54) to (59).

i=l1

Theorem 3.2.Under p < I, PGF of the system size and orbit size distribution at stationary point of
time is

K(z)=r& (60)
Dr(z)
z{i&_] (B[4 @) (1-87 (4 @) (V@ -D[ R (- X () + X (z)}+X(z))}
i=1
—N(z)(z—[R*(/l)+X(z)(l—R*(/l))Ja))ﬂl—X(z)] :
+HX@Z+z(N@)-1))(1-R (1)

DPr(2)=[1-X@)](z=[ K (- X () + X (D) ]z),

and

k k k-1
w= Z®i—1M1i - Z PO+ Z®iMli'
P i1 i-1

Also

_ NR@) 61)

H(Z) Dr(z) )
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{i@i_l (BL[ A1) (15, (A @) (V@ -)R B+ X (@) (1-R (W) + xg))}
i=1

where NR(z) =R,

-

z—[R*(/l)+X(Z)(1—R*(/1))}a)

Ve[ KD x@(1-R D)oo l1-x] H(X@E+ (N -1)(1-R (D)

Where Pyis given in Eq. (59).

k k k
Proof. The statement is obtained by using K(z)=F, +P(z2)+0(z)+ zZH[(z)+ZQi(z) +ZR"(Z) and

i=1 i=1 i=1

k k k
H(2)= B+ P()+0(2)+ ) T;(D)+ Y Q)+ Y R(2) -

i=1 i=1 i=1

4. Performance measures
Here, the mean numbers in the orbit (L,), the mean numbers in the system (L,), the mean waiting time
in the system (W) and in the queue (W,) are required to analyze the model.

Theorem 4.1.If the system satisfies p < I, then the following probabilities of the server state, that is
the server is idle during the retrial, busy during i"stage, on vacation, delaying repair during i"stage and
under repair on i"'stage respectively are obtained.

(1 —R*(ﬂ,))
B

P= (EX)+N'D+aw-1).

k
:Z A :iz O, AES)}(N'()+ E(X)R’ (1)),

i=1 1 i=1

I * N
Q=E{1—E(X)(1—R D)0} 7o

k
Q=>0Q-= —Za E(D,){©, ,AE(S)}(N'(1) + E(X)R ().

i=1 111

: 1

R=)R= FZaiE(Gi){(Bi_l/lE(Si HN'(D)+E(X)R(A)).
i=1 1 =1

Proof. The statement followed by using

P=limP(2), Zn _hmZn (2), Q=1imQ(), ZQ _11mZQ (2) and ZR —hmZR(z)

i=1 i=l1 i=1

Theorem 4.2. Let L, L, W, and W, be the average system size, average orbit size, average waiting
time in the system and average waiting time in the orbit respectively, then under p < 1,
Nr, " DDr/(1) - Dr,(1)Nr,(1
L, =P (M Dr/(D) — Dr,(HNr/(1) ’
(qu"(l))
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where,
k

Nr() = —2{{2@)”1\4% (N'(l) + E(X)R*(/l))} —(E(X))? (1 - R*(;L)) —2N'()+ E(X)2R* (1) - )(@w— 1)},
i=l1

Dr/(1)=-2E(X)(1-p),

Dr7=3{BCO[ (1= R (D) (EX (X 1) +2E(X)@)+ 7 |~ EX (X 1)1 - p)},

k
>e,.M, [N ")+ E(X(X ~1) + E(X)(1-R* (1)) 2N'(1) - 1)}
i=1

Nr(1)=34+N '(1)[2E(X)(1 - R*(/l)) - 1} o+ E(X(X —1) [E(X) +R*(AN'(1) - 1}

)
HN'()+ E(X (X — 1))](1 —EX)(1-R°(D)+ Y0, [My, +2M M, ]~ z'J
i=1

k k k-1
w= Z®i—1M1i - z PO+ Z®iMli’
P = P
k-1

k k
T= Z®i—1M2i + 2; PO M, - Zl:@iMzi’

i=1

and p= E(X)(l—R*(/”L))—a).

Nr," ()Dr)1) - DrJ(HNr](1)

L =P ;
3(Dr))

s 0

B

k
Where, Nrll) = Nr(1)-6Y ©,,M, (N 1)+ E(X)R* (1)).

i=1

L L
=——— and W =—"—.
T AE(X) " AE(X)

Proof: Under p < 1, L,is obtained from
Nr," () Dr(1) — Dr] ()N (1)

NrD i gy = By = P ( )2
3(Dri)

T Dr(z) T oldg

And L; is obtained from

Nr" ()Dr"(1) — Dr"(DNr"(1
= N@ 4k — k= p| Q2D rg() o)
Dr(z)  ldz 3(Dr)

W,andW, are obtained by Little’s formula , L, = AW, and L, = AW,.

4.1Special case
Single phase, No retrial, No Vacation and No breakdown, No delaying repair

10
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Let P[X=1]=1, R'(A)—>1, P[V=0] = land &; =0. Our model can be reduced to multi stage M/G/1

queueing system with Bernoulli feedback. The following results agree with Salehirad and
Badamchizadeh [12].

(1-87 (A @)+ D0, (BL [4.,(2)])(1- 5/ (A (2)

k
i—

K(z)=F,

o Z{(piz +4;)0, (Bi* [4 (Z)])}

k
i=1
5. Numerical illustration

Here, some numerical examples are given using MATLAB. The times for retrial, service vacation and

repair respectively are exponentially f(x)=ve™,x>0for Erlang-2stage f(x)=v*xe™*,x>0 and hyper-

exponentially f(x)=cve ™ +(1- c)Vze_sz

parameters satisfies p< 1. The computed values of Py ,P, I1;, Q and R; for (i=1,2,...k) respectively are
given in the tables. For the effect o fa, p, ¥ and & are retrial rate, feedback probability, vacation rate
and repair rate on FSS respectively graphs are given in Figure 1 to 6.

Table 1 indicates that when E(X) increases, then Py decreases, L, and W, are increasing for the values
of =05, pi=02;, u;1 =150 =0.2; &, =7, y=1; k=1,0,=0.2;a=5; n;=7.Table 2 shows that when a
increases, then Py decreases, L, and Pare increasing forA= 0.2; p; = 0.2, u; = 15; a1 = 0.4, & = 7;
=3, 0,=0.2; p2=0.3; u2=10; a2 = 0.6, & =5; n2=3; n1 =4, k=2.;0,=04; J=2; E(X)=1.

,x>0 distributed. And assume the arbitrary values to the

Table 1.The effect of Mean batch size £(X) on Py, Lg and W,

Retrial

distribution Exponential Erlang — 2 stage Hyper — Exponential
E(X) Py L, W, Py L, W, Py L, W,
0.50 0.5585 0.2334 0.4669 0.2882 0.4356 0.8712 0.5634 0.2278 0.4556
0.60 0.5557 0.2398 0.4796 0.2844 0.4680 0.9361 0.5619 0.2313 0.4625
0.70 0.5529 0.2471 0.4943 0.2804 0.5074 1.0148 0.5605 0.2352 0.4703
0.80 0.5500 0.2555 0.5111 0.2761 0.5548 1.1096 0.5591 0.2394 0.4789
0.90 0.5470 0.2651 0.5301 0.2716 0.6115 1.2230 0.5576 0.2442 0.4884
Table 2.The effect ofa on Py, Lg and P
Retrial . .
rate g Exponential Erlang — 2 stage Hyper — Exponential
a Py L, P Py L, P Py L, P

2.00 0.8559 0.1979 0.1212 0.7112 0.8434 0.3935 0.9055 0.1137 0.0768
3.00 0.8565 0.1552 0.0787 0.7161 0.5272 0.2391 0.9057 0.0871 0.0444
4.00  0.8568 0.1365 0.0583 0.7182 0.4162 0.1718 0.9058 0.0769 0.0309
5.00 0.8570 0.1261 0.0463 0.7193 0.3605 0.1341 0.9059 0.0716 0.0237
6.00 0.8571 0.1194 0.0384 0.7200 0.3273 0.1100 0.9059 0.0684 0.0191

11



14th ICSET-2017 IOP Publishing
IOP Conf. Series: Materials Science and Engineering 263 (2017) 042149 doi:10.1088/1757-899X/263/4/042149

Table 3.The effect of p; on Py, L,andP

gfgt()j:t?i(iiliy Exponential Erlang — 2 stage Hyper — Exponential
pi Py L, P Py L, P Py L, P

0.10 0.9273 0.0410 0.0345 0.8471 0.1068 0.0806 0.9338 0.0370 0.0315
0.20 0.9226 0.0536 0.0426 0.8350 0.1499 0.1008 0.9296 0.0481 0.0389
0.30 0.9164 0.0717 0.0535 0.8183 0.2203 0.1291 0.9241 0.0641 0.0488
0.40 0.9077 0.0998 0.0686 0.7933 0.3489 0.1711 0.9164 0.0885 0.0625
0.50 0.8947 0.1479 0.0913 0.7522  0.6295 0.2404 0.9050 0.1296 0.0828

Table 4.The effect of () on Py, L,and Q

Vacation
rate

y Po L, o) Py L, o) Py L, (0]

Exponential Erlang — 2 stage Hyper — Exponential

5.00 0.7707 0.4050 0.1780 0.5083 4.1119 0.2719 0.8086 0.2867 0.1532
6.00 0.7987 0.3716 0.1502 0.5486 3.7027 0.2332 0.8339 0.2625 0.1280
7.00 0.8192 0.3472 0.1299 0.5791 3.3940 0.2040 0.8521 0.2451 0.1099
8.00 0.8348 0.3286 0.1143 0.6030 3.1535 0.1811 0.8658 0.2320 0.0962
9.00 0.8471 0.3140 0.1021 0.6221 2.9612 0.1628 0.8765 0.2210 0.0856

D‘I‘1 T T T T T
—4+—Exp
035, —-— -Erlang |
;" — — —Hyp-Exp.
03fF 4 -
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n2sF M -
"‘l.
= ozt i i

015

0.1+

0.05

Retrial rate

Figure 1. L, verses a
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Table 3 shows that when p; increases, then Py decreasing, L, and P are increasing for A = 0.2; u; =
15 a1 =0.2; ¢ =3; y=5; 01=02; u> =10; a2 = 0.3; & =5 n2 =3 ; ni =4; k=1; 0,=0.4;
E(X)=2. Table 4 shows that when jincreases, then Py -increases, L, and Q also decreasing for A =
0.2, p2 = 0.3,‘/11 =15 01 =04 é] =7 61=0.2; pr = 0.2,'/12 =7, a2 =0.6; fz =35 H2 =3 Hi =4;
k=2;0,=04; E(X)=I.
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Figure 1 indicates that L, decreases for a increases. Figure 2 indicates that L, decreases for &;increases.
Figure 3 indicates that Py increases for yincreases. Figure 4 indicates that Py decreases for p; increases.
Figure 5 indicates that L, decreases for increasing the values of y and #. Figure 6 indicates that Py
increases for a and y.

6. Conclusion

Unreliable vacation retrial queue and multi stages of service delay in repair with batch arrival policy
are meticulously studied. The PGF of the numbers in the system and orbit are found. The performance
measures were obtained. L, L, W, and W, are obtained. The mathematical results are validated by
simulation results.
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