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Analytical solutions for black-hole critical behaviour
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Dynamical Einstein cluster is a spherical self-gravitating system of counterrotating particles, which
may expand, oscillate and collapse. This system exhibits critical behaviour in its collapse at the
threshold of black hole formation. It appears when the specific angular momentum of particles
is tuned finely to the critical value. We find the unique exact self-similar solution at the thresh-
old. This solution begins with a regular surface, involves timelike naked singularity formation and
asymptotically approaches a static self-similar cluster.
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General relativistic numerical simulation (numerical
relativity) has revealed critical phenomena at the thresh-
old of black hole formation in self-gravitating systems [1].
When a parameter p, which parametrises a generic one-
parameter family of initial data sets, is tuned to the criti-
cal value p∗, there appears a self-similar solution, which is
called a critical solution. Beyond this value, the collapse
ends in a black hole, its mass MBH obeying the power
law MBH ∝ |p − p∗|γ , where γ is called a critical expo-
nent. The critical behaviour is well described in terms
of the behaviour of solutions around a self-similar solu-
tion with a single unstable mode [2]. In this approach,
self-similar solutions with regularity conditions are nu-
merically found and a self-similar solution is numerically
shown to be with a single, linearly unstable mode. See [3]
for a recent review of critical phenomena. Apparently,
there still is a huge gap between numerical simulation
and linear stability analysis. Moreover, one could sus-
pect unresolved fine structure at the threshold because
almost all results have been based on numerics with finite
accuracy (cf. [4]).
Here we show that there is a system where we can

discuss critical phenomena in an analytical and exact
manner. This is the spherical system of counterrotat-
ing particles, first introduced by Einstein [5] and later
generalised to a dynamical case [6, 7, 8]. Using a coor-
dinate r comoving to the radial motion of each shell, the
line element in this spacetime is given by

ds2 = −e2ν(t,r)dt2 + e2ψ(t,r)dr2 +R2(t, r)dΩ2, (1)

where dΩ2 is the line element on the two-dimensional
unit sphere. The Einstein equations and conservation
law reduce

ν′ = − 1

h(r, R)

∂h(r, R)

∂R
R′, e2ψ =

(R′)2h2(r, R)

1 + 2E(r)
, (2)
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and

Ṙ2e−2ν = −1 +
2M(r)

R
+

1+ 2E(r)

h2(r, R)
, (3)

where ˙≡ ∂/∂t and ′ ≡ ∂/∂r, M(r) and 2E(r) > −1 are
arbitrary functions corresponding to the Misner-Sharp
mass and the specific energy, respectively, and h(r, R) is
given by

h2(r, R) = 1 +
L2(r)

R2
, (4)

where L(r) is the specific angular momentum of counter-
rotating particles. The energy density is

ǫ =
M ′

4πR2R′
. (5)

The motion of each shell is governed by Eq. (3) or

1

2

(

dR

dτ

)2

+ U(r, R) = E(r), (6)

where dτ = eνdt and

U(r, R) ≡ −M(r)

R
+

(1 + 2E(r))L2(r)

2(R2 + L2(r))
. (7)

If we assume that the solution has a regular surface on
which all regular metric functions and physical quantities
are also analytic, this implies the Taylor-series expand-
ability in terms of R2. The arbitrary functionsM , E and
L2 then should be expanded as M =M3r

3 +M5r
5 + · · ·,

E = E2r
2 + E4r

4 + · · ·, and L2 = L2
4r

4 + L2
6r

6 + · · ·, if
we choose r so that r = R on the initial regular surface.
R is expanded as R = R1(t)r + R3r

3 + · · · on a regular
surface, and using Eq. (5), we have

ǫ(t, 0) =
3M3

4πR1(t)3
. (8)

Observing the lowest order of Eq. (3), the evolution of
R1(t) is given by

1

2

(

dR1

dτ

)2

= E2 +
M3

R1
− L2

4

2R2
1

. (9)



2

If L2
4 > 0, we can find that R1(t) necessarily bounces

and the neighbouring shell also does for sufficiently small
r > 0 [8, 9].

The case L4 = 0 was studied in detail in [9]. For
this case, from Eqs. (8) and (9), we find that an initially
collapsing cloud inevitably form a central singularity af-
ter a finite proper time. As for the motion of the shell
for sufficiently small r > 0, it turns out that the quan-
tity λ ≡ limr→0L(r)/M(r) = L6/M3 becomes impor-
tant from Eqs. (6) and (7). Figure 1 shows the shape
of potentials for different values of λ. For λ > 4, the
region around r = 0 necessarily bounces back, while, for
0 ≤ λ < 4, the collapse continues to R = 0. So, the end
state of the collapse is a massless naked singularity or
a black hole of finite mass depending on the value of λ.
The critical value λ∗ is 4. The mass scaling law and the
critical exponent will be described elsewhere [10].
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FIG. 1: The shape of the potential U for E = 0 and L = λM
with λ = 3, 4 and 5. The horizontal axis is S ≡ R/M .

The self-similarity (homothety) requires that there is
a vector field z such that Lzgab = 2gab. This condition
implies for the line element (1) that there is a coordinate
system (t, r) such that ν, ψ and S ≡ R/r are functions of
z ≡ t/r [11]. For dynamical Einstein clusters, this means
E(r) = E, M(r) = µr and L(r) = lr, where E, µ and l
are constants. Then Eqs. (2) and (3) reduce the following
closed autonomous system:

dσ

d ln |z| − 1 =
l2

S2 + l2
1

S

(

dS

d ln |z| − S

)

, (10)

e−2σ

(

dS

d ln |z|

)2

= −1 +
2µ

S
+

(1 + 2E)S2

S2 + l2
, (11)

where σ ≡ ν + ln |z|. We can eliminate z from the above
equations and get

deσ

dS
=

l2

S(S2 + l2)
eσ ± S2

S2 + l2
1

√

2(E − U(S))
, (12)

where the upper (lower) sign corresponds to the positive
(negative) sign of dS/d(ln |z|) and

U(S) ≡ −µ

S
+

1

2

(1 + 2E)l2

S2 + l2
. (13)

Equation (11) reduces

1

2

(

dS

dξ

)2

+ U(S) = E, (14)

where dξ2 ≡ e2ν(z)dz2 = e2σ(d ln |z|)2, ξ corresponding
to the nondimensional proper time for the comoving ob-
server. If we use S as a coordinate in place of t, we get

ds2 = e2ζ



−
(

eσdζ ± dS
√

2(E − U(S))

)2

+
S2 + l2

(1 + 2E)S2

×
(

S ∓ eσ
√

2(E − U(S))
)2

dζ2 + S2dΩ2

]

, (15)

where ζ ≡ ln r and S plays a role of similarity variable.
From Eq. (5),

4πǫr2 =
µ

S2
(

S ∓ eσ
√

2(E − U(S))
) . (16)

If R′ = 0 but R 6= 0, there appears shell-crossing sin-
gularity and the model gets invalid beyond there. This
condition reduces the following equation:

S ∓ eσ
√

2(E − U(S)) = 0. (17)

The solution is shell-crossing free where dS/d ln |z| < 0.
When we rescale t and r as t̃ = at and r̃ = ar, we will

get Ẽ = E, µ̃ = µ/a, l̃ = l/a, σ̃ = σ − ln a and S̃ = S/a
and the above equations are invariant. Hereafter, we fix
this scaling so that µ = 1 and l = λ, in which r coincides
with the mass and is denoted as m. Note that we still
have the freedom of rescaling as t̃ = at because this only
changes z to z̃ = az and Eqs. (10)–(11) are invariant. Ex-
cept for this gauge freedom, there are a three-parameter
family of self-similar solutions parametrised by E, λ and
the initial value for σ = σi at S = Si.
At the regular centre, m/R vanishes or S = ∞. To

assure the circular constant being π, h2/(1+ 2E) → 1 as
S → ∞, implying E = 0. Moreover, we assume that the
cluster has a critical angular momentum, i.e., the right-
hand side of Eq. (11) has a double root, implying λ = 4.
Then, we have specified two parameters and have a one-
parameter family of self-similar solutions. For E = 0
and λ = 4, the shape of the potential is shown in Fig. 1.
Equation (14) then has essentially three solutions and
all others are generated through time reversal or time
translation of those solutions. The first one is a static
solution at the top of the potential. For this case, we
assume ψ and R have no dependence on t but do not for
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ν. This is because ∂/∂t may not coincide with a timelike
Killing vector. Then, Eqs. (10)–(11) yield the following
solution: e2σ = c20|z|, e2ψ = 32, and S = 4, where c0 is
a constant and set to be unity, using the rescaling of t.
The resulting metric is given by

ds2 = −RdT 2 + 2dR2 +R2dΩ2,

where we have implemented the coordinate transforma-
tion: dt2/|t| = 4dT 2 and 4m = R. The density ǫ is
given by 4πǫ = 1/(64m2) = 1/(4R2). This spacetime
has a timelike naked singularity at the centre and suffers
from a solid angle deficit so that the area of the sphere
R = const divided by the squared radius is not 4π but
2π. It can be easily shown that static singular solutions,
which were discovered in [12], all fall into this self-similar
static solution after an appropriate coordinate transfor-
mation.
The remaining two solutions are dynamical. The sec-

ond one is the solution, in which S begins with infinity at
ξ = −∞, monotonically decreases and asymptotes 4 as ξ
increases to ∞. The third one is the solution, in which
S begins with 4 at ξ = −∞, monotonically decreases to
0 at a finite value of ξ. For these two solutions, we can
express eσ in terms of S using only elementary functions
as an integral of Eq. (12):

e2σ =
S2

S2 + 16

(√
2S

3
(S + 12) + 4

√
2 ln

∣

∣

∣

∣

∣

√
S − 2√
S + 2

∣

∣

∣

∣

∣

+A

)2

,

(18)
where A is an arbitrary constant. This is actually a sub-
class of solutions whose expressions were given in terms
of elementary functions in [9]. Only the second solution
has a regular centre because m/R is always equal to and
larger than a quarter for the static solution and the third
solution, respectively.
Let us concentrate on the second solution. Around the

regular centre S = ∞, from Eq. (18), we have

eσ =

√
2

3
S3/2 + 4

√
2S1/2 +A+O(S−1/2). (19)

Then, from Eqs. (10) and (11), we have for the lowest
order term S ≈ (9/2)1/3X2/3|z|2/3 and eσ ≈ X |z|, as
|z| → ∞, where the constant X can be set to be unity by
rescaling t. This is exactly the behaviour of the regular
centre: R ∝ m1/3 and eν → 1 at m → 0. In this regime,
ξ = z+const, and t coincides with the proper time at the
regular centre. Equation (16) implies 4πǫ0(t)t

2 = 2/3,
where ǫ0(t) is the density at the regular centre. The
central density diverges to infinity at t = 0, resulting in a
central singularity. In other words, t = 0 is characterised
with the appearance of the central singularity. Let us
assume the expandability for the density on the regular
surface t = const < 0:

ǫ =

∞
∑

i=0

ǫi(t)R
i. (20)

On this surface, we can write down S = R/m as

S =

(

4

3
πǫ0R

2

)−1
(

1 +
3

ǫ0

∞
∑

i=1

ǫi
i+ 3

Ri

)−1

. (21)

Substituting Eqs. (20) and (21) into Eq. (16) and com-
paring both sides, we get ǫ1 = 0, ǫ2 = (160/3)πǫ20 and

ǫ3 = 16
√

2/3π3/2Aǫ
5/2
0 . Therefore, the density around

the regular centre can be expanded as

ǫ =
1

6πt2
+

40

27π

R2

t4
+

4

27π
A
R3

|t|5 +O(R4). (22)

The density takes a local minimum at the centre. If we
assume analyticity on the regular surface, A = 0 is con-
cluded and there no longer appear odd power terms of R
in the expansion. This analyticity requirement has been
imposed for the identification of critical solutions [2]. So
we will identify the second solution for A = 0 with the
unique threshold solution. Note that the analysis below
is nevertheless also applicable to the case A 6= 0.
Let us see other physical properties of this solution. We

can find from Eq. (18) that eσ can be zero. Let α(> 4)
such that eσ = 0 at S = α. α(= 4.8133 · · ·) is a root of
the following transcendental equation:

√
S(S + 12) = 12 ln

√
S + 2√
S − 2

.

Around there, from Eqs. (11) and (12), we can find |S −
α| ∝ |z|β and eσ ∝ |z|β as z → 0, where β = α2/(α2+16)
and hence 1/2 < β < 1. In this regime, ξ = ∓B|z|β +
const, where B is a constant. This means that it takes
only a finite proper time to reach S = α or t = 0. Thus,
t = 0 is only a coordinate singularity and the solution can
be extended regularly and uniquely beyond t = 0. This is
clear in Eq. (15), where there is no singularity at S = α.
The density profile at t = 0 follows an exact power law
4πǫ = 1/(αR2). Because of self-similarity, z = 0 also
corresponds to infinity (|t| < ∞ and m = ∞). This
really corresponds to the surface of infinite area R = ∞.
It follows that the density falls off as 4πǫ ≈ 1/(αR2) as
R → ∞. This behaviour is time-independent.
Each shell dynamically approaches the specific radius

S = 4 as ξ → ∞. For S → 4, from Eq. (18), we have
eσ ≈ −4 ln(S − 4). Then, from Eqs. (10) and (11), we

have (S − 4) ≈ e−C|z|1/2 and eσ = 4C|z|1/2 as |z| →
∞, where C > 0 is a constant. This means that the
asymptotic solution is the static solution. In this regime,
ξ ≈ 8B|z|1/2 + const, and τ ≈ −8m ln(S − 4). Hence the
collapse approaches the static solution with an infinite
proper time.
Since dS/d ln |z| > 0 for t < 0 for the threshold solu-

tion, we need to check whether there is a root in (α,∞)
of Eq. (17) or the following equation:

2(S − 4)√
S(S2 + 16)

∣

∣

∣

∣

∣

√
S

3
(S + 12) + 4 ln

√
S − 2√
S + 2

∣

∣

∣

∣

∣

= 1.
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When S increases from α to ∞, the left-hand side in-
creases from 0, takes a maximum and decreases to 2/3.
This maximum value is 0.76412 · · ·, well below unity.
Since dS/d ln |z| < 0 for t > 0, the threshold solution
is free of shell-crossing.
Figure 2 shows the evolution of the density in terms

of S from Eq. (16). As time proceeds from t = −∞
to t = ∞, S monotonically decreases from ∞ to 4 and
the density ǫ observed by a comoving observer monoton-
ically increases from 0 to the value for the static solu-
tion 1/(256πm2). It smoothly crosses z = 0 at S = α
and ǫ = 1/(4πα3m2). Figure 3 shows the ratio of the
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FIG. 2: The nondimensional density 4πǫm2 in terms of S for
the exact threshold solution.

local density ǫ to the averaged density inside the shell
m/(4πR3/3) , in which the horizontal axis is 1/

√
S. This

ratio must be unity at the regular centre and 1/
√
S is

proportional to the area radius around the regular cen-
tre. We can see that the density takes a local minimum at
the regular centre S = ∞ or z = −∞, increases around
the centre, takes a maximum and decreases outside. At
spatial infinity S = α or z = 0, this ratio becomes 1/3,
implying that ǫ falls off in proportion to R−2. The ra-
tio goes below 1/3 as z increases further and comes back
to 1/3 at S = 4 or z = ∞, implying that ǫ again gets
proportional to R−2 as t→ ∞.
There is no trapped surface because S = R/m > 4 is

satisfied everywhere. So, the central singularity is naked.
In fact, this spacetime is a member of solutions for which
the causal structure is shown in Figure 1 of [12]. The
central singularity is naked and timelike.
The general solutions of the dynamical Einstein clus-

ter is exactly solved in terms of elliptic integrals using
the mass-area coordinates [9, 13] and here the critical
self-similar solution is uniquely obtained in terms of el-

ementary functions. This system provides a tractable
laboratory for studying how generic critical collapse ap-
proaches the threshold solution in both linear and non-
linear regimes.
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FIG. 3: (4πǫR3)/(3m), the ratio of the local density to the

averaged density interior to the shell in terms of 1/
√
S for the

exact threshold solution.
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