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Abstract. This paper presents an experimental evaluation of the combined tem-

poral and spectral processing methods for speaker recognition task under noise,

reverberation or multi-speaker environments. Automatic speaker recognition sys-

tem gives good performance in controlled environments. Speech recorded in real

environments by distant microphones is degraded by factors like background noise,

reverberation and interfering speakers. This degradation strongly affects the per-

formance of the speaker recognition system. Combined temporal and spectral pro-

cessing (TSP) methods proposed in our earlier study are used for pre-processing

to improve the speaker-specific features and hence the speaker recognition perfor-

mance. Different types of degradation like background noise, reverberation and

interfering speaker are considered for evaluation. The evaluation is carried out

for the individual temporal processing, spectral processing and the combined TSP

method. The experimental results show that the combined TSP methods give relati-

vely higher recognition performance compared to either temporal or spectral pro-

cessing alone.

Keywords. Speaker recognition; speech enhancement; temporal and spectral

processing; noisy speech; reverberant speech and multi-speaker speech.

1. Introduction

Speaker recognition is the process of automatically recognizing the speakers on the basis of

individuality information from the speech signals. It can be classified into speaker identifi-

cation and speaker verification. Speaker identification is the process of identifying a speaker

from a group of registered speakers. The task of a speaker verification system is to authen-

ticate the claim of a speaker based on the test speech (Campbell 1997). Generally, speaker

recognition by a machine involves three stages. They are, (i) feature extraction, (ii) training

or modelling and (iii) testing stage. The feature extraction module estimates a set of features

from the speech signal that represent speaker-specific information. Training phase creates

a speaker-specific model using the extracted features of each speaker. In the testing stage,
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measure of similarity or distance between unknown speaker and stored models is calculated.

The model that has the best score is chosen as the identified speaker. Depending on the text

used for training and testing, speaker recognition is further divided into text-dependent and

text-independent methods. In text-dependent system same text is used for both training and

testing, whereas text-independent systems do not rely on the text being spoken.

Most of the speaker recognition systems are developed using clean speech training data.

In practical scenario clean speech is often distorted by different types of degradation like

background noise, reverberation and speech from other speakers. Because of this distortion,

the speaker-specific features are distorted and therefore there is a mismatch between the

trained models and the test speech to be recognized. This mismatch causes degradation in the

speaker recognition performance (Ming et al 2007). Various methods have been proposed in

the literature to improve the robustness of a speaker recognizer to overcome this mismatch

problem. Generally, this can be accomplished in different stages as follows.

1.1 Robustness at the signal level (speech enhancement)

In this approach degraded speech signals are enhanced before the feature extraction stage.

Accordingly, before being transformed into feature vectors, the degraded speech undergoes

an enhancement step which tries to filter out the degradation (Ortega-Garcia & Gonzalez-

Rodriguez 1996).

1.2 Robustness at the feature level (feature compensation)

The features representing the speech signal are designed in order to be less sensitive to

the degraded conditions. This is achieved by analysing the influence of the degradation on

the speech signal and deriving feature extraction methods that reduce the influence of the

degradation (Zilovic et al 1998; Heck 2000).

1.3 Robustness at the classifier level (model compensation)

The aim of the model compensation approach is to determine the influence of the degradation

on the distribution of the speech features and to modify the models used in the recognition

to take into account about the influence of the degradation. The robustness can be achieved

by integrating a model for the speech signal distortion into the overall classifier model (Ming

et al 2007) or mapping the classifier model obtained during training to better fit the testing

condition (Sankar & Lee 1996).

This work aims to provide the robustness at the signal level using our proposed combined

temporal and spectral processing (TSP) methods as a pre-processing stage. In the combined

TSP method temporal processing refers to the processing of excitation source information in

the time domain. Spectral processing refers to processing the degraded speech in the frequency

domain representation of speech. In our earlier study (Krishnamoorthy & Prasanna 2008,

2009) the performance of the proposed TSP methods is evaluated using various objective

quality measures depending on the nature of the degradation. The results showed that the

combined TSP methods give relatively higher performance than the individual temporal or

spectral processing alone. In this work, the main objective is to study the speaker recognition

performance using the combined TSP methods as a pre-processing stage. Text-independent

speaker identification task is taken for demonstration. The rest of the paper is organized as

follows: Section 3 briefly reviews combined temporal and spectral processing of degraded

speech. Section 3 explains the database and experimental set-up used in the present study.



Application of combined TSP for speaker recognition 731

Section 4 describes the experimental results for the case of noisy, reverberant and multi-

speaker speech. Finally, the summary of the work is presented in Section 5.

2. Combined temporal and spectral processing (TSP) of degraded speech

2.1 Motivation for the combined temporal and spectral processing method

Several methods have been proposed in the literature for the enhancement of degraded speech,

majority of them can be grouped into spectral processing and temporal processing methods.

The spectral processing methods are the most popular techniques for speech enhancement,

mainly because of their simplicity and effectiveness. Majority of the spectral processing

methods based on the fact that the spectral values of the degraded speech will have both speech

and degrading components. The spectral characteristics of degradation are therefore estimated

and removed to obtain the enhancement. For example, in case of noisy speech enhancement,

most of the spectral processing methods (like spectral subtraction and minimum mean square

error (MMSE) short term spectral amplitude (STSA) estimators) first estimate the spectral

characteristics of the background noise and derive the gain function for the noisy speech signal

to attenuate the noise spectral values (Boll 1979; Kamath & Loizou 2002; Ephraim & Malah

1984). In case of reverberation, the reverberant speech can be divided into two parts namely

early reverberation and late reverberation. Early reverberation tends to perceptually reinforce

the direct sound and is therefore considered harmless to speech intelligibility, whereas the

late ones are deleterious to speech quality and intelligibility (Habets et al 2008). In such case,

spectral subtraction-based methods estimate the late reverberant spectral density and subtract

it from the reverberant speech spectra to obtain the enhanced signal (Lebart & Boucher 2001;

Habets et al 2008). Similarly, in multi-speaker speech separation the spectral based methods

first estimate the pitch of desired and interfering speakers and enhance the pitch and harmonics

of the desired speaker (Parsons 1976) and/or attenuate the pitch and harmonics of interfering

speaker (Morgan et al 1997).

Therefore in the spectral processing approach, both short-term magnitude of degradation

and degraded speech spectra are estimated first. According to the suppression rule, a spectral

gain function is applied to the magnitude spectra of the degraded speech to obtain enhanced

speech spectra. The enhanced magnitude and degraded speech phase spectra are then com-

bined to produce an estimate of clean speech. For time-domain resynthesis, overlap-add

(OLA) method is typically used. Simplified block diagram showing the important steps of

spectral processing is given in figure 1. In figure, noise estimate block refers to estimate of

background noise spectra or late reverberant speech spectra or interfering speaker spectra.

A class of temporal processing methods have been proposed by exploiting the excitation

source characteristics of the speech signal for the enhancement (Yegnanarayana et al 1999;

Yegnanarayana & Satyanarayana Murthy 2000; Yegnanarayana et al 2003, 2005). Linear

prediction (LP) residual obtained by inverse filtering the speech is used as an estimate of the

source of excitation of the vocal tract system (Yegnanarayana et al 1999). These temporal

processing methods are proposed based on the fact that the significant excitation of the vocal

tract takes place at the instants of glottal closure and onset of events like burst, frication

and aspiration. The instants of significant excitation will be quasi-periodic in nature during

voiced speech and random in nature during unvoiced speech (Murty & Yegnanarayana 2008).

Depending on the nature of degradation, the excitation source will have many other random

peaks in addition to the original instants of significant excitation. Temporal processing method

identifies the original instants of significant excitation and emphasizes the region around them
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Figure 1. Basic block diagram of the spectral processing approach.

in the excitation source signal to obtain the enhanced speech. The enhancement is achieved

by deriving the weight function for the excitation source signal that will emphasize the region

around the instant of significant excitation of the original signal and deemphasize the random

peaks of degradation. The time-varying all-pole filter derived from the degraded speech is

excited by the weighted residual to obtain the temporally processed speech (Yegnanarayana

et al 1999; Yegnanarayana & Satyanarayana Murthy 2000; Yegnanarayana et al 2003, 2005).

Generally, there will be changes in the excitation characteristics both at the fine and gross

levels during speech production. The fine level changes may be from closed phase to open

phase in a pitch period and the gross level changes may be from silence to voiced excitation.

The weight function for the excitation source signal is derived at two different levels, namely,

gross and fine levels to obtain the enhanced signal. The gross level weight function is derived

to identify the speech and non-speech regions of degraded speech signal and the fine level

weight function is derived to enhance the instants of significant excitation of original signal.

Figure 2 depicts the steps involved in the conventional excitation source information based

temporal processing method.

In summary, the underlying principle of processing degraded speech is different in each

domain of processing. Most of the spectral processing is based on the estimation and elim-

ination of degradation. The merit of these methods is the effectiveness in eliminating the

degradation, since they are explicitly estimated. The demerit is the need for explicit modelling

of spectral characteristics of degradation. This is a difficult task for highly non-stationary

environments. On the other hand, excitation source information based temporal processing

methods first identify the speech-specific features at the gross and fine levels and enhance

those features to obtain the enhancement. Hence an information about the degradation is not

Figure 2. Basic block diagram of the temporal processing approach.
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mandatory in the enhancement process. The merit is the effectiveness in the enhancement

of speech-specific regions and do not require explicit modelling of degradation. The demerit

may be the ineffectiveness in minimizing the degrading component, since it is not explicitly

modelled. It may be possible that one domain of processing may aid other domain of pro-

cessing in minimizing the demerit. For instance,

(i) In noisy speech enhancement, the difficulty in estimating degradation in the highly non-

stationary environment for spectral processing may be carried out by the gross weight

function derived from the temporal processing as a voice activity detector to identify

non-speech regions.

(ii) In reverberant speech enhancement, spectral subtraction-based spectral processing

methods reduce the late reverberation (i.e. tail of the impulse response) by estimat-

ing and subtracting the late reverberant spectrum from the degraded speech spectrum.

On the other hand, these methods may not provide better enhancement in high signal to

reverberation ratio (SRR) regions, i.e. early reverberant part of the signal. However, the

excitation source information-based temporal processing methods mainly enhance the

speech-specific features of high SRR regions in the temporal domain (Krishnamoorthy &

Prasanna 2009).

(iii) In multi-speaker case, spectral based speech separation methods depend on the differ-

ences in the fundamental frequency characteristics to enhance the spectral features of

individual speakers. The main difficulty is the accurate estimation of the fundamental fre-

quency of desired speaker. The spectral processing preceded by temporal processing may

improve the accuracy of the pitch estimation of desired speaker. This is mainly because

temporal processing enhances the instants of significant excitation of desired speaker

relative to other speakers. As a result, pitch specific cues of an interfering speaker(s) will

be de-emphasized with reference to the desired speaker.

Therefore, we can effectively combine these two approaches to obtain improved performance

compared to either temporal processing or spectral processing alone. In our earlier study

we have exploited this property and developed combined TSP methods for the enhancement

of noisy speech, reverberant speech and two speaker speech. The temporal and spectral

processing methods are used in sequential manner in the combined TSP method.

2.2 Combined TSP for enhancement of noisy speech

A combined TSP method is developed for noisy speech enhancement by emphasizing high

signal to noise ratio (SNR) regions in the temporal domain, and eliminating the degradation

and enhancing the speech-specific components in the spectral domain (Krishnamoorthy &

Prasanna 2008). The temporal domain processing is performed at two levels: gross and fine

levels. The high SNR regions at the gross level are identified by computing the sum of the ten

largest peaks in the discrete Fourier transform (DFT) spectrum, the smoothed Hilbert envelope

(HE) of the LP residual and the modulation spectrum values. The fine level features (instants

of significant excitation) are identified by performing the following: (i) Sinusoidal analysis

of noisy speech (McAulay & Quatieri 1986), (ii) Convolving the HE of the LP residual of

the speech obtained from sinusoidal analysis by first order Gaussian differentiator (FOGD)

(Prasanna & Subramanian 2005). A weight function is derived by combining the gross and fine

level features to emphasize the excitation signal around the instants of significant excitation.

In the next step, to improve the spectral characteristics and to provide better noise suppression,

the temporally processed speech signal is then subjected to spectral processing. In spectral
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processing the attenuation of background noise spectra is achieved by conventional multi-

band spectral subtraction (Kamath & Loizou 2002) or STSA–MMSE estimator (Ephraim &

Malah 1984) approach. The various steps involved in the proposed combined TSP method

are given in table 1.

2.3 Combined TSP for enhancement of reverberant speech

A combined TSP method is proposed for reverberant speech enhancement that suppresses

the effect of early and late reverberations (Krishnamoorthy & Prasanna 2009). First, the late

reverberant component is suppressed using spectral processing. An estimate of late reverberant

power spectrum is obtained and then subtracted from the power spectrum of the reverberant

speech. In the next step, temporal processing is performed to attenuate the early reverberation.

The high signal to reverberation ratio (SRR) regions are identified using the ten largest peaks

in the DFT spectrum, the smoothed HE of the LP residual and the modulation spectrum

values. The fine level features are identified from the band-pass filtered HE of the LP residual.

A weight function is derived by combining the gross and fine level features. The LP residual of

spectrally processed speech is multiplied by the weight function to attenuate the reverberant

peaks. The enhanced residual signal and the vocal tract system characteristics derived from

the spectrally processed speech are used for synthesizing enhanced speech. Table 2 describes

the various steps involved in the proposed combined TSP method for the enhancement of

reverberant speech.

2.4 Combined TSP for enhancement of multi-speaker speech

A combined TSP method is developed for separating speech of individual speakers from the

mixture of two speaker speech signals, collected over a pair of microphones. The time delay in

the arrival of speech of each speaker at a pair of microphones is exploited for speech separation.

The mixed speech signals are first subjected to temporal processing. In temporal processing,

speech of each speaker is enhanced with respect to the other by relatively emphasizing the

speech around the instants of significant excitation of desired speaker by deriving speaker-

specific weight function. To further improve the separation, the temporally processed speech

is subjected to spectral processing. This involves enhancing the regions around the pitch and

harmonic peaks of short time spectra computed from the temporally processed speech. An

estimation of the pitch is obtained from the temporally processed speech. Table 3 briefly

outlines the different steps involved in the proposed combined TSP method for two speaker

separation.

3. Database and experimental description

3.1 Database

The speaker recognition studies are carried out on the TIMIT database (Zue et al 1990). The

TIMIT database contains recordings of 630 speakers (438 male and 192 female) of 8 major

dialects of American English, each reading 10 phonetically rich sentences of approximately

3 sec each. The speech was recorded using a high quality microphone in a sound proof booth

at a sampling frequency of 16 kHz, with no session interval between recordings. Out of 630

speakers, 100 speakers are randomly selected for forming subset for the study. The common

way of using this database is to use the first eight utterances of each speaker for the training and

the last two utterances for testing (Reynolds 1995). The speech signals of all these speakers

are first downsampled to 8 kHz sampling rate.
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Table 1. Combined temporal and spectral processing algorithm for enhancement of noisy speech.

Temporal Processing:
Gross Level Processing

– Compute the sum of the ten largest peaks in the discrete Fourier transform (DFT) magnitude spec-
trum using frame size of 20 ms and shift of 10 ms (Krishnamoorthy & Prasanna 2008). Mathemat-
ically, it is expressed as

sd(l) =
10

∑

j=1

|X(kj , l)| (1)

where l is the frame index, kj represents the frequency indexes of ten largest spectral peaks and
X(k, l) represents the DFT of a frame of noisy speech and is computed as

X(k, l) =
N−1
∑

n=0

x(n)w(n − lR)e− j2πnk

N (2)

where w(n) is a Hamming window, N is the number of points used for computing the DFT and R
is the frame shift in samples.

– Compute linear prediction (LP) residual of noisy speech using a frame size of 20 ms, shift of 10 ms

and 10th order LP analysis.
– Compute the Hilbert envelope (HE) of LP residual. The HE of LP residual e(n) is defined as (Rao

et al 2007)

he(n) =
√

e2(n) + e2
h(n) (3)

where eh(n) is the Hilbert transform of e(n), and is given by

eh(n) = IDFT [Eh(k)] (4)

where

Eh(k) =
{

−jE(k), k = 0, 1, . . . ,
(

N
2

)

− 1

jE(k), k =
(

N
2

)

,
(

N
2

)

+ 1, . . . , (N − 1)
(5)

where IDFT denotes the Inverse DFT and E(k) is computed as DFT of e(n).
– Smooth the HE of LP residual using 50 ms Hamming window.

hsm(n) = he(n) ∗ hw1(n) (6)

where ∗ denotes convolution operation and hw1(n) is Hamming window of 50 ms duration.
– Compute the modulation transfer function energies of the noisy speech signal. Mathematically the

modulation transfer function energies are expressed as (Prasanna et al 2009)

m(l) =
18

∑

p=1

[

k=k2
∑

k=k1

|X̂p(k, l)|2
]

(7)

where l is the frame index, p represents the critical band number, k1 and k2 represent frequency index

of 4 Hz and 16 Hz, respectively (Greenberg & Kingsbury 1997). X̂p(k) is the DFT of normalized

envelope of pth filter output and is computed as described in Eqn. (2).
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Table 1. (Continued).

– Enhance the evidences of high SNR regions of each of the above parameters (i.e. sum of the ten
largest peaks in the DFT spectrum, the smoothed HE of the LP residual and the modulation spectrum
values) using the first order difference of the evidences obtained (refer to Appendix-A).

– Sum all the enhanced parameters and normalize the sum with respect to maximum value.
– Nonlinearly map the normalized sum values using a sigmoid nonlinear function

wg(n) = 1

1 + e−λ(si (n)−T )
(8)

where slope parameter λ = 20 and T equal to average value of the normalized sum si(n). This
generates a gross weight function.

Fine Level Processing

– Compute the DFT magnitude and phase spectra for the noisy speech using 1024 point DFT.
– Pick the largest 8 peaks in the DFT magnitude spectrum and corresponding phase values and

synthesize the speech. If the amplitudes, frequencies, and phases that are estimated for the kth

segment are denoted by Ak
l , ωk

l , and θ k
l respectively, the synthetic speech signal s̃k(n) can be

represented as (McAulay & Quatieri 1986)

s̃k(n) =
Lk
∑

l=1

Ak
l cos(ωk

l n + θ k
l ) (9)

where Lk is the number of sinusoidal components in the frame.
– Compute the HE of LP residual of the signal obtained.
– Emphasize the regions around the instants of significant excitation using the neighborhood infor-

mation of each sample in the HE. The emphasized HE is computed as

h(n) = h2
e(n)

1
2M+1

∑n+M
p=n−M he(p)

(10)

where M = (2 × Fs/1000), h(n) is the emphasized HE of he(n) and Fs is the sampling frequency
in Hz.

– Obtain first order Gaussian differentiator (FOGD) given by (Prasanna & Subramanian 2005)

gd(n) = 1

σ
√

2π

[

e
− (n+1)2

2σ2 − e
− n2

2σ2

]

, 1 ≤ n ≤ Lg (11)

where Gaussian window of length Lg = 80 samples and σ = 8.
– Convolve the negative of FOGD operator with the mean smoothed HE of the LP residual and

determine negative to positive transitions.
– Derive the fine weight function wf (n) by convolving detected instants with the Hamming window

wf (n) =
(

Ni
∑

i=1

δ(n − ai)

)

∗ hw(n) (12)

where Ni represents total number of detected instants, ai is the approximate location of instants
and hw(n) is the Hamming window of 3 ms duration (Krishnamoorthy & Prasanna 2008).
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Table 1. (Continued).

Final Weight Function

– Multiply the two weight functions (gross and fine weight functions) to generate the final weight
function.

– Multiply the LP residual signal of noisy speech by the final weight function.
– Excite the time-varying all-pole filter (derived from noisy speech) using weighted residual to obtain

the temporally processed speech.

Spectral Processing:

– Update the noise magnitude spectrum if 5 consecutive frames are detected as non-speech regions.
– Process the temporally processed speech by any of the conventional spectral processing (e.g. multi-

band spectral subtraction (Kamath & Loizou 2002) or MMSE estimator (Ephraim & Malah 1984))
methods.

– Reconstruct the enhanced speech signal using IDFT and overlap-add (OLA) method.

Table 2. Combined temporal and spectral processing algorithm for enhancement of reverberant
speech (Krishnamoorthy & Prasanna 2009).

Spectral Processing:

– Estimate the late reverberant spectral variance Ŝyl(l, k).

Ŝyl(l, k) = γω(l − N1) ∗ |Y (l, k)|2 (13)

where Y (l, k) is the short time Fourier transform of reverberant speech y(n). The symbol * denotes
convolution in the time domain and w(l) is a smoothing function. γ specifies the relative strength
of the late-impulse components and is set to 0·32 and

w(l) =
{

l+a
a2 e

−(l−a)2

2a2 , l > −a

0, otherwise
(14)

where a controls the span of the smoothing function and is set to 5 (Krishnamoorthy & Prasanna
2009; Wu & Wang 2006).

– Compute the a posteriori signal to reverberant ratio (SRR) and the a priori SRR values. The a
priori SRR ξ(l, k) is calculated as (decision directed approach) (Ephraim & Malah 1984)

ξ(l, k) = η
|Ŝ(l − 1, k)|2

|Y (l, k)|2 + (1 − η) max{γ (l, k) − 1, 0}. (15)

The value of η is chosen as 0·98 (Ephraim & Malah 1984) and

γ (l, k) = |Y (l, k)|2

Ŝyl(l, k)
(16)

where the term γ (l, k) is interpreted as the a posteriori SRR. Ŝ(l, k) is computed as given in Eqn.
(19). The following initial condition is used for the first frame

ξk(l, k) = η + (1 − η) max{γ (l, k) − 1, 0} (17)
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Table 2. (Continued).

– Determine the gain function G(l, k) for the the spectral subtraction from the estimated SRR values.

G(l, k) = 1 − 1√
1 + ξ(l, k)

. (18)

– Multiply the gain function with the reverberant speech spectrum.

Ŝ(l, k) = Y (l, k)G(l, k) (19)

– Obtain the spectrally processed speech using IDFT and OLA method.

Temporal Processing:

Gross Level Processing

– Compute LP residual of spectrally processed speech using a frame size of 20 ms, shift of 10 ms and
10th order LP analysis.

– Compute the sum of the ten largest peaks in the DFT magnitude spectrum.
– Compute the HE of LP residual and mean smooth using 50 ms Hamming window.
– Compute the modulation spectrum energies of the spectrally processed speech signal.
– Enhance the high SRR regions of each of the above parameters.
– Sum all the enhanced parameters and normalize the sum with respect to maximum value.
– Nonlinearly map the normalized sum values by using a sigmoid nonlinear function with slope

parameter λ = 20 and T equal to average value of the normalized sum. This generates a gross
weight function.

Fine Level Processing

– Band pass filter the LP residual of spectrally processed speech into four subbands whose cut-off
frequencies are equally spaced in linear scale.

– Compute the HE of LP residual for each subband.
– Sum all the subband HEs.
– Compute the emphasized HE of the LP residual.
– Obtain FOGD operator from Gaussian window of length Lg = 80 samples and σ = 8.
– Convolve the negative of FOGD operator with the emphasized HE of the LP residual and determine

negative to positive transitions.
– Derive the fine weight function by convolving detected instants with the Hamming window of 3 ms

duration.

Final Weight Function

– Multiply the two weight functions (gross and fine weight functions) to generate the final weight
function.

– Multiply the LP residual signal of noisy speech by the final weight function.
– Excite the time-varying all-pole filter (derived from spectrally processed noisy speech) using

weighted residual to obtain the enhanced speech.

3.2 Feature extraction

Mel-frequency cepstral coefficients (MFCCs) are the most widely used features for speech

and speaker recognitions applications (Reynolds 1994; Picone 1993). MFCCs are estimated

based on human perception of critical bandwidths (Picone 1993). The mel-frequency scale

has a linear frequency spacing below 1000 Hz and a logarithmic spacing above 1000 Hz. For
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Table 3. Combined temporal and spectral processing algorithm for two speaker separation.

Temporal Processing

– Compute the LP residual of mic-1 and mic-2 signals using a frame size of 20 ms, shift of 10 ms and

10th order LP analysis.
– Compute the HE of LP residual.
– Estimate the time delays for each speaker by computing cross-correlation of the HEs using a frame

size of 50 ms and shift of 5 ms. In the normalized cross-correlation sequence, the displacement of
peak with respect to the center sample is considered as the time delay value (Yegnanarayana et al
2005).

– Adjust the HEs using the estimated time delays to produce the coherently adjusted HE for each
speaker. That is,

hs1(n) = min(h1(n), h2(n − d1)) (20)

hs2(n) = min(h1(n), h2(n − d2)) (21)

where h1(n) and h2(n) be the normalized HE sequences of speech signals collected at mic-1 and
mic-2, respectively and d1 and d2 are the time-delays between the two microphone signals.

– Compute the error function. That is,

h12(n) = hs1(n) − hs2(n). (22)

Gross Level Processing

– Smooth the absolute values of the error function using 50 ms Hamming window.

hsm(n) = |h12(n)| ∗ hw1(n) (23)

where ∗ denotes convolution operation and hw1(n) is Hamming window of 50 ms duration.
– Nonlinearly map smoothed error function values by using a sigmoid nonlinear function with slope

parameter λ = 20 and T equal to 0·2 times average value of the normalized sum.
– The nonlinearly mapped values are termed as gross weight function.

Fine Level Processing

– Smooth the smaller variations in the error function using the Hamming window. That is,

hs(n) = h12(n) ∗ hw2(n) (24)

where hw2(n) is the Hamming window of 3 ms duration.
– The major peaks in the smoothed difference values hs(n) indicate approximate locations of instants

of significant excitation. In particular, positive peaks correspond to the instants of desired speaker
and negative peaks correspond to the instants of undesired speaker

– Convolve the negative of FOGD operator with the positive values of mean smoothed HE of the LP
residual to determine the desired speaker instants location.

– Convolve the negative of FOGD operator with the negative values of mean smoothed HE of the LP
residual to determine the interfering speaker instants location.

– Compute the fine weight function as

Wf (n) = [wmin + (1 + wmin)Wa(n)] − wminWb(n) (25)

Wa(n) =
Na
∑

i=1

δ(n − ai) ∗ hw2(n) (26)
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Table 3. (Continued).

Wb(n) =
Nb
∑

i=1

δ(n − bi) ∗ hw2(n) (27)

where ai and bi represent the approximate locations of instants of significant excitation of desired
and undesired speaker, respectively. Na and Nb represent total number of detected instants of desired
and undesired speaker, respectively. wmin is set as 0·3 and hw2(n) is the Hamming window of 3 ms
duration.

Final Weight Function

– Multiply the two weight functions (gross and fine weight functions) to generate the final weight
function.

– Multiply the LP residual signal of noisy speech by the final weight function.
– Excite the time-varying all-pole filter (derived from degraded speech) using weighted residual to

obtain temporally processed speech.

Spectral Processing

– Compute the HE of enhanced LP residual (i.e. LP residual weighted by the weight function).
– Perform the autocorrelation on the HE of LP residual using a frame size of 40 ms and a frame shift

of 10 ms. The normalized autocorrelation is obtained as (Proakis & Manolakis 1996)

R(l) =
∑L−1−l

n=0 hm(n)hm(n + l)
∑L−1

n=0 h2
m(n)

; l = 0, 1, 2, . . . , L − 1 (28)

where L = 320 for Fs = 8 kHz and

hm(n) = h(n) − E{h(n)} (29)

where E[.] is the expected value operator.
– Find the pitch estimate from the first major after the center peak in the range of 2·5 ms to

12·5 ms.
– Compute the similarity measure (Sm) and the magnitude of first major peak (Rp) in the normalized

autocorrelation sequence.
– The similarity is measured by comparing samples in a region of 2 ms on either side of the first major

peak of present frame with samples from previous/next frame. The similarity measure is computed
as

Sm = max

{

COV (Ri, Ri−1)

σRi
σRi−1

,
COV (Ri, Ri+1)

σRi
σRi+1

}

(30)

where COV (X, Y ) = E(XY) − E(X)E(Y ) and σX =
√

E(X) − E2(X). Ri , Ri−1 and
Ri+1 represent samples around the first major peak in the current, previous and next frame,
respectively.

– A frame of speech subjected to autocorrelation is considered as voiced frame only when the values
of Rp ≥ 0·4 (Markel 1972) and Sm ≥ 0·7 (Prasanna & Yegnanarayana 2004).

– For voiced regions, sample and enhance the pitch and harmonics of the desired speaker.

Xs(k) = Af × X(k) × W(k). (31)
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Table 3. (Continued).

where the multiplication factor Af is used to further enhance the pitch and harmonics of the desired
speaker with reference to undesired speaker (Harmonic sampling with spectral enhancement of
desired speaker (Krishnamoorthy & Prasanna 2007)). In the present study Af is chosen as 2 and

W(k) = P(k) ∗ hr(k) (32)

P(k) =
Np
∑

i=1

δ(k − pi) (33)

where Pi is the frequency indexes of harmonics and Np represents total number of harmonics and

hr(k) =
{

1, −2 ≤ k ≤ 2

0, otherwise
(34)

For non-speech or unvoiced region

Xs(k) = X(k). (35)

Reconstruct the enhanced speech signal by IDFT and OLA method.

calculation of MFCCs, the short term Fourier transform (STFT) analysis is performed on

the speech signal using frame size of 20 ms with shift of 10 ms. For each frame the STFT

magnitude spectrum is computed and is further processed by the 24 triangular shaped mel-

filter banks to find out the filter bank energies. Then discrete cosine transform (DCT) is taken

on the spectral energies to obtain MFCCs (Picone 1993). We have used a 13-dimensional

MFCC vector (excluding c0) appended with delta (�) and delta–delta (��) coefficients as

feature vector of each frame. The � and �� coefficients obtained respectively from the

MFCC and � by the first-order time derivative to capture the temporal dynamics of the signal

(Furui 1981). The commonly used definition for computing � parameter is (Furui 1981)

�cm(n) =
∑T

i=−T kicm(n + i)
∑T

i=−T |i|
(36)

where cm(n) denotes the mth feature for the nth time frame, ki is the i th weight and T is the

number of successive frames used for computation. Generally, T is taken as 2 (Furui 1981).

3.3 Speaker modelling

The Gaussian mixture model (GMM) employing universal background model (UBM) with

MAP speaker adaptation is the dominant approach in text-independent speaker recognition

(Reynolds 2000; Prakash & Hansen 2007). GMM basically models the feature vectors of the

speaker as Gaussian densities. For a D-dimensional feature vector denoted as xt , the mixture

density for speaker � is defined as weighted sum of M component Gaussian densities as

given by (Reynolds 1995)

P(xt |�) =
M

∑

i=1

wiPi(xt), (37)
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where wi are the weights and Pi(xt) are the component densities. Each component density is

a D-variate Gaussian function of the form

Pi(xt) = 1

(2π)D/2 |
i |
1
2

e− 1
2

[

(xt−µi)
′
−1

i (xt−µi)
]

(38)

where µi is a mean vector and 
i covariance matrix for i th component. The mixture weights

have to satisfy the constraint
∑M

i=1 wi = 1. The complete Gaussian mixture density is param-

eterized by the mean vector, the covariance matrix and the mixture weight from all component

densities.

Before using GMM for speaker identification, the model parameters must be estimated.

There are many criteria that can be used to estimate the model parameters. The most common

one is the maximum likelihood (ML) criterion. Of the many techniques developed to maxi-

mize the likelihood value, the most popular is the iterative expectation maximization (EM)

algorithm. Generally, the log-likelihood is preferred since it is computationally faster to pro-

cess (Bimbot et al 2004). For a sequence of training vectors X = {x1, x2, . . . , xT }, under

the assumption of independent feature vectors, the log-likelihood function can be written as

(Reynolds 1995)

log[P(X|�)] =
T

∑

t=1

log

[

M
∑

i=1

wiPi(xt)

]

. (39)

However, it is necessary that sufficient training data is available in order to create a model

of the speaker. Another way of estimating a statistical model, which is especially useful when

the training data available is of short duration, is by using maximum a posteriori (MAP)

adaptation of the universal background model (UBM) trained on the speech data of several

other speakers (Reynolds 2000). This UBM is trained with large amount of data which covers

the different kinds of speech that may be encountered by the system during training.

The UBM–GMM can be mainly divided into three parts: UBM training, Bayesian adapta-

tion of speaker models and speaker identification. A speaker-independent model, or UBM, is

trained from the non-target speakers using the EM algorithm. Then for each target speaker,

speaker models are created through MAP adaptation of the UBM using speaker-specific train-

ing speech. Based on experimental results, the best performance can be achieved using only

the mean adaptation of Gaussian mixtures (Reynolds 2000; Bimbot et al 2004; Prakash &

Hansen 2007). The mean adaptation equations are given by (Reynolds 2000)

µ̂i = ni

ni + r
Ei(xt) + ri

ni + r i

µi, (40)

where µi mean value of UBM and

ni =
T

∑

i=1

P(i|xt) (41)

Ei(xt) =
∑T

i=1 P(i|xt)xt

ni

, (42)

where r is a fixed relevance factor that controls the balance of adaptation between the UBM

parameters and speaker-specific training observations. It is set to 16 as in (Reynolds 2000).
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3.4 Testing

In identification phase, mixture densities are calculated for every feature vector for all speakers

and speaker with ML is selected as identified speaker (Reynolds 1995). For example, if S

speaker models {�1,�2,...,�S} are available after the training, the sequence of test feature

vectors X = {x1, x2, . . . , xT } is tested by finding the speaker model which has maximum a

posteriori probability. According to the Bayes rule (Reynolds 1995)

ŝ = max
1≤s≤S

P(�S |X) = max
1≤s≤S

P(X|�S)

P (X)
P (�S). (43)

Assuming equal probability of all speakers and the statistical independence of the observa-

tions, the decision rule for the most probable speaker can be redefined as (Bimbot et al 2004)

ŝ = max
1≤s≤S

T
∑

t=1

log P(xt |�s) (44)

where T is the number of feature vectors of the speech data set under test. Finally, the

recognition accuracy of speaker identification is assessed by identification rate and is defined

as the ratio of the number of correctly identified utterances to the total number of testing

utterances.

4. Experimental results and discussions

In this work, first the speaker models are created using clean speech data by UBM–GMM

concept. The UBM is trained on approximately one hour of data (excluding silence regions)

of the TIMIT database. The UBM training data are taken from train set of the TIMIT database

and for evaluation speech samples are taken from the test set of the TIMIT database. A first

set of experiment is conducted to evaluate the performance of the speaker recognition system

under clean condition and is found to be 97%. In the next step to evaluate the performance

of the combined TSP method on degraded speech the approach followed is schematically

illustrated in figure 3. In figure the pre-processing block refers to temporal processing, spectral

processing and the combined TSP methods. The recognition studies are carried out on test

speech (degraded speech) data with and without pre-processing.

Figure 3. Block diagram of speaker recognition under degraded conditions.
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Figure 4. Noisy speech enhancement: Excitation source spectrum of a frame of (a) clean speech,
(b) degraded speech, (c) speech processed by temporal processing, (d) speech processed by spectral
processing, (e) speech processed by temporal and spectral processing, and Vocal tract (LP) spectrum of a
frame of (f) clean speech, (g) degraded speech, (h) speech processed by temporal processing, (i) speech
processed by spectral processing, and (j) speech processed by temporal and spectral processing.

4.1 Speaker recognition in noisy environment

The noisy speech is created by adding white noise from NOISEX-92 database (Varga &

Steeneken 1993) to the test utterances. The noise waveform being added to the speech was

scaled to give the desired global SNR. The value of SNR is varied over the range of 0–30 dB.

While testing the degraded speech signal is enhanced using individual and the proposed

TSP methods as given in table 1 prior to the feature extraction step. In the present work,

the conventional multi-band spectral subtraction (Kamath & Loizou 2002) and the MMSE–

STSA estimator (Ephraim & Malah 1984) methods are used for combination. For MMSE–

STSA estimator the a priori SNR for each frequency component is estimated using a decision

directed variance estimator approach (Ephraim & Malah 1984). In this approach, the variance

estimator at a given frame uses the signal spectral magnitude estimate from the previous frame

along with the current noisy spectral values.

To illustrate the merit of the combined TSP, figures 4a–e show the excitation source signal

(LP residual) spectrum of clean, degraded, temporal, spectral and combined temporal and

spectral processed speech, respectively. Similarly, figures 4f–j show the vocal spectrum of

clean, degraded, temporal, spectral and combined temporal and spectral processed speech,

respectively. The combined processing shows improvement in both the excitation source and

vocal tract spectrum, where as individual processing methods show major improvement either

at the excitation source signal or at the vocal tract spectrum only. As a result the extracted

speaker-specific features of combined TSP method are more robust compared to the individual

processing methods and thus result in improved speaker recognition performance.



Application of combined TSP for speaker recognition 745

Table 4 shows experimental results obtained for the various SNR level. It can be seen

that the recognition performance of the combined TSP is higher than individual processing

methods. However, for higher SNR values, in particular for 30 dB, the combined method

results slightly lower performance than spectral processing alone. This is mainly because the

underlying temporal processing method involves weighting of the excitation source signal for

the enhancement. For higher SNR values, since noise level is very low, the weighting may

disturb the actual signal and thus results in the slight reduction in performance.

4.2 Speaker recognition in reverberant environment

The reverberant speech signal is generated through a linear convolution between the original

speech data and a room impulse response. We have generated five impulse responses using

image method (Allen & Berkley 1979) having the reverberation time in the range of 0·2–

1·0 sec with a source microphone distance of 1·5 m. The same procedure which is followed

in the noisy speech experiment is repeated and the obtained results are given in table 5.

The combined TSP algorithm used for enhancing the reverberant speech is given in table 2.

It can be observed that the combined TSP method gives relatively higher performance than

individual processing method. This is mainly because (Krishnamoorthy & Prasanna 2009)

(i) Spectral processing removes the late reverberant portion of the reverberant speech.

(ii) Temporal processing enhances the early reverberant portion of the reverberant speech.

Figures 5a and b show the clean speech and the corresponding reverberant speech obtained

by convolving the impulse response from the image method (Allen & Berkley 1979) with a

reverberation time of approximately 1 sec. The speech processed by the temporal processing,

spectral processing and the proposed combined TSP are given in figures 5c–e, respectively.

The spectrograms of the respective signals shown in figures 5a–e are given in figures 5f–j.

All the spectrograms are constructed using Hamming window of 128 samples with shift of

64 samples. From figure 5 it can be inferred that the spectral processing removes the late

reverberant speech spectral components where as the temporal processing fails to remove the

late reverberation in some portions. Figures 6c–e show the nature of the excitation source

signal obtained from the different processing methods. A small segment of voiced portion

(high SRR region) is taken for illustration. It can be noticed that, with reference to clean

speech instant locations (pointed by the down arrow symbol in figure 6a), the excitation source

signal of spectral processed speech does not show any noticeable improvement with reference

to the degraded one. On the other hand, the temporal processing shows the improvement

around the major instant locations in the excitation source information. It can be seen from

figures 5e and 6e that the combined TSP method provides enhancement of high SRR regions

and also the suppression of late reverberation. As a result, speech processed by the combined

TSP method gives lesser spectral distance with reference to clean speech (Krishnamoorthy &

Prasanna 2009) and therefore extracted MFCC features are more closer to that of the clean

speech MFCC features. This leads to the improvement in the speaker identification rate.

4.3 Speaker recognition in two-speaker environment

For this study, first a set of 100 speakers different from the UBM training and testing set is

chosen as interfering speakers. The synthetic two speaker data for a pair of microphones are

created with delays of d1 = 8 and d2 = −16 samples and used as a test signal for speaker

recognition study. Two different types of two speaker data are created, they are; (i) the gender
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Table 5. Speaker recognition performance (%) under reverberant environment. In the table abbrevi-
ations DEG, TP, SP and TSP refer to degraded speech, temporal processing, spectral processing and
combined temporal and spectral processing, respectively. Pi represents the maximum performance
among the number of Gaussians. D and T60 represent source microphone distance and reverberation
time, respectively.

No. of Gaussians

8 16 32 64 128 256 512 Max (Pi)

D = 1·5 m and T60 = 0·2 sec

DEG 29·0 32·0 36·0 35·0 43·0 38·0 37·0 43·0
SP 42·0 45·5 51·5 56·5 53·0 54·0 53·5 56·5
TP 35·0 34·0 37·0 35·5 43·0 36·0 37·5 43·0
TSP 38·5 44·5 49·5 51·5 52·0 56·5 52·5 56·5

D = 1·5 m and T60 = 0·4 sec

DEG 24·5 23·0 28·5 31·0 26·5 30·5 30·5 31·0
SP 36·0 35·0 40·0 45·5 45·0 49·5 47·0 49·5
TP 26·0 24·5 30·0 32·0 32·5 34·5 33·5 34·5
TSP 37·0 37·0 39·0 44·0 46·0 53·5 46·5 53·5

D = 1·5 m and T60 = 0·6 sec

DEG 18·5 20·5 21·5 20·0 16·0 23·0 22·5 23·0
SP 17·0 18·0 23·0 21·5 17·0 26·0 21·5 26·0
TP 23·0 26·5 27·0 32·5 30·0 35·0 29·0 35·0
TSP 23·0 26·0 30·5 34·0 32·5 39·5 31·5 39·5

D = 1·5 m and T60 = 0·8 sec

DEG 13·5 15·5 16·0 15·5 18·0 18·5 19·0 19·0
SP 20·0 18·0 18·5 23·0 23·0 24·5 24·5 24·5
TP 16·5 15·0 21·0 17·5 18·5 19·5 21·0 21·0
TSP 21·0 19·5 19·0 24·0 31·5 29·5 25·0 31·5

D = 1·5 m and T60 = 1·0 sec

DEG 8·0 5·5 7·5 8·5 8·0 9·0 7·5 9·0
SP 12·5 14·0 17·5 19·0 14·5 19·0 19·0 19·0
TP 8·0 7·5 7·5 8·0 9·5 9·0 8·5 9·5
TSP 17·5 15·0 21·0 20·0 15·0 21·5 18·0 21·5

of the interfering speaker is same as that of original test speaker, and (ii) interfering speaker

gender is different from that of test speaker. The degraded signal is pre-processed according

to the method given in table 3 and the pre-processed speech signal is used for capturing

MFCC features. Table 6 shows the result of this study for different pre-processing techniques.

The relative improvement in the performance of speaker recognition with the different pre-

processing techniques is clearly seen from the results. It can be observed that identification

rate of same gender case is less than the different gender case. This may be interpreted in

following way. In all pitch based separation methods, speech separation not only depends on

the processing method used but also on the nature of the degraded signal. The more separated

in the pitch and harmonics of each talker, the better the result to be expected. For same gender

case the separation between the pitch of desired and interfering speaker may be minimum.

Therefore for this case, the temporal and spectral processing may leave some of the interfering

speaker information in the enhanced speech and thus results a slightly poor performance than

different gender case.
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Figure 5. Reverberant speech enhancement: (a) clean speech, (b) degraded speech, (c) speech pro-
cessed by temporal processing, (d) speech processed by spectral processing, (e) speech processed by
spectral and temporal processing and (f)–(j) spectrograms of the respective signals shown in (a)–(e).
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Figure 6. Reverberant speech enhancement (Krishnamoorthy & Prasanna 2009): Excitation source
signal of (a) clean speech, (b) reverberant speech, (c) speech processed by temporal processing,
(d) speech processed by spectral processing, and (e) speech processed by temporal and spectral pro-
cessing.
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Table 6. Speaker recognition performance (%) in two speaker environment. In the table abbreviations
DEG, TP, SP and TSP refer to degraded speech, temporal processing, spectral processing and combined
temporal and spectral processing, respectively. Pi represents the maximum performance among the
number of Gaussians.

No. of Gaussians

8 16 32 64 128 256 512 Max (Pi)

Same Gender

DEG 18·5 22·5 29·0 32·0 37·0 36·0 39·5 39·5
TP 26·0 35·0 38·0 44·0 45·0 50·5 50·0 50·5
SP 27·5 36·5 41·5 50·0 56·0 51·5 56·0 56·0
TSP 31·0 45·0 45·5 49·5 59·0 52·0 55·0 59·0

Different Gender

DEG 28·0 31·0 38·0 38·0 41·5 40·0 40·0 41·5
TP 32·0 40·0 43·0 45·0 52·0 50·0 49·0 52·0
SP 41·0 47·5 48·5 57·0 55·5 58·0 55·0 58·0
TSP 42·0 49·5 50·0 58·5 59·5 62·5 60·0 62·5

Figure 7. Two speaker speech separation: Excitation source signal of (a) clean speech of desired
speaker, (b) degraded speech, (c) speech processed by temporal processing, (d) speech processed by
spectral processing, (e) speech processed by temporal and spectral processing, and STFT magnitude
spectrum of (f) clean speech of desired speaker, (g) degraded speech, (h) speech processed by temporal
processing, (i) speech processed by spectral processing, and (j) speech processed by temporal and
spectral processing.
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To show the effectiveness of combined method in more clear way, figures 7a–e show the

excitation source signal of desired speaker, degraded, temporal, spectral and combined tem-

poral and spectral processed speech, respectively. Similarly, figures 7f–j show the STFT mag-

nitude spectrum of clean, degraded, temporal, spectral and combined temporal and spectral

processed speech, respectively. Here also it can be observed that the combined processing

shows improvement in both the excitation source signal and short time spectrum, where as

individual processing methods show major improvement either at the excitation source signal

or at the short term spectrum only. Hence the combined TSP method gives better performance

than individual processing method.

5. Summary and conclusions

The main objective of this work is to evaluate the performance of the combined TSP based

speech enhancement methods in the speaker recognition task. For this study the TIMIT

database is taken and MFCC features are extracted from the clean speech data and the speaker

models are trained using UBM–GMM system. In testing stage, the synthetic degraded speech

is generated for each type of degradation. The degraded speech is subjected to temporal, spec-

tral and combined TSP methods before the feature extraction step to attenuate the degradation

characteristics. The enhanced speech is subjected to testing. The recognition results show that

combined processing method gives relatively higher performance than individual processing

methods, except with some limitations. Like in very high SNR values and for lower reverber-

ation times the combined method results slightly lower or equal performance than expected

due to underlying processing steps involved in temporal processing.

Appendix A

Enhancement of high SNR Evidence

The evidence about the high SNR regions is enhanced by computing its slope with the help of

a first order difference (FOD). The steps involved in the enhancement of high SNR evidences

are explained for the parameter sum of peaks in the DFT spectrum with the help of figure 8. For

illustration, speech data spoken by a female speaker and sampled at 8 kHz with a resolution

of 16 bits/sample is taken and white Gaussian noise is added to make SNR of the signal is

5 dB. Here, SNR is defined as the ratio of the total power of the clean speech to the total power

of the additive background noise. The sum of largest ten peaks of the DFT spectrum of the

Hamming windowed signal is calculated using window of 20 ms duration and 10 ms overlap

between the frames. All these values are repeated for frame shift number of times to make

the sequence length equal to that of the speech signal (Krishnamoorthy & Prasanna 2009).

Figure 8b shows the normalized sum of peaks in the DFT spectrum for the noisy signal given

in figure 8a. Since FOD represents the slope, the positive to negative going zero transition in

FOD locates the peaks in the sum of DFT spectrum values. The positive to negative going

zero transition points and the corresponding local peaks are represented by star (*) symbols

in figures 8b and c. The unwanted zero crossings that are detected at the low SNR regions

are eliminated by finding the sum of absolute FOD values for a duration of 5 ms on either

side with reference to each positive to negative going zero crossing point and are given in

figure 8d. The peaks with the lower FOD values are eliminated by setting the threshold at

0·5 times the mean values of the FOD. In the next step, if two successive peaks occur within
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Figure 8. High SNR regions enhancement: (a) noisy speech, (b) normalized sum of peaks in the
DFT spectrum, (c) first order difference (FOD) values, (d) sum of absolute FOD values computed for
a duration of 5 ms on either side with reference to each positive to negative going zero crossing point,
(e) sum of peaks in the DFT spectrum and high SNR region locations and (f) enhanced sum of peaks
in the DFT spectrum values. In the figures, * and o represent the peaks and their boundaries of high
SNR regions, respectively.

50 ms then the peak with the lower FOD value is eliminated based on the assumption that

occurrence of two high SRR regions unlikely within a 50 ms interval. The star (*) symbols in

figure 8e show the peak locations after eliminating the undesirable peaks (Krishnamoorthy &

Prasanna 2009). Segments bounded by negative to positive going zero transition points on

either side are enhanced by normalizing so that the peak smoothed DFT in each such region

has an amplitude of 1·0, as shown in figure 8f. As it can be observed, the change at the SNR

is further enhanced by processing sum of peaks in the DFT spectrum.
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