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Abstract

In this paper, we consider a class of fractional integro-differential inclusions in Hilbert
spaces. This paper deals with the approximate controllability for a class of fractional integro-
differential control systems. First, we establishes a set of sufficient conditions for the ap-
proximate controllability for a class of fractional semilinear integro-differential inclusions in
Hilbert spaces. We use Bohnenblust-Karlin’s fixed point theorem to prove our main results.
Further, we extend the result to study the approximate controllability concept with nonlocal
conditions. An example is also given to illustrate our main results.
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1 Introduction

Fractional order semilinear equations are abstract formulations for many problems arising in
engineering and physics. The potential applications of fractional calculus are in diffusion process,
electrical science, electrochemistry, viscoelasticity, control science, electro magnetic theory and
several more. In fact, such models can be considered as an efficient alternative to the classical
nonlinear differential models to simulate many complex processes. In the recent years, there has
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been a significant development in ordinary and partial differential equations involving fractional
derivatives, see the monographs of Kilbas et al. [27], Lakshmikantham et al. [30], Miller and
Ross [38], Podlubny [39], Hilfer [25]. On the other hand, the fractional differential inclusions arise
in the mathematical modeling of certain problems in economics, optimal controls, etc., so the
problem of existence of solutions of differential inclusions and fractional differential equations
and differential inclusions has been studied by several authors for different kind of problems
[4, 5, 11–14, 17–19, 48, 56].

The concept of controllability is an important property of a control system which plays an
important role in many control problems such as stabilization of unstable systems by feedback
control. Therefore, in recent years controllability problems for various types of linear and non-
linear deterministic and stochastic dynamic systems have been studied in many publications
(see [9, 10, 28, 29, 33, 41, 42, 49, 51, 52] and the references therein). From the mathematical
point of view, the problems of exact and approximate controllability are to be distinguished.
Exact controllability enables to steer the system to arbitrary final state while approximate con-
trollability means that the system can be steered to arbitrary small neighborhood of final state.
In particular, approximate controllable systems are more prevalent and very often approximate
controllability is completely adequate in applications. There are many papers on the approx-
imate controllability of the various types of nonlinear systems under different conditions (see
[3, 15, 21, 22, 34–37, 43, 44, 46, 47, 50, 53–55] and references therein)

Recently, Chang [10] proved the controllability of semilinear mixed Volterra-Fredholm type
integro-differential inclusions in Banach spaces by using Bohnenblust-Karlin’s fixed point the-
orem. In [53], Wang et al. established the Existence and controllability results for frac-
tional semilinear differential inclusions by using fractional calculation, operator semigroups and
Bohnenblust-Karlin’s fixed point theorem. In [35], Mahmudov proved the approximate control-
lability of fractional evolution equations by using of the theory of fractional calculus, semigroup
theory and the Schauder’s fixed point theorem. In [46], Sukavanam discussed the approximate
controllability of a delayed semilinear control system with growing nonlinear term by using
Schauder’s fixed point theorem. Very recently, in [44] Sakthivel et al. studied the approximate
controllability of fractional nonlinear differential inclusions with initial and nonlocal conditions
by using Bohnenblust-Karlin’s fixed point theorem. In [22], Guendouzi investigated the approx-
imate controllability for a class of fractional neutral stochastic functional integro-differential
inclusions Bohnenblust-Karlin’s fixed point theorem.

Motivated by the above works, this paper establishes a sufficient condition for the approxi-
mate controllability for a class of fractional semilinear integro-differential inclusions in Hilbert
spaces of the form

{
x′(t) ∈

∫ t

0
(t−s)α−2

Γ(α−1) Ax(s)ds + (Bu)(t) + F (t, x(t)), t ∈ I = [0, b],

x(0) = x0,
(1)

where 1 < α < 2, A : D(A) ⊂ X → X is a linear densely defined operator of sectorial type on a
Hilbert space X. Notice that the convolution integral in the equation is known as the Riemann-
Liouville fractional integral, the control function u(·) ∈ L2(I, U), a Hilbert space of admissible
control functions. Further, B is a bounded linear operator from U toX, and F : I×X → 2X\{∅}
is a nonempty, bounded, closed and convex multivalued map.

To the best of our knowledge, the study of the approximate controllability for a class of
fractional semilinear integro-differential inclusions in Hilbert spaces of the form (1), is an un-
treated topic in the literature, this will be the main motivation of our paper. This paper is
organized as follows. In Section 3, we establish a set of sufficient conditions for the approximate
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controllability for a class of fractional semilinear integro-differential inclusions in Hilbert spaces.
In Section 4, we establish a set of sufficient conditions for the approximate controllability for a
class of fractional semilinear integro-differential inclusions with nonlocal conditions. An example
is presented in Section 5 to illustrate the theory of the obtained results.

2 Preliminaries

Let (Z, ‖ · ‖) and (W, ‖ · ‖) be two Hilbert spaces. The notation L(Z,W ) stands for the space
of bounded linear operators from Z into W endowed with the uniform operator topology, and
we abbreviate it to L(Z) whenever Z = W . In order to give an operator theoretical approach
we recall the following definition (cf.[12]).

Definition 2.1. Let A be a closed and linear operator with domain D(A) defined on a Hilbert
space X. We recall that A is the generator of a solution operator if there exist µ ∈ R and a
strongly continuous function Sα : R+ → L(X) such that {λα : Reλ > µ} and

λα−1(λα −A)−1x =

∫ t

0
e−λtSα(t)xdt, Reλ > µ, x ∈ X.

In this case, Sα(t) is called the solution operator generated by A.
The concept of a solution operator, as defined above, is closely related to the concept of a

resolvent family (see [40, Chapter I]). For the scalar case, there is a large bibliography, and we
refer the reader to the monograph by Gripenberg et al. [23], and references therein. Because of
the uniqueness of the Laplace transform, in the border case α = 1 the family Sα(t) corresponds
to a C0-semigroup, whereas in the case α = 2 a solution operator corresponds to the concept of
a cosine family; see [1, 20]. We note that solution operators, as well as resolvent families, are
a particular case of (a, k)-regularized families introduced in [32]. According to [32] a solution

operator Sα(t) corresponds to a (1, t
α−1

Γ(α) )-regularized family. The following result is a direct

consequence of [32, Proposition 3.1 and Lemma 2.2].

Proposition 2.2. Let Sα(t) be a solution operator on X with generator A. Then, we have

(a) Sα(t)D(A) ⊂ D(A) and ASα(t)x = Sα(t)Ax for all x ∈ D(A), t ≥ 0.

(b) Let x ∈ D(A) and t ≥ 0. Then Sα(t)x = x+
∫ t

0
(t−s)α−1

Γ(α) ASα(s)ds.

(c) Let x ∈ X and t ≥ 0. Then
∫ t

0
(t−s)α−1

Γ(α) ASα(s)xds ∈ D(A) and

Sα(t)x = x+A

∫ t

0

(t− s)α−1

Γ(α)
Sα(s)xds

.

A characterization of generators of solution operators, analogous to the Hille-Yosida Theorem
for C0-semigroup, can be directly deduced from [32, Theorem 3.4]. Results on perturbation,
approximation, representation as well as ergodic type theorems can be deduced from the more
general context of (a, k)-regularized resolvents (see [32, 45]).

A closed and linear operator A is said to be sectorial of type µ if there exist 0 < θ < π/2,

M̃ > 0 and µ ∈ R such that its resolvent exists outside the sector

µ+ Sθ = {µ + s : λ ∈ C, |arg(−λ)| < θ}
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and

‖(λ−A)−1‖ ≤
M̃

|λ− µ|
, λ /∈ µ+ Sθ.

Sectorial operator are well studied in the literature. For a recent work including several examples
and properties, we refer the reader to [24]. In this work we will assume that in the problem (1)
the operator A is sectorial of type µ with 0 < θ < π(1 − α/2). Then A is the generator of a
solution operator given by

Sα(t) =
1

2πi

∫

γ

eλtλα−1(λα −A)−1dλ,

where γ is a suitable path lying outside the sector µ+Sθ (cf. Cuesta’s paper [11]). Very recently,

Cuesta [11, Theorem 1] has proved that if A is a sectorial operator of type µ for some M̃ > 0
and 0 < θ < π(1− α/2) then there exists C > 0 such that, for all t ≥ 0,

‖Sα(t)‖L(x) =
CM̃

1 + |µ|tα
, if µ < 0,

and

‖Sα(t)‖L(x) = CM̃(1 + µtα)eµ
1/αt, if µ ≥ 0,

Note that Sα(t) is, in fact, integrable on [0, b].
We also introduce some basic definitions and results of multivalued maps. For more details

on multivalued maps, see the books of Deimling [16] and Hu and Papageorgious [26].
A multivalued map G : X → 2X \ {∅} is convex (closed) valued if G(x) is convex (closed)

for all x ∈ X. G is bounded on bounded sets if G(C) =
⋃

x∈C G(x) is bounded in X for any

bounded set C of X, i.e., supx∈C

{
sup{‖y‖ : y ∈ G(x)}

}
< ∞.

Definition 2.3. G is called upper semicontinuous (u.s.c. for short) on X if for each x0 ∈ X,
the set G(x0) is a nonempty closed subset of X, and if for each open set C of X containing
G(x0), there exists an open neighborhood V of x0 such that G(V ) ⊆ C.

Definition 2.4. G is called completely continuous if G(C) is relatively compact for every
bounded subset C of X.

If the multivalued map G is completely continuous with nonempty values, then G is u.s.c.,
if and only if G has a closed graph, i.e., xn → x∗, yn → y∗, yn ∈ Gxn imply y∗ ∈ Gx∗. G has a
fixed point if there is a x ∈ X such that x ∈ G(x).

Definition 2.5. A function x ∈ C is said to be a mild solution of system (1) if x(0) = x0 and
there exists f ∈ L1(I,X) such that f(t) ∈ F (t, x(t)) on t ∈ I and the integral equation

x(t) = Sα(t)x0 +

∫ t

0
Sα(t− s)f(s)ds+

∫ t

0
Sα(t− s)Bu(s)ds, t ∈ I.

is satisfied.
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In order to address the problem, it is convenient at this point to introduce two relevant
operators and basic assumptions on these operators:

Υb
0 =

∫ b

0
Sα(b− s)BB∗S∗

α(b− s)ds : X → X,

R(a,Υb
0) = (aI +Υb

0)
−1 : X → X

where B∗ denotes the adjoint of B and S∗
α(t) is the adjoint of Sα(t). It is straightforward that

the operator Υb
0 is a linear bounded operator.

To investigate the approximate controllability of system (1), we impose the following condi-
tion:

H0 aR(a,Υb
0) → 0 as a → 0+ in the strong operator topology.

In view of [33], Hypothesis H0 holds if and only if the linear fractional system

x′(t) =

∫ t

0

(t− s)α−2

Γ(α− 1)
Ax(s)ds + (Bu)(t), t ∈ [0, b], (2)

x(0) = x0

is approximately controllable on [0, b].

Lemma 2.6. [31, Lasota and Opial] Let I be a compact real interval, BCC(X) be the set of
all nonempty, bounded, closed and convex subset of X and F be a multivalued map satisfying
F : I ×X → BCC(X) is measurable to t for each fixed x ∈ X, u.s.c. to x for each t ∈ I, and
for each x ∈ C the set

SF,x = {f ∈ L1(I,X) : f(t) ∈ F (t, x(t)), t ∈ I}

is nonempty. Let F be a linear continuous from L1(I,X) to C, then the operator

F ◦ SF : C → BCC(C), x → (F ◦ SF )(x) = F (SF,x),

is a closed graph operator in C × C.

Lemma 2.7. [6, Bohnenblust and Karlin]. Let D be a nonempty subset of X, which is bounded,
closed, and convex. Suppose G : D → 2X \ {∅} is u.s.c. with closed, convex values, and such
that G(D) ⊆ D and G(D) is compact. Then G has a fixed point.

3 Controllability results

In this section, first we establish a set of sufficient conditions for the approximate controlla-
bility for a class of fractional semilinear integro-differential inclusions in Hilbert spaces by using
Bohnenblust-Karlin’s fixed point theorem. In order to establish the result, we need the following
hypothesis:

H1 The solution operator Sα(t), t ∈ I is compact, and there exists M > 0 such that ‖Sα(t)‖ ≤
M for every t ∈ I.
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H2 For each positive number r and x ∈ C with ‖x‖C ≤ r, there exists a constant q1 ∈ (0, q)

and Lf,r(·) ∈ L
1

q1 (I,R+) such that

sup{‖f‖ : f(t) ∈ F (t, x(t))} ≤ Lf,r(t),

for a.e. t ∈ I.

H3 The function s → Lf,r(s) ∈ L1([0, t],R+) and there exists a γ > 0 such that

lim
r→∞

∫ t

0 Lf,r(s)ds

r
= γ < +∞.

It will be shown that the system (1) is approximately controllable, if for all a > 0, there
exists a continuous function x(·) such that

x(t) = Sα(t)x0 +

∫ t

0
Sα(t− s)f(s)ds+

∫ t

0
Sα(t− s)Bu(s, x)ds, f ∈ SF,x, (3)

u(t, x) = B∗S∗
α(b− t)R(a,Υb

0)p(x(·)), (4)

where p(x(·)) = xb − Sα(t)x0 −
∫ t

0 Sα(t− s)f(s)ds.

Theorem 3.1. Suppose that the hypotheses H0-H3 are satisfied. Then system (1) controllable
on I provided that

Mγ
[
1 +

1

α
M2M2

Bb
]
< 1, (5)

where MB = ‖B‖.

Proof. The main aim in this section is to find conditions for solvability of system (3) and (4) for
a > 0. We show that, using the control u(x, t), the operator Γ : C → 2C , defined by

Γ(x) =
{
ϕ ∈ C : ϕ(t) = Sα(t)x0 +

∫ t

0
Sα(t− s)[f(s) +Bu(s, x)]ds, f ∈ SF,x

}
,

has a fixed point x, which is a mild solution of system (1). We observe that xb ∈ (Γx)(b) which
means that u(t, x) steers system (1) from x0 to xb in finite time b. This implies system (1) is
controllable on I.

We now show that Γ satisfies all the conditions of Lemma 2.7. For the sake of convenience,
we subdivide the proof into five steps.
Step 1. Γ is convex for each x ∈ C.

In fact, if ϕ1, ϕ2 belong to Γ(x), then there exist f1, f2 ∈ SF,x such that for each t ∈ I, we
have

ϕi(t) =Sα(t)x0 +

∫ t

0
Sα(t− s)fi(s)ds+

∫ t

0
Sα(t− s)BB∗S∗

α(b− t)R(a,Υb
0)
[
xb − S(b)x0

−

∫ b

0
Sα(b− η)fi(η)dη

]
(s)ds, i = 1, 2.
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Let λ ∈ [0, 1]. Then for each t ∈ J , we get

λϕ1(t) + (1− λ)ϕ2(t) =Sα(t)x0 +

∫ t

0
Sα(t− s)[λf1(s) + (1− λ)f2(s)]ds

+

∫ t

0
Sα(t− s)BB∗S∗

α(b− t)R(a,Υb
0)

[
xb − S(b)x0

−

∫ b

0
Sα(b− s)[λf1(s) + (1− λ)f2(s)]ds

]
(s)ds.

It is easy to see that SF,x is convex since F has convex values. So, λf1+(1−λ)f2 ∈ SF,x. Thus,

λϕ1 + (1− λ)ϕ2 ∈ Γ(x).

Step 2. For each positive number r > 0, let Br = {x ∈ C : ‖x‖C ≤ r}. Obviously, Br is a
bounded, closed and convex set of C. We claim that there exists a positive number r such that
Γ(Br) ⊆ Br.

If this is not true, then for each positive number r, there exists a function xr ∈ Br, but
Γ(xr) does not belong to Br, i.e.,

‖Γ(xr)‖C ≡ sup
{
‖ϕr‖C : ϕr ∈ (Γxr)

}
> r

and

ϕr(t) = Sα(t)x0 +

∫ t

0
Sα(t− s)f r(s)ds+

∫ t

0
Sα(t− s)Bur(s, x)ds,

for some f r ∈ SF,xr . Using H1-H3, we have

r < ‖Γ(xr)(t)‖

≤ ‖Sα(t)x0‖+

∫ t

0
‖Sα(t− s)f r(s)‖ds +

∫ t

0
‖Sα(t− s)Bur(s, x)‖ds

≤ M
[
‖x0‖+

∫ t

0
Lf,r(s)ds

]
+

1

α
M2M2

Bb

[
‖xb‖+ ‖x0‖+

∫ b

0
Lf,r(s)ds

]
.

Dividing both sides of the above inequality by r and taking the limit as r → ∞, using H3, we
get

Mγ
[
1 +

1

α
M2M2

Bb
]
≥ 1.

This contradicts with the condition (5). Hence, for some r > 0, Γ(Br) ⊆ Br.
Step 3. Γ sends bounded sets into equicontinuous sets of C. For each x ∈ Br, ϕ ∈ Γ(x), there
exists a f ∈ SF,x such that

ϕ(t) = Sα(t)x0 +

∫ t

0
Sα(t− s)f(s)ds+

∫ t

0
Sα(t− s)Bu(s, x)ds.
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Let 0 < ε < 0 and 0 < t1 < t2 ≤ b, then

|ϕ(t1)− ϕ(t2)| =|Sα(t1)− Sα(t2)||x0|+
∣∣∣
∫ t1−ε

0
[Sα(t1 − s)− Sα(t2 − s)]f(s)ds

∣∣∣

+
∣∣∣
∫ t1

t−ε

[Sα(t1 − s)− Sα(t2 − s)]f(s)ds
∣∣∣+

∣∣∣
∫ t2

t1

Sα(t2 − s)f(s)ds
∣∣∣

+
∣∣∣
∫ t1−ε

0
[Sα(t1 − η)− Sα(t2 − η)]Bu(η, x)dη

∣∣∣

+
∣∣∣
∫ t1

t−ε

[Sα(t1 − η)− Sα(t2 − η)]Bu(η, x)dη
∣∣∣ +

∣∣∣
∫ t2

t1

Sα(t2 − η)Bu(η, x)dη
∣∣∣

≤|Sα(t1)− Sα(t2)||x0|+

∫ t1−ε

0
|Sα(t1 − s)− Sα(t2 − s)|Lf,r(s)ds

+

∫ t1

t−ε

|Sα(t1 − s)− Sα(t2 − s)|Lf,r(s)ds+M

∫ t2

t1

Lf,r(s)ds

+MB

∫ t1−ε

0
|Sα(t1 − η)− Sα(t2 − η)|‖u(η, x)‖dη

+MB

∫ t1

t−ε

|Sα(t1 − η)− Sα(t2 − η)‖u(η, x)‖dη +MMB

∫ t2

t1

‖u(η, x)‖dη.

The right-hand side of the above inequality tends to zero independently of x ∈ Br as (t1 −
t2) → 0 and ε sufficiently small, since the compactness of Sα(t) implies the continuity in the
uniform operator topology. Thus Γ(xr) sends Br into equicontinuous family of functions.
Step 4. The set Π(t) =

{
ϕ(t) : ϕ ∈ Γ(Br)

}
is relatively compact in X.

Let t ∈ (0, b] be fixed and ε a real number satisfying 0 < ε < t. For x ∈ Br, we define

ϕε(t) = Sα(t)x0 +

∫ t−ε

0
Sα(t− s)f(s)ds+

∫ t−ε

0
Sα(t− η)Bu(η, x)dη.

Since Sα(t) is a compact operator, the set Πε(t) = {ϕε(t) : ϕε ∈ Γ(Br)} is relatively compact in
X for each ε, 0 < ε < t. Moreover, for each 0 < ε < t, we have

|ϕ(t) − ϕε(t)| ≤ M

∫ t

t−ε

Lf,r(s)ds +MMB

∫ t

t−ε

‖u(η, x)‖dη.

Hence there exist relatively compact sets arbitrarily close to the set Π(t) = {ϕ(t) : ϕ ∈ Γ(Br)},
and the set Π̃(t) is relatively compact in X for all t ∈ [0, b]. Since it is compact at t = 0, hence
Π(t) is relatively compact in X for all t ∈ [0, b].
Step 5. Γ has a closed graph.

Let xn → x∗ as n → ∞, ϕn ∈ Γ(xn), and ϕn → ϕ∗ as n → ∞. We will show that ϕ∗ ∈ Γ(x∗).
Since ϕn ∈ Γ(xn), there exists a fn ∈ SF,xn such that

ϕn(t) =Sα(t)x0 +

∫ t

0
Sα(t− s)fn(s)ds+

∫ t

0
Sα(t− s)BB∗S∗

α(b− t)R(a,Υb
0)
[
xb − S(b)x0

−

∫ b

0
Sα(b− η)fn(η)dη

]
(s)ds.
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We must prove that there exists a f∗ ∈ SF,x∗
such that

ϕ∗(t) =Sα(t)x0 +

∫ t

0
Sα(t− s)f∗(s)ds+

∫ t

0
Sα(t− s)BB∗S∗

α(b− t)
[
x1 − S(b)x0

−

∫ b

0
Sα(b− η)f∗(η)ds

]
(s)ds.

Set

ux(t) = B∗S∗
α(b− t)[xb − S(b)x0](t).

Then

uxn(t) → ux∗
(t), for t ∈ I, as n → ∞.

Clearly, we have

∥∥∥
(
ϕn − Sα(t)x0 −

∫ t

0
Sα(t− s)BB∗S∗

α(b− t)R(a,Υb
0)
[
xb − S(b)x0

−

∫ b

0
Sα(b− η)fn(η)dη

]
(s)ds

)
−

(
ϕ∗ − Sα(t)x0 −

∫ t

0
Sα(t− s)BB∗S∗

α(b− t)
[
x1

− S(b)x0 −

∫ b

0
Sα(b− η)f∗(η)ds

]
(s)ds

)∥∥∥
C
→ 0 as n → ∞.

Consider the operator F̃ : L1(I,X) → C,

(F̃f)(t) =

∫ t

0
Sα(t− s)

[
f(s)−BB∗S∗

α(b− t)
(∫ b

0
Sα(b− η)f(η)dη

)
(s)

]
ds

We can see that the operator F̃ is linear and continuous. From Lemma 2.7 again, it follows
that F̃ ◦ SF is a closed graph operator. Moreover,

(
ϕn − Sα(t)x0 −

∫ t

0
Sα(t− s)BB∗S∗

α(b− t)R(a,Υb
0)
[
xb − S(b)x0

−

∫ b

0
Sα(b− η)fn(η)dη

]
(s)ds

)
∈ F (SF,xn).

In view of xn → x∗ as n → ∞, it follows again from Lemma 2.7 that

(
ϕ∗ − Sα(t)x0 −

∫ t

0
Sα(t− s)BB∗S∗

α(b− t)R(a,Υb
0)
[
xb − S(b)x0

−

∫ b

0
Sα(b− η)f∗(η)dη

]
(s)ds

)
∈ F (SF,x∗

).

Therefore Γ has a closed graph.
As a consequence of Steps 1-5 together with the Arzela-Ascoli theorem, we conclude that

Γ is a compact multivalued map, u.s.c. with convex closed values. As a consequence of Lemma
2.7, we can deduce that Γ has a fixed point x which is a mild solution of system (1).

Definition 3.2. The control system (1) is said to be approximately controllable on I if for all
x0 ∈ X, there is some control u2L(I, U), the closure of the reachable set, R(b, x0) is dense in
X, i.e., R(b, x0) = X, where R(b, x0) = {x(b;u) : u2L(I, U), x(0, u) = x0} is the reachable set of
system (1) with the initial value x0 at terminal time b.
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Roughly speaking, from any given starting point x0 ∈ X we can go with the trajectory as
close as possible to any other final state xb ∈ X. In the following theorem, it will be shown that
under certain conditions the approximate controllability of linear fractional inclusion (2) implies
the approximate controllability of the nonlinear fractional differential inclusion (1).

Theorem 3.3. Suppose that the assumptions H0-H3 hold. Assume additionally that there exists
N ∈ L1(I, [0,∞)) such that supx∈X ‖F (t, x)‖ ≤ N(t) for a.e. t ∈ I, then the nonlinear fractional
differential inclusion (1) is approximately controllable on I.

Proof. Let x̂a(·) be a fixed point of Γ in Br. By Theorem 3.1, any fixed point of Γ is a mild
solution of (1) under the control

ûa(t) = B∗S∗
α(b− t)R(a,Υb

0)p(x̂
a)

and satisfies the following inequality

x̂a(b) = xb + aR(a,Υb
0)p(x̂

a).

Moreover by assumption on F and Dunford-Pettis Theorem, we have that the {fa(s)} is weakly
compact in L1(I,X), so there is a subsequence, still denoted by {fa(s)}, that converges weakly
to say f(s) in L1(I,X). Define

w = xb − Sα(b)x0 −

∫ b

0
Sα(b− s)f(s)ds.

Now, we have

‖p(x̂a)− w‖ =
∥∥∥
∫ b

0
Sα(b− s)[f(s, x̂a(s))− f(s)]ds

∥∥∥

≤ sup
t∈J

∥∥∥
∫ t

0
Sα(t− s)[f(s, x̂a(s))− f(s)]ds

∥∥∥. (6)

By using infinite-dimensional version of the Ascoli-Arzela theorem, one can show that an op-
erator l(·) →

∫
·

0 Sα(· − s)l(s)ds : L1(I,X) → C(I,X) is compact. Therefore, we obtain that
‖p(x̂a)−w‖ → 0 as a → 0+. Moreover, from (3) we get

‖x̂a(b)− xb‖ ≤‖aR(a,Υb
0)(w)‖ + ‖aR(a,Υb

0)‖‖p(x̂
a)− w‖

≤‖aR(a,Υb
0)(w)‖ + ‖p(x̂a)− w‖.

It follows from assumption H0 and the estimation (6) that ‖x̂a(b) − xb‖ → 0 as a → 0+. This
proves the approximate controllability of differential inclusion (1).

4 Fractional control systems with nonlocal conditions

There exist an extensive literature of differential equations with nonlocal conditions. The
result concerning the existence and uniqueness of mild solutions to abstract Cauchy problems
with nonlocal initial conditions was first formulated and proved by Byszewski, see [7, 8]. Since
the appearance of this paper, several papers have addressed the issue of existence and uniqueness
of nonlinear differential equations. Existence and controllability results of nonlinear differential
equations and fractional differential equations with nonlocal conditions has been studied by
several authors for different kind of problems [19, 21, 34, 49, 56].
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Recently, Mahmudov [34] studied the approximate controllability of evolution systems with
nonlocal conditions by usnig Schauder’s fixed point theorem. In [43] Sakthivel et al. discussed
the approximate controllability of semilinear fractional differential systems with initial and non-
local conditions by using Schauder’s fixed point theorem. Very recently Sakthivel et al. [43]
proved the exact controllability for a class of fractional-order neutral evolution control systems
with initial and nonlocal conditions by using Contraction mapping principle. In [49] Vijayaku-
mar et al. established the nonlocal controllability of mixed Volterra-Fredholm type fractional
semilinear integro-differential inclusions in Banach spaces by using Bohnenblust-Karlin’s fixed
point theorem and in [51] investigated the controllability for a class of fractional neutral integro-
differential equations with unbounded delay by using Contraction mapping principle.

Motivated by this consideration, in this section, we discuss the approximate controllability
for a class of fractional integro-differential inclusions with nonlocal condition of the form

{
x′(t) ∈

∫ t

0
(t−s)α−2

Γ(α−1) Ax(s)ds+Bu(t) + F (t, x(t)), t ∈ I = [0, b],

x(0) + g(x) = x0,
(7)

where g : C(I,X) → X is a given function which satisfies the following condition:

H4 There exists a constant L > 0 such that |g(x) − g(y)| ≤ L‖x− y‖, for x, y ∈ C(I,X).

The nonlocal term g has a better effect on the solution and is more precise for physical
measurements than the classical condition x(0) = x0 alone. For example, g(x) can be written as

g(x) =

m∑

k=1

ckx(tk)

where ck(k = 1, 2, · · · , n) are given constants and 0 < t1 < · · · < tn ≤ b.

Definition 4.1. A function x ∈ C is said to be a mild solution of system (7) if x(0)+ g(x) = x0
and there exists f ∈ L1(I,X) such that f(t) ∈ F (t, x(t)) on t ∈ I and the integral equation

x(t) = Sα(t)(x0 − g(x)) +

∫ t

0
Sα(t− s)f(s)ds+

∫ t

0
Sα(t− s)Bu(s)ds, t ∈ I.

is satisfied.

Theorem 4.2. Assume that the assumptions of Theorem 3.1 are satisfied. Further, if the
hypothesis H4 is satisfied, then the fractional system system (7) is approximately controllable on
I provided that

Mγ
[
1 +

1

α
M2M2

Bb
]
< 1,

where MB = ‖B‖.

Proof. For each a > 0, we define the operator Γ̂a on X by

(Γ̂ax) = z,

where

z(t) = Sα(t)(x0 − g(x)) +

∫ t

0
Sα(t− s)f(s)ds+

∫ t

0
Sα(t− s)Bu(s, x)ds, f ∈ SF,x,

v(t) = B∗S∗
α(b− t)R(a,Υb

0)p(x(·)),

p(x(·)) = xb − Sα(t)(x0 − g(x))−

∫ t

0
Sα(t− s)f(s)ds
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It can be easily proved that if for all a > 0, the operator Γ̂a has a fixed point by implementing
the technique used in Theorem 3.1. Then, we can show that the fractional control system (7)
is approximately controllable. The proof of this theorem is similar to that of Theorem 3.1 and
Theorem 3.3, and hence it is omitted.

5 An example

As an application of our results we consider the following fractional differential inclusion of
the form

∂u

∂t
x(t, ξ) ∈

1

Γ(α− 1)

∫ 0

t

(t− s)µ−2Lξu(s, ξ)ds

+ [f1(t, ϕ(0, ξ)), f2(t, ϕ(0, ξ))] + µ(t, ξ), t ∈ [0, b], ξ ∈ [0, π] (8)

x(t, 0) =x(t, π) = 0, (9)

x(0, ξ) =x0(0, ξ), ξ ∈ [0, π], (10)

where 1 < α < 2, L stands for the operator with respect to the spatial variable ξ which is given
by

Lξ =
∂2

∂ξ2
− r, with r > 0,

f1, f2 : I × X → R are measurable in t and continuous in y. We assume that for each t ∈ I,
f1(t, ·) is lower semicontinuous (i.e. the set {y ∈ X : f1(t, y) > v} is open for all v ∈ R), and
assume that for each t ∈ I, f2(t, ·) is u.s.c. (i.e. the set {y ∈ X : f1(t, y) < v} is open for v ∈ R).

Take X = L2([0, π],R) and the operator A : Lξ : D(A) ⊂ X → X with domain D(A) = {x ∈
X : x′′ ∈ X,x(0) = x(π) = 0}. Clearly A is densely defined in X and is sectorial. Hence A is
a generator of a solution operator on X. The mutivalued map F is u.s.c. with compact convex
values [16].

By defining the following

y(t)(ξ) = u(t, ξ)

F (t, ξ) = [f1(t, ϕ(0, ξ)), f2(t, ϕ(0, ξ))]

Bu(t, ξ) = µ(t, ξ)

we can transform (8)-(10) into the abstract form (1). Hence all the hypotheses of theorem 3.3
are satisfied, then the system (8)-(10) is approximately controllable.
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