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Abstract. To reduce global warming, the Electric Vehicles (EV) are more attracting 
Worldwide for replacement of conventional IC engine vehicle but the main problem is driving 
range and the cost of EV is very high compared to a conventional vehicle. The driving range is 
mainly depending on the type of battery and size of the battery pack used in EV, for long 
driving range more number of batteries are required which automatically increase the weight 
and cost of EV. An effective battery management system will increase battery life and driving 
range of the EV with less number of batteries. In battery management system of EV the battery 
is major component but battery is costly and managing power of the battery is very much 
essential in EV technology. Majority of the issues can be solved by developing advanced 
battery management system (BMS) in EV such as, Battery modelling, accurate battery state of 
charge and state of health estimation, which can provide an exact driving range of EV and 
charging/discharging strategies work more effectively. This review paper mainly focuses on 
different battery modelling techniques and existing battery SOC estimation methods, issues 
and challenges. 

1.  Introduction  

The BMS manage the electric energy storage system in EV. BMS is used to monitor and protect each 
cell in battery pack continuously and it’s often interfaced with other devices in EV. The main function 
of the BMS is to provide the over voltage and under voltage protection, over current protection, state 
of charge (SOC) and state of health (SOH) estimation in each cell of battery, fault detection, cell 
balancing and thermal management. The secondary function of BMS is to current limit calculations, 
digital or analog interfaces with application, cell health monitoring, isolation fault monitoring. 
 
BMS will improve the lifespan battery by providing over charge and over discharge protection to each 
cell in battery pack. Driving range and cost of EV mainly depends on the battery capacity. The 
capacity of the battery is depending on the battery chemistry, ambient temperature, aging effects, 
control algorithm used in the BMS and maintenance. The control algorithms are mainly used for 
estimate the SOC, SOH and thermal management. There are different control algorithms are proposed 
in the literature for battery parameters estimation, mainly they are classified as electrochemical battery 
impedance spectroscopy (ESI), Equivalent circuit models (ECM) and electrochemical model (EM), 
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each technique have its own advantages and disadvantages which are clearly explained in the 
following chapters.  
 
For Different types of batteries anode and cathode materials have different property and Every battery 
have its own electrochemical and dynamic characteristics. Most of equivalent circuit model hysteresis 
effect of the battery was not consider. So, it’s very difficult to model the equivalent circuit of it. It is 
necessary to design suitable model of the battery which can work with any load conditions.  

 
In literature different battery models are there, they can classify as a thermal, physical, 
electrochemical, equivalent circuit model and so on. From that equivalent circuit model (ECM) is 
more using for estimation of SOC due to its simple structure. 

2.  EV Battery modelling  

Now a days mostly the Lithium-ion batteries (LIB) are using in EV applications due its energy 
density, charging and low self-discharging characteristics. The Different LIB model-based methods 
are explained in the literature. 

2.1.   Rint ECM  

The Rint ECM, as shown in the figure 1, it is simple model for practical implementation but output 
equation leads to uncertainties in state estimation. The equation 1 is the output voltage (VL) is the sum 
of the open circuit voltage Voc and internal resistance R0, where Voc and R0 are the function of SOC, 
SOH and temperature. The IL is load current which is positive during discharging and negative during 
discharging of the cell.   

 
Figure 1. The Rint ECM. 

 𝑉𝐿 = 𝑉𝑂𝐶 − 𝐼𝐿𝑅0     (1) 

2.2.  Thevenin ECM  

Thevenin ECM is shown in figure 2. It is an Improved model of Rint with Parallel RC network in 
series. It Most used in practical applications but it has accuracy problem during charging and 
Discharging process.  The internal resistance of this model includes R0 and Rth namely called as ohmic 
and polarization resistances. The 𝐶𝑇ℎ describes the transient response of the ECM. The behavior of the 
output voltage is shown in equation 2 and equation 3. 
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Figure 2. Thevenin ECM. 
 𝑉. 𝑇ℎ = − 𝑉𝑇ℎ𝑅𝑇ℎ𝐶𝑇ℎ + 𝐼𝐿𝐶𝑇ℎ     (2) 𝑉𝐿 = 𝑉𝑂𝐶 − 𝑉𝑇ℎ − 𝐼𝐿𝑅0                 (3) 

 

2.3.  Dual polarization ECM  

Dual polarization ECM is shown in the figure 3. It is an improved model of the Thevenin’s model. It 
has more accurate during charging and discharging. The output voltage equation is shown in 4 to 6. 

 

Figure 3. Dual polarization ECM. 
 𝑽. 𝒑𝒂 = − 𝑽𝒑𝒂𝑹𝒑𝒂𝑪𝒑𝒂 + 𝑰𝑳𝒄𝒑𝒂          (4) 

𝑽. 𝒑𝒄 = − 𝑽𝒑𝒄𝑹𝒑𝒄𝑪𝒑𝒄 + 𝑰𝑳𝒄𝒑𝒄     (5) 𝑉𝐿 = 𝑉𝑂𝐶 − 𝑉𝑝𝑎 − 𝑉𝑝𝑐 − 𝐼𝐿𝑅0   (6) 
 

2.4.  PNGV (partnership for new generation of vehicle) ECM  

PNGV ECM is shown in the figure 4. It an improved model of the Thevenin model by adding a 
capacitor in series with the source voltage of the Thevenin model. Data saturation and accumulation 
over time of load current problem can be overcome using PNGV model. Equation 7 to 9 describe the 
output voltage the model.  
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Figure 4. PNGV ECM. 

 𝑽. 𝒅 = 𝑽𝒐𝒄′  𝑰𝑳      (7) 𝑉..𝑝𝑛 = − 𝑉𝑝𝑛𝑅𝑝𝑛𝐶𝑝𝑛 + 𝐼𝐿𝐶𝑝𝑛    (8) 𝑉𝐿 = 𝑉𝑜𝑐 − 𝑉𝑑 − 𝑉𝑝𝑛 − 𝐼𝐿𝑅0    (9) 

2.5.  GNL (General non-linear) ECM  

GNL ECM is shown in the figure 5. It is combination model of the PNGV and Dual polarization with 
additional parallel sours resistance 𝑅𝑆.  This model is used in non-linear battery modelling due its less 
self-discharging features. The equation 10 to 13 describe the output voltage of model. 

 
Figure 5. GNL ECM. 

 𝑉𝑏.  = 𝑉𝑜𝑐′       (10) 𝑉.1 = 1𝐶1 − 𝑉𝑏𝐶1𝑅𝑠 ( 𝑉1𝐶1𝑅𝑠 + 𝑉1𝐶1𝑅1) − 𝑉2𝐶1𝑅𝑠 + 𝑉𝑜𝑐𝐶1𝑅𝑠      (11) 𝑉. 2 = 1𝐶2 − 𝑉𝑏𝐶2𝑅𝑠 ( 𝑉2𝐶1𝑅𝑠 + 𝑉2𝐶2𝑅2) − 𝑉1𝐶2𝑅𝑠 + 𝑉𝑜𝑐𝐶2𝑅𝑠      (12) 𝑉𝐿 = 𝑉𝑜𝑐 − 𝑉𝑏 − 𝑉1 − 𝑉2 − 𝐼𝐿𝑅0     (13) 

2.6.  RC Equivalent model  

The RC equivalent model is shown in the figure 6. It will give the dynamic voltage performance of the 
battery. Equation 14 and 15 describe the output voltage of the model. 

 
Figure 6. RC Equivalent model. 

 
 



RESGEVT 2020
IOP Conf. Series: Materials Science and Engineering 937 (2020) 012046

IOP Publishing
doi:10.1088/1757-899X/937/1/012046

5

 
 
 
 
 
 

[𝑉.𝑏𝑉.𝑐 ] = [ −1𝐶𝑏(𝑅𝑒+𝑅𝑐) 1𝐶𝑏(𝑅𝑒+𝑅𝑐)1𝐶𝐶(𝑅𝑒+𝑅𝑐) −1𝐶𝐶(𝑅𝑒+𝑅𝑐)] [𝑉𝑏𝑉𝑐 ] + [ −𝑅𝑐𝐶𝑏(𝑅𝑒+𝑅𝑐)−𝑅𝑒𝐶𝐶(𝑅𝑒+𝑅𝑐)] [𝐼𝐿]     (14) 

[𝑉𝐿] = [ 𝑅𝑐(𝑅𝑒+𝑅𝑐) 𝑅𝑒(𝑅𝑒+𝑅𝑐)] [𝑉𝑏𝑉𝑐 ] + [−𝑅𝑡 − 𝑅𝑒𝑅𝑐(𝑅𝑒+𝑅𝑐)] [𝐼𝐿]    (15) 

2.7.  Fractional order ECM 

The fractional order ECM is shown in the figure 7. It is used to reduce the computational complexity 
and to improve the efficiency of outdated existing ECMs faults for assurance of optimal trend off 
among ECMs. The equations 16 to 18 describe output voltage of the model.  

 

 
Figure 7. Fractional order ECM 

 𝐷𝑛1  𝑉.1 = 1𝐶1 − 𝑉1𝐶1𝑅1      (16) 𝐷𝑛2  𝑉.2 = 1𝐶2 − 𝑉2𝐶2𝑅2     (17) 𝑉𝑡 = 𝑉𝑜𝑐 − 𝑉1 − 𝑉2 − 𝐼𝑅0     (18) 
 
We can conclude that the dual polarization model has best dynamic performance and less losses 
compare to other model-based method. 

3.  STATE OF CHARGE ESTIMATION METHODS. 

The SOC estimation is main challenge in EV batteries, we can’t measure the SOC of the battery 
directly, a specific algorithm required for it, which describe the remaining capacity of it. The accurate 
SOC estimation is paly major role in the battery life and performance improvement. This estimation 
algorithms continuously monitor all internal parameters of the battery and provide the protection from 
battery from over charging and over discharging. The SOC and SOH of battery is defined as equation 
19 and 20. The exiting SOC and SOH estimation methods are reviewed in the following sections.  

 𝑆𝑡𝑎𝑡𝑒 𝑜𝑓 𝐶ℎ𝑎𝑟𝑔𝑒 = 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑎𝑡𝑡𝑒𝑟𝑦𝑇𝑜𝑡𝑎𝑙 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑎𝑡𝑡𝑒𝑟𝑦       (19) 𝑆𝑡𝑎𝑡𝑒 𝑜𝑓 𝐻𝑒𝑎𝑙𝑡ℎ = 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑎𝑡𝑡𝑒𝑟𝑦 𝑅𝑎𝑡𝑒𝑑 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑎𝑡𝑡𝑒𝑟𝑦     (20) 

 
The evolution of the SOC estimation methods is shown in the figure 8. There are various methods 
available in the literature for battery SOC Estimation. Each method having some merits and demerits. 
Mainly the SOC estimation methods are classified into Conventional Methods, Adaptive filter based, 
artificial intelligent based algorithms, Non-linear Observer algorithms, Hybrid methods. each method 
is further classified into sub method which are explained as follows. 
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Figure 8. Battery SOC estimation methods evolution. 

3.1.  Conventional Methods 

3.1.1. Ampere-Hour Counting Method (AHM) / Coulomb Counting (CC) Estimation Method. 

The ampere-hour counting method is most commonly used conventional method for SOC estimation 
of batteries. It is accurate method for short term calculations and the main advantage is it is very 
simple, concise method it can be implement easily in practice. This method is using in the applications 
of industries, Portable Electronics and EVs. In [1] J. Rivera-Barrera et al proposed the ampere-hour 
counting method (AHM) / coulomb counting (CC) SOC Estimation method. It will measure the 
charging and discharging current over a time of period to estimate the remaining capacity of the 
battery. Mathematically that can be define as equation 21. 

 𝑆𝑂𝐶 = 𝑆𝑂𝐶(𝑡0) + 1𝐶𝑛 ∫ 𝐼𝑏𝑎𝑡𝑡0+𝑡𝑡0 (𝑑𝑇) × 100     (21) 

Where SOC(t0) is the Initial SOC, 𝐼𝑏𝑎𝑡 is the Charging or Discharging Current and Cn is the Nominal 
Capacity.  
 
However, this CC method is suffering from cumulative error due to its initial value estimation 
problem. So, to implement this method initial vales must be Known. 
 
3.1.2. Modified Coulomb Counting Method 

In [2] I. Baccouche et al from the piecewise relationship of SOC-OCV(open circuit voltage), an 
improved coulomb counting algorithm is proposed, which can increase the accuracy of the SOC 
estimation in LIB compare to coulomb counting algorithm. In [3] Venkatesh Prasad K. S et al 

proposed a modified coulomb counting (CC) method by using a peukert mathematical model to 
overcome inaccuracy problem in CC method. The modified CC SOC estimation equation is given by 
equation 22. 
 𝑆𝑂𝐶𝑡 = (1 − 1𝑄𝜏 ∫ 𝜂𝑑𝜏0 𝑖𝜏𝑑𝑇) × 100      (22) 

 
Where 𝑆𝑂𝐶𝑡 is corrected SOC, 𝜂𝑑 is coefficient of efficiency. 
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3.1.3. The open circuit voltage method 

The OCV algorithm is to require less number of computations for SOC estimation. However, the SOC 
estimation time increasing along with the age of the battery and estimation time is changing along with 
temperature change. This OCV method is not suitable for online SOC estimation because the battery 
required long resting time to reach balance condition and to get accurate SOC. This method is not 
possible in practical because its measuring OCV that means estimation of battery SOC is not available 
while Battery is Charging and Discharging. Direct OCV method can be useful for low power 
consumption application, it will provide the Comparatively high Accuracy. In [4] M.A.Hannan et al 

proposed a EMF method for SOC and capacity of the battery at time by OCV relaxation process to 
reduce the SOC estimation time of the battery and to eliminate the effect of the over voltage. 
 
3.1.4. Electrochemical Method  

In electrochemical battery we can directly calculate the SOC from its positive and negative Electrodes. 
Theoretically this method can give the accurate values of the SOC and it is suitable for battery offline 
parameters analysis only. However, this method consisting of partial difference equations of multi 
parameters. So, it is very complex process and difficult to solve the online SOC estimation and it has 
very poor accuracy in real time application because of poor parameters fitting. In [5] Nima Lotfi et al 

proposed a reduced-order electrochemical model based on the Luenberger and recursive least square 
algorithms, without any partial differential equations and with less mathematical complexity. it is 
observed that the algorithm reaches their actual values within 1min. In [6] Rui Xiong et al proposed 
electrochemical genetic algorithm for SOC estimation of lithium-ion battery, which is also estimate 
the SOH battery based on battery degradation characteristics.  
 
3.1.5. Model Based Method  

The model-based method widely adopted for SOC estimation of the batteries in the BMS of EV, for 
accurate online SOC Estimation in batteries first we need to develop the battery equivalent model, 
which can describe the actual dynamic behaviour of the battery. There are different model-based 
methods available for battery modelling like electrochemical or white box model. The most commonly 
used other model is Linear equivalent circuit model [7-9].  However, some of the characteristics of the 
battery cannot be designed in the simulation like hysteresis and Warburg effects. To overcome that 
problem Mathematical model with Hysteresis is used in simulation for better SOC estimation. 

3.2.  Adaptive filter algorithm methods 

Adaptive filtering algorithms are used to estimate the SOC of battery by reducing noise influence on 
the battery model and these algorithms also improve the accuracy and robustness of the battery. 

3.2.1.  Kalman filter  

This algorithm is used as state estimation tool in linear systems, it is also used as dynamic state of 
charge estimator in batteries. This computational method is useful to predict the past, present and 
future states of parameters [10]. The main drawback of the Kalman filter is it requires large computing 
capacity, suitable battery model and problem of determining initial parameters [11].  

3.2.2.  Extended Kalman filter  

The EKF can overcome the non-linear estimation problem by linearizing the state equations [12]. In 
[13] Ruifeng Zhang et al the partial derivatives and first order Taylor series expansion are used in 
EKF to linearize the battery model. The state-space model is linearized at every time instance, which 
compares the estimated value with its measured batteries terminal voltage to correct the estimation 
parameters for SOC. However, if the system is highly non-linear, linearization error may occur due to 
the lack of accuracy in the first order Taylor series under a highly non-linear condition [14]. In [15] 
Jia, J et al Proposed multi-rate strong tracking EKF, this algorithm was improving the battery 
parameters tracking stability and SOC estimation accuracy 55.34% compare to EKF algorithm. 
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3.2.3.  Fading Kalman Filter  

In [16] KaiChin Lim et al proposed a Fading Kalman filter (FKF) to estimate the OCV and SOC. FKF 
algorithm uses a fading factor due to that factor its can capable to compensate for any modelling error. 
FKF algorithm can avoid the large SOC estimation errors in batteries, which may occur with a 
conventional KF. This algorithm implementation is easy and SOC estimation accuracy is more in the 
real time applications compare to KF and EKF. In [17] Yunfei Zhao et al proposed an Adaptive fading 
EKF algorithm, it is combination of the EKF and FKF algorithm, which can reduce the noise problems 
and improve the convergent speed and provide more accurate SOC estimation results of the battery.     

3.2.4.  Unscented Kalman filtering  

The Unscented Kalman filter (UKF) is extended version of the EKF.  The performance of the EKF is 
not poor for more than second order model. This problem can be overcome by using UKF. The UKF is 
designed by using state space model for higher order nonlinear applications, which can also reduce the 
sampling noise [18].  

3.2.5.  Sigma-Point Kalman Filter  

Sigma-point Kalman filter (SPKF) algorithm is subjected to numeric approximation and algorithm 
selects the sets of sigma points, which is completely similar to the value of mean and covariance of the 
model being developed. The advantages of using SPKF are that it has an identical calculation 
complexity to EKF without considering Jacobian matrices [19-20]. The SPKF can proved more 
accurate with less memory and less computational calculations [21]. 

3.2.6.  H∞ Filter  
This model is simple in design and which high robust under certain conditions. The accuracy of SOC 
estimation will reduce due to the thermal and aging effects. In order to improve the accuracy and 
robustness in [22] cheng chen et al proposed a multiscale dual H infinity filter, the results are shown 
that it have more accurate SOC estimation and robustness compare to KF algorithms.    
 
However, these KF family algorithms are not suitable for high complexity system because of its high 
mathematical computational cost. These methods consist of complex matrix operations which can 
make the numerical instability. The SOC estimation sensor accuracy and battery model are the major 
concerns for SOC estimation. For the performance analysis KF’s variants are mainly depends on 
measurement noise covariance and required Prior knowledge of the model. 

3.3.  Adaptive Learning Algorithm 

3.3.1.  Artificial Neural Network (ANN) based algorithms 

In [23] F. Zhao, Y et al proposed a recursive NN algorithm to estimate the SOC of the lithium-ion 
battery, the multi-channel extended convolution NN is used to extract the battery parameters. The 
accuracy of this algorithm is 11.3% more compared to ampere hour count method. In [24] Jian Chen et 

al proposed a radial basis function NN algorithm along with nonlinear observer for online SOC 
estimate of the battery.  

3.3.2.  Extreme Machine Learning (EML) based algorithms  

To reduce the mathematical complex calculation and when we combine any two algorithms more 
complex and expensive in the implementation. In order to overcome that problem in [25] M. S. 
Hossain Lipu et al proposed an improved extreme learning machine algorithm for battery SOC 
estimation and gravitational search algorithm which improve the speed and reduce the computational 
complexity of the EML algorithm by finding the optimal value hidden layer neurons. This algorithm is 
robust and does not require the battery internal mathematical model and knowledge.  
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3.3.3.  Support Vector Machine (SVM) based algorithms  

In [26] Juan Carlos Álvarez Antón et al, proposed SVM algorithm for battery SOC estimation. The 
algorithm will extract the battery model parameters from its charging and discharging test cycles, cell 
thermal temperature, voltage and current as independent variables. This algorithm dose not required 
any matrix inversion. So, which will reduce the mathematical computational complexity.    

3.3.4.  Genetic Algorithm (GA) based algorithms  

In [27] Shen, Y et al proposed an improved chaos genetic algorithm for SOC estimation of the battery 
with less computational complexity and high initial stability, ampere hour approach and adaptive 
switch mechanism is advised to predict the available capacity of the battery. In [28] Jiahuan Lu yet al 

proposed the online approach of GA-based estimation method that can improve the State of power 
(SOP) estimation accuracy. Compared with the traditional Taylor method the online approach of GA-
based estimation method can improve the 7.2% more accuracy.  

3.3.5.   Fuzzy logic-based algorithms  

In [29] Yan Ma et al proposed a two-stage bidirectional equalization model with fuzzy logic control 
scheme to improve the inconsistency of series connected batteries. Compared to mean difference 
algorithm, the fuzzy logic control scheme can be reducing the standard deviation of final SOC, 
equalization time by 18.5% and 23% respectively and can improve the energy efficiency 5.54%.  

3.4.   Non-Linear Observers  

3.4.1.  The Luenberger Observer 

Online equivalent circuit model are used to estimate SOC and power capacity of battery, but the due to 
the noise corruption accuracy will reduce, to overcome these problem [30] Z. Wei et al proposed 
online model identification method based on adaptive forgetting recursive total least squares to 
compensate the noise effect and combined this method with Luenberger observer to estimate the SOC 
of the battery, the simulation results are shown that the estimation accuracy was improved and robust 
in noise corruption. In [31] Hu. X et al proposed online SOC estimation method for Lithium-ion 
battery using Luenberger observer. This observer method will reduce difference between actual and 
estimated voltage error, the stochastic gradient method is used for adaptive adjustment of the observer 
gain. 

3.4.2.  Sliding mode observer  

In order to increase stability by compensating non-linear dynamic uncertainties in the battery model, 
in [32] Kim I.L first introduced the SMO in battery SOC estimation in HEV. The SMO control the 
convergence of high charging and discharging values by using Lyapunov inequality equations. the 
author shown that the test results with less than 3% SOC estimation error. In [33] Ning B et al 

proposed adaptive SMO for accurate online SOC estimation in the adaptive parameters-based battery 
model. This observer mothed will improve the accuracy of SOC estimation by using the dynamic self-
adjusting switching gain in response to the tracking errors. The result shown that the error between 
actual and estimated SOC is less than 2%. In [34] Y. Feng et al proposed a three-terminal sliding-
mode observer (TSMOs) for battery SOC and SOH estimation, each observer in the TSMOs will 
estimate one parameter in battery variables. This estimation algorithm doesn’t contain any low pass 
filters, which will increase the accuracy and robustness, reduce cost.      

3.5.  Hybrid methods  

Based on the analysis of number of SOC estimation methods, each method or algorithm have its own 
merits and demerits. By combing these algorithms, we can get advantages both algorithms, which can 
improve the performance and accuracy as well as reduce cost. In [35] J. Wang et al proposed hybrid 
coulomb counting and Kalman filter algorithm, the main limitation of coulomb count counting method 
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is that, in order to estimate the battery SCO, the initial values of the battery parameters are needed, to 
solve this issue, the Kalman filter is used in this process, which can correct the initial values of the 
battery parameters and be used as input to the coulomb counting algorithm. In [36] Bizhong Xia et al 
have proposed the Levenberg-Marquardt hidden layer (LMMWNN) and PSO algorithm for SOC 
estimation of battery. The piecewise network and seven-point linear smoothing method are used to 
optimize the LMMWNN. The proposed LMMWNN method tested on New European Driving cycle 
and results showed that it has better robustness, noise performance compared to the Levenberg-
Marquardt wavelet neural network algorithm. In [37] Chen, X et al, proposed a hybrid BPNN-EKF 
algorithm for SOC estimation method of thevenin equivalent model battery pack.  The model bias and 
parameter uncertainties are considered as model uncertainties. In this hybrid model bias correction 
method was used to reduce model uncertainties, A BPNN based bias functioning method is used to 
reduce the polarization and temperature effects. Finally, the EKF is used for SOC estimation of the 
battery equivalent model. In [38] Yuejiu Zheng et al, has proposed a hybrid EKF method and PSO 
algorithm for SOC inconsistency estimation for RC second-order equivalent model. The POS 
algorithm is used to identify the battery parameters and EKF is used SOC estimation.  In [39] Yanqing 
Shen, proposed a hybrid adaptive chaos GA(CGA) based on EKF for SOC estimation of LIBs. The 
EKF is used for local linear approximation and CGA is used for global optimization search for battery 
parameter estimation. This method quickly evaluates SOC estimation with high accuracy and it has 
high robustness without being affected by uncertain initial values. In [40] Ju wang et al, proposed 
recursive least square and adaptive H∞ filter joint estimation framework. The proposed dual estimator 
setup analyzed with wide temperature range (-10oC to 25oC), results showed that the proposed hybrid 
method have batter SOC estimation performance even at very low temperature i.e error is less than 
3.5% at -10 oC, and less than 2% at 0 oC and 25oC. In [41] Shehab El Din et al, proposed adaptive 
equivalent circuit model with artificial neural network (ANN) controller with hybrid unscented 
Kalman filter (UKF) and Autocovariance least square (ALS) method. In the proposed hybrid method, 
ANN is used to identify the optimal parameters of battery model, UKF is used for fast covariance and 
ALS used to measure the noise covariance which improves the SOC estimation accuracy. In [42] 
Minghui Hu et al, proposed a mixed swarm based co-operative particle swarm optimization method, to 
improve the accuracy and better robustness with different driving range conditions for LIB. the 
proposed method can adequately coordinate the dynamic balance between local and global 
optimization for the optimal solution with fast accuracy. In [43] N. Guo et al Proposed fuzzy weighted 
algorithm, which is a combined model of genetic algorithm (GA) -back propagation neural network 
(BPNN) algorithm and ampere integration method (AIM) for battery SOC estimation. The weights of 
fuzzy controller are controlled by the GA-BPNN and AIM, for large voltage variation the weights of 
the fuzzy is propositional to the GA-BPNN and for small voltage variations proportional to the AIM. 
This algorithm can have advantage of both algorithms based on the situation and state of voltage and 
SOC levels. However, this algorithm will depend on battery working environmental conditions.  In 
[44] F. Yang et al, proposed hybrid long-short-term memory (LSTM)- recurrent neural network 
(RNN) and (unscented Kalman filter) UKF algorithm. The battery current, voltage and temperature are 
taken as input Parmenter to the LSTM-RNN and SOC estimation as output, the UKF is used as noise 
filter at output, the algorithm is model free and data driven, tested at different temperature from 00C to 
500C and estimation error was less than 1%.  
 
CONCLUSION  

In this paper an over view of battery Equivalent circuit models, SOC and SOH estimation algorithms 
has been given. The major challenges and constrains in battery modeling, SOC and SOH estimation 
are discussed. Performance of different battery model, SOC and SOH estimation algorithms are 
compared in point of accuracy, speed and mathematical complexity. Our future work is focus on the 
development of new hydride estimation algorithms, which can provide more accurate and high-speed 
results with less complexity in development of smart BMS for EVs.   
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