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Abstract

We have obtained graph-theoretically based topological indices for the characteriza-

tion of certain graph theoretical networks of biochemical interest. We have derived 

certain distance, degree and eccentricity based topological indices for various 

k-level hypertrees and corona product of hypertrees. We have also pointed out errors 

in a previous study. The validity of our results is supported by computer codes for 

the respective indices. Several biochemical applications are pointed out.

Keywords Mathematical modeling · Biochemical networks · Eccentricity-based 

topological indices · Topological indices of hypertrees · Corona product of graphs

 * Indra Rajasingh 

 indrarajasingh@yahoo.com

 R. Sundara Rajan 

 vprsundar@gmail.com

 K. Jagadeesh Kumar 

 jagadeeshgraphs@gmail.com

 A. Arul Shantrinal 

 shandrinashan@gmail.com

 T. M. Rajalaxmi 

 laxmi.raji18@gmail.com

 Krishnan Balasubramanian 

 baluk@asu.edu

1 Department of Mathematics, Hindustan Institute of Technology and Science, Chennai 603 103, 

India

2 Department of Mathematics, Sri Sivasubramaniya Nadar College of Engineering, 

Chennai 603 110, India

3 School of Advanced Sciences, Vellore Institute of Technology, Chennai 600 127, India

4 School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s10910-020-01194-3&domain=pdf


677

1 3

Journal of Mathematical Chemistry (2021) 59:676–698 

1 Introduction

Mathematical Modeling is a predominant decision tool that can be efficacious to 

evaluate the transmission of a disease and apply the necessary control measures 

[1–3]. Analysis of changes in transmission rates helps to identify the effective-

ness of the control measures and promote alternate interventions [4]. Phenom-

enological models were presented in [5], to predict the dynamics of COVID-19. 

Artificial intelligence (AI) techniques play an important role in finding high-qual-

ity prognostic models for the analysis of infectious diseases [6]. Through Social 

Internet of Things (SIoT) Wang et  al. [7] obtained risk-awareness for suspected 

COVID-19 cases using a graph embedding technique.

Graph theory deals with the mathematical study and analysis of networks. 

These networks play a vital role in the environment and public health, and as a 

result ecological and epidemiological researchers have now drawn their attention 

to network analysis [8]. In biomedical research, graphs can capture the underlying 

connectivity relations among biological entities such as genes, DNA and proteins 

[9–12]. Topological analysis of large-scale protein interaction networks can pro-

vide insights into redundancies which can in turn result in predictions of protein 

functions [13]. Moreover, the control strategies for infectious diseases often relies 

on graph theoretical networks [14]. It has been shown that the early diagnosis of 

neurological disorders can be made possible through the detection of abnormal 

patterns of neural synchronization in specific brain regions [15].

Trees are connected graphs that do not contain a cycle. The vertices of a rooted 

tree could represent a variety of biological entities such as DNA sequences or 

various species and the edges could represent their mutations or inter connections 

with other species. Such rooted trees of biological interest are called phylogenetic 

trees or evolutionary trees. A hypertree is an interconnection topology which is a 

combination of the binary tree and hypercube concept. Hypertrees are applicable 

in a scenario where there are interactions among certain vertices at a given level 

of the binary trees, and hence one can model such interactions through the use 

of hypertrees. Machine learning and AI techniques have shown that when con-

tact tracing is fully utilized, one can mitigate the eruption of the pandemic by 

breaking the current chain of proliferation of the corona virus, and thus helping to 

reduce the rate of recent epidemics [16].

Topological indices of a chemical compound are molecular descriptors. Sev-

eral topological indices have been defined and utilised in QSPR/QSAR studies to 

understand the relationship between molecular structure and potential physico-

chemical properties [16–19]. Stimulated by such varied applications of biological 

networks, we have in this paper obtained a number of topological indices of these 

networks and we have also verified the expressions using computer codes. In this 

process we have also identified several logical flaws found in Gao et al. [20], in 

the computation of certain topological indices for some of the trees and we have 

provided corrected expressions.
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2  Mathematical preliminaries and techniques

The distance d(u,v) between two vertices u and v in a connected graph G is the length of 

the shortest path between them. If l ≥ 1, then the set {1,… , l} will be denoted by [l]. For 

any vertex v ∈ V(G) , the eccentricity of v is defined as �(v) = max{d(u, v)|u ∈ V(G)}.

Ghorbani and Khaki [18] introduced the eccentric version of geometric-arithmetic 

index as fourth geometric-arithmetic eccentricity index which is stated as

Further, the fourth Zagreb index, the fourth multiplicative Zagreb index, the sixth 

Zagreb index, the sixth multiplicative Zagreb index, and the fourth and sixth Zagreb 

polynomial index [19, 20] are defined as follows:

In addition, the fifth multiplicative atom bond connectivity index [20] is defined by

GA
4
(G) =

�

st∈E(G)

2

√

�(s)�(t)

�(s) + �(t)
.

Zg4(G) =
∑

st∈E(G)

(�(s) + �(t));

Π∗

4
(G) =

∏

st∈E(G)

(�(s) + �(t));

Zg6(G) =
∑

st∈E(G)

�(s)�(t);

Π∗

6
(G) =

∏

st∈E(G)

�(s)�(t);

Zg4(G, x) =
∑

st∈E(G)

x�(s)+�(t);

Zg6(G, x) =
∑

st∈E(G)

x�(s)�(t).

ABC
5
Π(G) =

∏

st∈E(G)

√

�(s) + �(t) − 2

�(s)�(t)
.
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3  Error corrections of previous techniques and results

A hypertree HT(l) [21] is a complete binary tree T
l
 (a binary tree with l levels 

where level a, 0 ≤ a ≤ l contains 2a vertices) and the vertices of T
l
 are labeled as 

follows: The root node has label 1 and is said to be at level 0. The children of the 

vertex x are labeled with 2x and 2x + 1. Additional edges in a hypertree are hori-

zontal, where two vertices in the same level a, 1 ≤ a ≤ l , are joined by an edge if 

their label difference is 2a−1, see Fig. 1.

Gao et al. [20] have obtained various topological indices defined above in the 

form of Theorem 1 for the hypertree, HT(l) with l-levels. As their results are erro-

neous as shown here, we provide the corrected results for various topological 

indices reported by Gao et al. [20].

Consider the hypertree HT (3) in Fig.  1 as an example to derive the correct 

expressions for HT.

By manual calculation of the eccentricities for the various vertices in Fig. 1 we 

obtain for HT(3):

Hence for HT(3) with 21 edges upon substation of the eccentricity values, we obtain:

and likewise,

However, the application of the derived formulae in Ref [20] yield:

�(1) = �(2) = �(3) = 3;

�(4) = �(5) = �(6) = �(7) = 4;

�(8) = �(9) = �(10) = �(11) = �(12) = �(13) = �(14) = �(15) = 5.

(1)
Zg

4
(HT(3)) =

∑

st∈E(G)

(�(s) + �(t)) = 174

(2)
Π∗

4
(HT(3)) =

∏

st∈E(G)

(�(s) + �(t)) = 14, 287, 819, 685, 207, 040, 000

(3)Zg
4
(HT(3)) = 6(3) + (9(3) − 2)

(

2
3 − 2

)

(3 − 1) = 318

Fig. 1  Hypertree HT(3) of dimension 3
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The expression obtained manually in Eq.  (1) is in disagreement with Eq.  (3) 

obtained by the application of the expression derived for Zg
4
(HT(l)) by Gao et al. [20]. 

Similarly, Eqs. (2) and (4) imply that the expression obtained in Ref [20] for Π∗
4
(HT(l)) 

is also not correct. More comparisons are given in Table 1 for all of the indices for 

the hypertrees. We have also used TopoChemie-2020 [22], a suite of Fortran’95 codes 

to compute all of the topological indices considered here to validate the results. The 

results obtained from TopoChemie-2020 are shown in Table 1 for comparison with the 

results obtained from present work and those from Ref [20].

(4)

Π∗

4
(HT(3)) = 6(3)

3−1
∏

a=1

2(3)−2
∏

q=3

2
2a(4q + 2)(2q + 2)

= 18

2
∏

a=1

2
2a[(4(3) + 2)(2(3) + 2)x(4(4) + 2)(2(4) + 2)] = 23, 224, 320

Table 1  Results obtained for hypertree HT(l), with the computer code compared with the results from the 

expressions derived here and those from Ref [20]

Index Dimension l TopoChemie-2020 Expressions 3.1 Ref [20]

GA4 l = 3 20.9094371944424 20.9094371944 38.80261570333

l = 4 44.89469801209972 44.8946980121 128.627718048

l = 5 92.86872657930127 92.8687265793 362.33639556583

l = 6 188.8256892929506 188.82568929295 931.8294769851

Zg4 l = 3 174 174 318

l = 4 536 536 1452

l = 5 1458 1458 5190

l = 6 3692 3692 16156

�
∗

4
l = 3 1.428781968520704E + 19 1.42878197E19 23,224,320

l = 4 1.466305239836825E + 48 1.46630524E48 1,700,391,813,120

l = 5 5.3596664852790345E + 110 5.35966647E110 8.8801262E17

l = 6 1.804271192336212E + 243 1.80427119E243 2.90256516E24

Zg6 l = 3 367 367 657

l = 4 1626 1626 4164

l = 5 5807 5807 18,975

l = 6 18,270 18,270 71,658

�
∗

6
l = 3 3.869835264E + 25 3.86983526E25 663552000

l = 4 1.4063624927605826E + 69 1.40636249E69 1747955220480000

l = 5 2.2518377818798394E + 165 2.25183779E165 5.84569028E22

l = 6 +Inf 9.4064503907E78 1.91216364E31

ABC5Π l = 3 0.000029641975308641964 0.00002964198 67.73123356314

l = 4 4.480235140735929E − 13 4.48023568E − 13 1472.8872145

l = 5 7.198858689316069E − 31 7.19885445E − 31 38051.1201487

l = 6 6.535691253709339E − 70 6.53459736E − 70 19596337.8715
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The corrected result for HT(l) is as follows.

Theorem 3.1 (Corrected Theorem 1 of [20]) Let HT(l) be the l–level hypertree net-

work with l ≥ 3. Then we have the following results:

Proof First, we partition the edge set of HT(l) as follows:

• E
ll
= {e = st ∈ E(HT(l))|�(s) = �(t) = l} and n

ll
=
|
|Ell

|
| = 3;

• E(l+a−1)(l+a) = {e = st ∈ E(HT(l))|�(s) = l + a − 1 and �(t) = l + a}  

and n(l+a−1)(l+a) =
|
|
|
E(l+a−1)(l+a)

|
|
|
= 2(2a), where a ∈ [l − 1];

• E(l+a)(l+a) = {e = st ∈ E(HT(l))|�(s) = �(t) = l + a}  

and n(l+a)(l+a) =
|
|
|
E(l+a)(l+a)

|
|
|
= 2a, where a ∈ [l − 1].

GA4(HT(l)) = 3 +

l−1
�

a=1

2a

�

4
√

(l + a − 1)(l + a)

2(l + a) − 1
+ 1

�

;

Zg4(HT(l)) = 2l+1(6l − 7) − 6l + 16;

Π∗

4
(HT(l)) = 8l3 ×

l−1
�

a=1

(2(l + a) − 1)
2a+1 ×

l−1
�

a=1

(2(l + a))2a
;

Zg6(HT(l)) = 2l+1
�

6l2 − 14l + 11
�

− 3l2 + 16l − 22;

Π∗

6
(HT(l)) = l6 ×

l−1
�

a=1

�

(l + a − 1)
2 + l + a − 1

�2a+1
×

l−1
�

a=1

(l + a)2
a+1

;

Zg4(HT(l), x) = 3x2l +

l−1
�

a=1

2a+1x2(l+a)−1 +

l−1
�

a=1

2ax2(l+a);

Zg6(HT(l), x) = 3xl2 +

l−1
�

a=1

2a+1x(l+a−1)(l+a) +

l−1
�

a=1

2ax(l+a)2 ;

ABC5Π(HT(l)) =

�
√

2l − 2

l

�3

×

l−1
�

a=1

�

2(l+a)−3

(l+a−1)(l+a)

�2a

×

l−1
�

a=1

�

2(l + a − 1)

(l + a)2

�2a−1

.
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By the definition, we have

Proceeding along the same lines, we prove the remaining equations.    □

4  Certain distance and degree based topological indices

In this section, we compute certain distance and degree based topological indi-

ces of hypertrees that have not been obtained before. We begin with the following 

definitions.

Definition 4.1 The first Zagreb index M1(G) was introduced by Gutman [23] and it 

is defined as

where d
i
= d

G

(

v
i

)

 is denoted by the degree of vertex v
i
 for i =1,2,…,n such that 

d
1
≥ d

2
≥ ⋯ ≥ d

n
.

Definition 4.2 The second Zagreb index M2(G) [23] of graph G is defined as

GA4(HT(l)) = 3 +

l−1
�

a=1

2 × 2
a

�

2
√

(l + a − 1)(l + a)

2(l + a) − 1

�

+

l−1
�

a=1

2
a

= 3 +

l−1
�

a=1

2
a

�

4
√

(l + a − 1)(l + a)

2(l + a) − 1
+ 1

�

;

Zg4(HT(l)) = 3 × 2l +

l−1
�

a=1

2
a(6(l + a) − 2)

= 2
l+1(6l − 7) − 6l + 16;

Π∗

4
(HT(l)) = (2l)3 ×

l−1
�

a=1

(2(l + a) − 1)
2a+1

×

l−1
�

a=1

(2(l + a))2
a

= 8l3 ×

l−1
�

a=1

(2(l + a) − 1)
2a+1 ×

l−1
�

a=1

(2(l + a))2
a

Zg6(HT(l)) = 3 × l2 +

l−1
�

a=1

2
a
�

3(l + a − 1)
2 + 4(l + a − 1) + 1

�

= 2
l+1

�

6l2 − 14l + 11
�

− 3l2 + 16l − 22.

M
1
(G) =

∑

v
i
∈V(G)

d
2

i
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Definition 4.3 Let G = (V(G), E(G)) be a graph with n = |V(G)| vertices and 

m = |E(G)| edges. The edge connecting the vertices i and j is denoted by ij. Then 

Atom-bond Connectivity Index (ABC) [24] is defined as

Definition 4.4 The Padmakar-Ivan Index [25] is given by

where nu(e) denotes the number of vertices lying closer to the vertex u than the ver-

tex v and nv(e) denotes the number of vertices lying closer to the vertex v than the 

vertex u.

Definition 4.5 The Szeged Index [26] is defined as

Definition 4.6 The Schultz index [27] is defined as

where d(u,v) is the number of edges in a minimum path connecting the vertices u 

and v in G, d(u) represents the degree of the vertex u.

Definition 4.7 The Gutman index [28] denoted by Gut(G) is defined as

4.1  Hypertree

Theorem 4.1.1 Let HT(l) be the l-level hypertree network, l ≥ 2. Then the atom bond 

connectivity index ABC(HT(l)) = 1.97921882532 × 2l − 1.64764861611.

Proof First, we partition the edge set of HT(l) as follows:

E
24

=
{

e = uv ∈ E(HT(l))|d(u) = 2 and d(v) = 4} and ||E24
|| = 2.

E
22

=
{

e = uv ∈ E(HT(l))|d(u) = d(v) = 2} and ||E22
|| = 2

l−1
.

E
42

=
{

e = uv ∈ E(HT(l))|d(u) = 4 and d(v) = 2}and||E42
|| = 2

l.

M
2
(G) =

∑

vivj∈E(G)

didj

ABC(G) =
∑

ij∈E(G)

√

di + dj − 2

didj

PI(G) =
∑

e=(uv)∈E(G)

[n
u
(e) + n

v
(e)]

Sz(G) =
∑

e=(uv)∈E(G)

[nu(e) × nv(e)]

S(G) = 1∕2
∑

(u,v)∈V(G)×V(G)

[d(u) + d(v)]d(u, v)

Gut(G) = 1∕2
∑

(u,v)∈V(G)×V(G)

[d(u) × d(v)]d(u, v)
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E
44

=
{

e = uv ∈ E(HT(l))|d(u) = 4 and d(v) = 4} and ||E44
|| = 2l+1 − 2l−1 − 5.

By the definition, we have

Theorem  4.1.2 Let HT(l) be the l-level hypertree network, l ≥ 2. Then the first 

Zagreb index

Proof First, we partition the vertex set of HT(l) as follows:

P
1
=
{

v|d(v) = 2} and ||P1
|| = 2

l + 1.

P
2
=
{

v|d(v) = 4} and ||P2
|| = 2

l+1 − 2
l − 2.

By the definition, we have

Theorem  4.1.3 Let HT(l) be the l-level hypertree network, l ≥ 2. Then the second 

Zagreb index M
2
(HT(l)) = 34 × 2

l − 64.

The proof runs analogous to that of Theorem  4.1.1.    □

Theorem 4.1.4 Let HT(l) be the l-level hypertree with l ≥ 2. Then the szeged index

Proof Let B
e
=
{

e|e ∈ E
(
T

l

)
} and H

e
= {e|e is horizontal} be the partition 

of the edge set of HT(l ) as edges of the associated binary tree T
l
 and horizontal 

edges respectively. Let e = (uv) ∈ B
e
 where u and v are in level i and i + 1 respec-

tively, 1 ≤ i ≤ l − 1 . Then by the symmetric structure of the hypertree, we have 

n(v) = 2
l−i+1 − 2. For example, the hypertree HT(4 ) with n(v) = 14 is shown in 

Fig.  2. Note that the number of edges between level i and i + 1, 1 ≤ i ≤ l − 1 is 

ABC(HT(l)) =
∑

e∈E24

√

d(u) + d(v) − 2

d(u)d(v)
+

∑

e∈E22

√

d(u) + d(v) − 2

d(u)d(v)

+
∑

e∈E42

√

d(u) + d(v) − 2

d(u)d(v)
+

∑

e∈E44

√

d(u) + d(v) − 2

d(u)d(v)

= 2

√

1

2
+ 2

l−1

√

1

2
+ 2

l

√

1

2
+ (2l+1 − 2

l−1 − 5)

√

3

8

= 1.97921882532 × 2
l − 1.64764861611. ◻

M
1
(HT(l)) = 20 × 2

l − 28.

M
1
(HT(l)) =

∑

v∈P
1

(d(v))2 +
∑

v∈P
2

(d(v))2

= (2l + 1)
(

2
2
)

+ (2l+1 − 2
l − 2)

(

4
2
)

= 20 × 2
l − 28. ◻

Sz(HT(l)) = 2
3l − 27 × 2

2l + 12l × 2
l + 21 × 2

l + 8l × 2
2l + 5.
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2
i+1 . Further, n(u) = |V(HT(l))| − n(v) = 2

l+1 − 2
l−i+1 + 1 . It is easy to verify that 

n(u) = 1 and n(v) = 2
l − 1 , when (uv) ∈ B

e
 , u is in level 0 and v is in level 1.

For any level i, 1 ≤ i ≤ l , if e = (uv) ∈ H
e
 , then n(u) = n(v) = 2

l − 1. Hence

Theorem 4.1.5 Let HT(l ) be the l-level hypertree with l ≥ 2. Then the PI index

Proof Let B
e
=
{

e|e ∈ E
(
T

l

)
} and H

e
= {e|e is horizontal} be the partition of 

the edge set of HT(l ) as binary tree edges and horizontal edges respectively. Let 

e = (uv) ∈ V
e
 where u and v are in level i and i + 1 respectively, 1 ≤ i ≤ l − 1 . 

Then by the symmetric structure of the hypertree, we have n(v) = 2
l−i+1 − 2. 

For example, the hypertree HT(4 ) with n(v) = 14 is shown in Fig.  2. Note that 

the number of edges between level i and i + 1, 1 ≤ i ≤ l − 1 is 2
i+1 . Further, 

n(u) = |V(HT(l))| − n(v) = 2
l+1 − 2

l−i+1 + 1 . It is easy to verify that n(u) = 1 and 

n(v) = 2
l − 1 , when (uv) ∈ B

e
 , u is in level 0 and v is in level 1.

Sz(HT(l)) = 2(1)(2
l − 1) +

l−1
∑

i=1

(n(u)n(v))2i+1 + (2l − 1)(n(u)n(v))

= 2(1)(2
l − 1) +

l−1
∑

i=1

2
i+1(2l+1 − 2

l−i+1 + 1)
(

2
l−i+1 − 2

)

+
(

2
l − 1

)

(2l − 1)2

= 2
3l − 27 × 2

2l + 12l × 2
l + 21 × 2

l + 8l × 2
2l + 5. ◻

PI(HT(l)) = 6 ×
(

2
l − 1

)2

.

level 0

level 1

level 2

level 3

u

n(v)n(v)

level 4

v

Fig. 2  The hypertree HT(4 ) with n(v) = 14
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For any level i, 1 ≤ i ≤ l , if e = (uv) ∈ H
e
 , then n(u) = n(v) = 2

l − 2. Hence

Theorem 4.1.6 Let HT(l) be the l-level hypertree network, l ≥ 2. Then Schultz index

Proof Since HT(l) is bi-regular with degree 2 and degree 4 vertices, we partition the 

vertices (ordered pairs) of HT(l) as follows:

V22 = {(x, y)∕d(x) = d(y) = 2} and |
|V22

|
| = 2l + (2l − 1)(2l−1),

V24 = {(x, y)∕d(x) = 2 and d(y) = 4} and |
|V24

|
| = (2l + 1)(2l − 2) , and

V44 = {(x, y)∕d(x) = d(y) = 4} and |
|V44

|
| = (2l − 2)(2l − 3)∕2 . Hence,

PI(HT(l)) = 2(1 + (2l − 1)) +

l−1
∑

i=1

(n(u) + n(v))(2i+1) + (2l − 1)(n(u) + n(v))

= 2
l+1 +

l−1
∑

i=1

(2l+1)[(2l+1 − 2
l−i+1 + 1) +

(

2
l−i+1 − 2

)

]

+ (2l − 1)((2l − 1) + (2l − 1)) = 6 × (2l − 1)2. ◻

S(HT(l)) = 38l × 2
l − 70 × 2

2l + 50 × 2
l + 24l × 2

2l + 20

S(HT(l)) =
∑

(u,v)∈V22

(d(u) + d(v))d(u, v) +
∑

(u,v)∈V24

(d(u) + d(v))d(u, v)

+
∑

(u,v)∈V44

(d(u) + d(v))d(u, v)

= l × 2l+2 + 2l+1

[(

l−1
∑

i=1

2i−1(4i + 1)

)

+ 1

]

+ (2 + 4)

[

i−1
∑

i=2

(

i−1
∑

j=1

(l − i + 2j)2l+j−1

)

+

l−1
∑

i=1

(l − i)2l +

l−1
∑

i=2

(

i−1
∑

j=1

(l − i + 2j + 1)2l+j−1

)

+

l−1
∑

i=1

(l − i + 1)2l +

l−1
∑

i=1

i × 2i

]

+ (4 + 4)

[

l−2
∑

k=1

[

l−1−k
∑

i=2

(

i−1
∑

j=1

(l − i + 2j − k)2l+j−k−1

)]

+

l−2
∑

k=1

(

l−1−k
∑

i=1

(l − i − k)2l−k

)

+

l−2
∑

k=1

l−1−k
∑

i=2

(

i−1
∑

j=1

(l − i + 2j − k + 1)2l+j−k−1

)

+

l−2
∑

k=1

(

l−1−k
∑

i=1

(l − i − k + 1)2l−k

)

+

l−1
∑

i=1

[

i−1
∑

j=1

2j−1 × 2j +

i−1
∑

j=1

2j−1 × (2j + 1) + 1

]

2i−1

]

= 38l × 2l − 70 × 22l + 50 × 2l + 24l × 22l + 20. ◻
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Theorem 4.1.7 Let HT(l) be the l-level hypertree network, l ≥ 2. Then Gutman index

Proof Since HT(l) is bi-regular with degrees 2 and 4, we partition the vertices 

(ordered pairs) of HT(l) as follows:

V22 = {(x, y)∕d(x) = d(y) = 2} and |
|V22

|
| = 2l + (2l − 1)(2l−1),

V24 = {(x, y)∕d(x) = 2 and d(y) = 4} and |
|V24

|
| = (2l + 1)(2l − 2) , and

V44 = {(x, y)∕d(x) = d(y) = 4} and |
|V44

|
| = (2l − 2)(2l − 3)∕2 . Hence,

Remark 4.1.8 The results obtained from TopoChemie-2020 are shown in Table 2 for 

comparison with the results obtained from Theorems 4.1.1–4.1.7.

5  Corona product of hypertree and a path

In this section, we consider the topological indices of hypertrees generated through 

corona products that have not been considered before.

Definition 5.1 [29] The corona product G
1
⊙ G

2
 of two graphs G

1
 with n

1
 vertices 

and m
1
 edges and G

2
 with n

2
 vertices and m

2
 edges is defined as the graph obtained 

Gut(HT(l)) = 60l × 2
l − 111 × 2

2l + 80 × 2
l + 36l × 2

2l + 32.

Gut(HT(l)) =
∑

(u,v)∈V22

(d(u) × d(v))d(u, v) +
∑

(u,v)∈V24

(d(u) × d(v))d(u, v)

+
∑

(u,v)∈V44

(d(u) × d(v))d(u, v)

= l × 2
l+2 + 2

l+1

[(

l−1
∑

i=1

2
i−1(4i + 1)

)

+ 1

]

+ (2 × 4)

[

l−1
∑

i=2

(

i−1
∑

j=1

(l − i + 2j)2l+j−1

)

+

l−1
∑

i=1

(l − i)2l +

l−1
∑

i=2

(

i−1
∑

j=1

(l − i + 2j + 1)2l+j−1

)

+

l−1
∑

i=1

(l − i + 1)2l +

l−1
∑

i=1

i × 2
i

]

+ (4 × 4)

[

l−2
∑

k=1

[

l−1−k
∑

i=2

(

i−1
∑

j=1

(l − i + 2j − k)2l+j−k−1

)]

+

l−2
∑

k=1

(

l−1−k
∑

i=1

(l − i − k)2l−k

)

+

l−2
∑

k=1

[

l−1−k
∑

i=2

(

i−1
∑

j=1

(l − i + 2j − k + 1)2l+j−k−1

)]

+

l−2
∑

k=1

(

l−1−k
∑

i=1

(l − i − k + 1)2l−k

)

+

l−1
∑

i=1

[

i−1
∑

j=1

2
j−1 × 2j +

i−1
∑

j=1

2
j−1 × (2j + 1) + 1

]

2
i−1

]

= 60l × 2
l − 111 × 2

2l + 80 × 2
l + 36l × 2

2l + 32. ◻
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1 3

by taking one copy of G
1
 and n

1
 copies of G

2
 , and then joining the ith vertex of G

1
 

with an edge to every vertex in the ith copy of G
2
.

It follows from the definition of the corona that G
1
⊙ G

2
 has n

1
+ n

1
n

2
 vertices 

and m
1
+ n

1
m

2
+ n

1
n

2
 edges. It is easy to see that G

1
⊙ G

2
 is not in general isomor-

phic to G
2
⊙ G

1
 . For illustration, the corona product of hypertree HT(3) and path P

3
 

is given in Fig. 3.

Theorem 5.2 Let HT(l)⊙ P
r
, l, r ≥ 2 be the corona product of hypertree and a path 

network on r vertices. Then we have the following:

Table 2  Results obtained for hypertree HT(l), with the computer code compared with the results from the 

expressions in Theorems 4.1.1–4.1.7

Index Dimension l TopoChemie-2020 Expressions 4.1.1–4.1.7

ABC(HT(l)) l = 3 14.186101986482232 14.18610198648

l = 4 30.019852589070307 30.01985258907

l = 5 61.687353794246455 61.68735379425

l = 6 125.02235620459938 125.0223562046

M
1
(HT(l)) l = 3 132 132

l = 4 292 292

l = 5 612 612

l = 6 1252 1252

M
2
(HT(l)) l = 3 208 208

l = 4 480 480

l = 5 1024 1024

l = 6 2112 2112

Sz(HT(l)) l = 3 781 781

l = 4 6485 6485

l = 5 48677 48677

l = 6 354117 354117

PI(HT(l)) l = 3 294 294

l = 4 1350 1350

l = 5 5766 5766

l = 6 23814 23814

S(HT(l)) l = 3 1460 1460

l = 4 9908 9908

l = 5 58900 58900

l = 6 320916 320916

GUT(HT(l)) l = 3 1920 1920

l = 4 13600 13600

l = 5 82848 82848

l = 6 458272 458272



689

1 3

Journal of Mathematical Chemistry (2021) 59:676–698 

GA4

�

HT(l)⊙ P
r

�

= (2 + r)

l−1
�

a=1

2
a+1

√

(l + a)(l + a + 1)

(2l + 2a + 1)
+ r2

l+1

√

4l2 + 2l

4l + 1

+ 2r

√

(l + 1)(l + 2)

2l + 3
+ (r − 1)

�

2
l+1 − 2

�

+ 2
l + r;

Zg4

(

HT(l)⊙ Pr

)

= 6(l + 1) + (r + 2)
(

2
l(4l − 3) − 4l + 2

)

+ 2
l(r)(4l + 1) + r(2l + 3)

− (2r − 2)
(

2l − 4l2l
)

+ 2
l+1(2l − 1) − 4l + 2(r − 1)(l + 2);

Π∗

4

(

HT(l)⊙ P
r

)

= (2l + 2)
3 ×

l−1
∏

a=1

(2(l + a) + 1)
2a(2+r) × (4l + 1)

r2l

× (2l + 3)
r

×

l
∏

a=1

(2(l + a) + 2)
2a(r−1) ×

l−1
∏

a=1

(2(l + a) + 2)
2a

× (2l + 4)
r−1

;

Zg6

(

HT(l)⊙ Pr

)

= 3(l + 1)
2 + (r + 2)

(

2
l + 2.2

l
(

2l2 − 3l + 2
)

− 2l2 − 4
)

+ 2
lr
(

4l2 + 2l
)

+ r(l + 1)(l + 2) + (r − 1)(4 × 2
l − 2l2 + 8 × 2

ll2 − 4)

+ 2
l
(

4l2 − 4l + 3
)

− 2l2 − 4 + (r − 1)(l + 2)
2
;

Fig. 3  The corona product HT(3)⊙P
3
 of hypertree HT(3) and path P

3
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Proof We prove the result based on the structure analysis and edge partition method. 

By analyzing the structure HT(l)⊙ P
r
 its edge set E

(

HT(l)⊙ P
r

)

 can be divided 

into seven partitions based on the eccentricities of associated vertices:

• E(l+1)(l+1) =
{

e = st ∈ E
(
HT(l)⊙ P

r

)
|𝜂(s) = 𝜂(t) = l + 1

}
  

and n(l+1)(l+1) =
|
|
|
E(l+1)(l+1)

|
|
|
= 3;

• E(l+a)(l+a+1) =
{

e = st ∈ E
(
HT(l)⊙ P

r

)
|𝜂(s) = l + a and 𝜂(t) = l + a + 1

}
  

and n(l+a)(l+a+1) =
|
|
|
E(l+a)(l+a+1)

|
|
|
= 2a(2 + r), where a ∈ [l − 1];

• E
2l(2l+1) =

{
e = st ∈ E

(
HT(l)⊙ P

r

)
|𝜂(s) = 2l and 𝜂(t) = 2l + 1

}
  

and n
2l(2l+1) =

|
|
|
E

2l(2l+1)

|
|
|
= 2

l
r;

• E(l+1)(l+2) =
{

e = st ∈ E
(
HT(l)⊙ P

r

)
|𝜂(s) = l + 1 and 𝜂(t) = l + 2

}
  

and n(l+1)(l+2) =
|
|
|
E(l+1)(l+2)

|
|
|
= r;

Π∗

6

(

HT(l)⊙ P
r

)

= (l + 1)
6 ×

l−1
∏

a=1

(

(l + a)
2 + l + a

)2a(2+r)
×
(

4l
2 + 2l

)r2l

×
(

l
2 + 3l + 2

)r

×

l
∏

a=1

(l + a + 1)
2a+1(r−1) ×

l−1
∏

a=1

(l + a + 1)
2a+1

× (l + 2)
2(r−1)

;

Zg4

(

HT(l)⊙ Pr, x
)

= 3x2(l+1) +

l−1
∑

a=1

2
a(2 + r)x2(l+a)+1 + r2

lx4l+1 + rx2l+3

+ (r − 1)

l
∑

a=1

2
ax2(l+a+1) +

l−1
∑

a=1

2
ax2(l+a+1) + (r − 1)x2(l+2);

Zg6

(

HT(l)⊙ Pr, x
)

= 3x(l+1)2 +

l−1
∑

a=1

2
a(2 + r)x(l+a)(l+a+1) + r2

lx4l2+2l + rx(l+1)(l+2)

+ (r − 1)

l
∑

a=1

2
ax(l+a+1)2 +

l−1
∑

a=1

2
ax(l+a+1)2 + (r − 1)x(l+2)2 ;

ABC
5
Π
�

HT(l)⊙ P
r

�

=

�
√

2l

l + 1

�3

×

l−1
�

a=1

�

2(l + a) − 1

(l + a)
2 + l + a

�2a−1(2+r)

×

�

4l − 1

4l2 + 2l

�2l−1r

×

�

�

2l + 1

l2 + 3l + 2

�r

×

l
�

a=1

�
√

2(l + a)

l + a + 1

�2a(r−1)

×

l−1
�

a=1

�
√

2(l + a)

l + a + 1

�2a

×

�
√

2(l + 1)

l + 2

�r−1

.
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• E(l+a+1)(l+a+1) =
{

e = st ∈ E
(
HT(l)⊙ P

r

)
|𝜂(s) = 𝜂(t) = l + a + 1

}
  

and n(l+a+1)(l+a+1) =
|
|
|
E(l+a+1)(l+a+1)

|
|
|
= 2a(r − 1), where a ∈ [l];

• E(l+a+1)(l+a+1) =
{

e = st ∈ E
(
HT(l)⊙ P

r

)
|𝜂(s) = 𝜂(t) = l + a + 1

}
  

and n(l+a+1)(l+a+1) =
|
|
|
E(l+a+1)(l+a+1)

|
|
|
= 2a, where a ∈ [l − 1] ;

• E(l+2)(l+2) =
{

e = st ∈ E
(
HT(l)⊙ P

r

)
|𝜂(s) = 𝜂(t) = l + 2

}
  

and n(l+2)(l+2) =
|
|
|
E(l+2)(l+2)

|
|
|
= r − 1.

Let the edge colors green, blue, sky blue, yellow, black, 

red and brown in Fig.  3 represent the edge partitions 

E44, E(l+a)(l+a+1), E6(6+1), E4(4+1), E(l+a+1)(l+a+1), E(l+a+1)(l+a+1), and E(4+1)(4+1) respec-

tively. That is, the edge partition of HT(3)⊙ P
3
 is given as follows:

• E
44

=
{

e = st ∈ E
(
HT(3)⊙ P

3

)
|𝜂(s) = 𝜂(t) = 4

}
 and n44 =

|
|E44

|
| = 3;

• E(l+a)(l+a+1) =
{

e = st ∈ E
(
HT(3)⊙ P

3

)
|𝜂(s) = l + a and 𝜂(t) = l + a + 1

}
  

and n(l+a)(l+a+1) = 2a(2 + 3) = 5(2a), where a ∈ [2];

• E
6(6+1) =

{
e = st ∈ E

(
HT(3)⊙ P

3

)
|𝜂(s) = 6 and 𝜂(t) = 6 + 1

}
  

and n6(6+1) = 23x 3 = 24;

• E
4(4+1) =

{
e = st ∈ E

(
HT(3)⊙ P

3

)
|𝜂(s) = 4 and 𝜂(t) = 4 + 1

}
 and n4(4+1) = 3;

• E(l+a+1)(l+a+1) =
{

e = st ∈ E
(
HT(3)⊙ P

3

)
|𝜂(s) = 𝜂(t) = l + a + 1

}
  

and n(l+a+1)(l+a+1) = 2a(r − 1) = 2(2a), where a ∈ [3];

• E(l+a+1)(l+a+1) =
{

e = st ∈ E
(
HT(3)⊙ P

3

)
|𝜂(s) = 𝜂(t) = l + a + 1

}
  

and n(l+a+1)(l+a+1) = 2a, where a ∈ [2];

• E(4+1)(4+1) =
{

e = st ∈ E
(
HT(3)⊙ P

3

)
|𝜂(s) = 𝜂(t) = 4 + 1

}
 and n(4+1)(4+1) = 2.

From the definitions of eccentricity-based topological indices, we get

GA4

�

HT(l)⊙ P
r

�

= 3 +

l−1
�

a=1

2
a(2 + r)

2
√

(l + a)(l + a + 1)

2(l + a) + 1
+ r × 2

l ×
2
√

2l(2l + 1)

4l + 1

+ r
2
√

(l + 1)(l + 2)

2l + 3
+

l
�

a=1

2
a(r − 1) +

l−1
�

a=1

2
a + (r − 1)

= (2 + r)

l−1
�

a=1

2
a+1

√

(l + a)(l + a + 1)

(2l + 2a + 1)
+ r2

l+1

√

4l2 + 2l

4l + 1
+ 2r

√

(l + 1)(l + 2)

2l + 3

+ (r − 1)
�

2
l+1 − 2

�

+ 2
l + r;
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Zg4

(

HT(l)⊙ Pr

)

= 3 × (2l + 2) +

l−1
∑

a=1

2
a(2 + r)(2l + 2a + 1) + r × 2

l(4l + 1) + r(2l + 3)

+ (r − 1)

l
∑

a=1

2
a(2l + 2a + 2) +

l−1
∑

a=1

2
a(2l + 2a + 2) + 2(r − 1)(l + 2)

= 6(l + 1) + (r + 2)
(

2
l(4l − 3) − 4l + 2

)

+ 2
l(r)(4l + 1) + r(2l + 3)

− (2r − 2)(2l − 4l2l) + 2
(l+1)(2l − 1) − 4l + 2(r − 1)(l + 2);

Π∗

4

(

HT(l)⊙ P
r

)

= (2l + 2)
3 ×

l−1
∏

a=1

(2(l + a) + 1)
2a(2+r) × (4l + 1)

r×2l

× (2l + 3)
r

×

l
∏

a=1

(2(l + a) + 2)
2a(r−1) ×

l−1
∏

a=1

(2(l + a) + 2)
2a

(2l + 4)
r−1

= (2l + 2)
3 ×

l−1
∏

a=1

(2(l + a) + 1)
2a(2+r) × (4l + 1)

r2l

× (2l + 3)
r

×

l
∏

a=1

(2(l + a) + 2)
2a(r−1) ×

l−1
∏

a=1

(2(l + a) + 2)
2a

× (2l + 4)
r−1

;

Zg6

(

HT(l)⊙ Pr

)

= 3(l + 1)
2
+

l−1
∑

a=1

2
a(2 + r)(l + a)(l + a + 1) + r × 2

l × 2l(2l + 1) + r

× (l + 1) × (l + 2) + (r − 1)

l
∑

a=1

2
a(l + a + 1)

2

+

l−1
∑

a=1

2
a(l + a + 1)

2
+ (r − 1)(l + 2)

2

= 3(l + 1)
2
+ (r + 2)

(

2l + 2 × 2
l
(

2l2 − 3l + 2
)

− 2l2 − 4
)

+ 2
lr
(

4l2 + 2l
)

+ r(l + 1)(l + 2) + (r − 1)
(

4 × 2
l − 2l2 + 8 × 2

ll2 − 4
)

+ 2
l
(

4l2 − 4l + 3
)

− 2l2 − 4 + (r − 1)(l + 2)
2
;

Π∗

6

(

HT(l)⊙ P
r

)

= (l + 1)
6
×

l−1
∏

a=1

(

(l + a)
2
+ l + a

)2a(2+r)

×
(

(2l)
2
+ 2l

)r×2l

×
(

(l + 1)
2
+ (l + 1)

)r

×

l
∏

a=1

(l + a + 1)
2a+1(r−1)

×

l−1
∏

a=1

(l + a + 1)
2a+1

× (l + 2)
2(r−1)

= (l + 1)
6
×

l−1
∏

a=1

(

(l + a)
2
+ l + a

)2a(2+r)
×
(

4l
2 + 2l

)r2l

×
(

l
2 + 3l + 2

)r

×

l
∏

a=1

(l + a + 1)
2a+1(r−1)

×

l−1
∏

a=1

(l + a + 1)
2a+1

× (l + 2)
2(r−1)

;
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Theorem  5.3 Let HT(k)⊙ P
n
, k, n ≥ 2 be the corona product of hypertree and a 

path network on n vertices. Then the atom bond connectivity index

Proof First, we partition the edge set of HT(k)⊙ P
n
 as follows:

Zg4

(

HT(l)⊙ Pr, x
)

= 3x2(l+1) +

l−1
∑

a=1

2
a(2 + r)x2(l+a)+1 + r2

lx4l+1 + rx2l+3 + (r − 1)

l
∑

a=1

2
ax2(l+a+1)

+

l−1
∑

a=1

2
ax2(l+a+1) + (r − 1)x2(l+2);

Zg6

(

HT(l)⊙ Pr, x
)

= 3x(l+1)2 +

l−1
∑

a=1

2
a(2 + r)x(l+a)(l+a+1) + r2

lx4l2+2l + rx(l+1)(l+2) + (r − 1)

l
∑

a=1

2
ax(l+a+1)2

+

l−1
∑

a=1

2
ax(l+a+1)2 + (r − 1)x(l+2)2 ;

ABC5Π
�
HT(l)⊙ Pr

�

=

��
2(l + 1) − 2

(l + 1)2

�3

×

l−1�
a=1

�
2(l + a) − 1

(l + a)2 + l + a

�2a−1(2+r)

×

��
4l − 1
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E(n+2)(n+2) =
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(
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n
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By the definition, we have

Theorem  5.4 Let HT(k)⊙ P
n
, k, n ≥ 2 be the corona product of hypertree and a 

path network on n vertices. Then the first Zagreb index
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By the definition, we have

Theorem  5.5 Let HT(k)⊙ P
n
, k, n ≥ 2 be the corona product of hypertree and a 

path network on n vertices. Then the second Zagreb index
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Remark 5.6 The results obtained from TopoChemie-2020 are shown in Table 3 for 

comparison with the results obtained from Theorems 5.2–5.5.

6  Chemical applications and conclusion

The recursive hypertree networks considered in this study could have several appli-

cations to chemical problems such as recursive molecular networks that occur in 

chemical applications, for example, dendrimers [30]. The QSAR studies of dendrim-

ers could then be benefited by the various topological indices derived in this work 

for hypertrees. Furthermore, recent extension of topological indices to relativistic 

topological indices considered in [31] could have significant ramifications in the 

prediction of relativistic chemical properties of complex network of molecular and 

material systems when heavier atoms such as Pt, Pd and other heavy elements are 

present [32–35]. For such systems relativistic effects are quite important [32–35]. It 

is anticipated that when the expressions derived here for the topological indices of 

hypertrees are generalized to encompass such relativistic corrections [32–35] then 

the generalized relativistic expressions could have important applications in the pre-

diction of topological properties of dendrimeric metal–organic networks containing 

very heavy atoms. Moreover, graph products such as the corona products and other 

products have been recently considered for the computation of Mostar indices of 

nanomaterials [36], and thus we expect more research along these lines employing 

graph products in the future.

Biological processes are well interpreted by reliable models for interaction net-

works. The structure of social networks has to be studied along with the spread of 

infectious diseases like corona virus [8]. In this paper we have considered certain 

biochemical networks such as k-level hypertrees and corona product of hypertrees 

and several topological indices have been obtained for the same.
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Table 3  Results obtained for the corona product of hypertree and a path network with n vertices 

HT(k)⊙ P
n
 with the computer code compared with the results from the expressions in Theorems 5.2–5.5

Index Dimension k TopoChemie-2020 Expressions 5.2–5.5

ABC
(

HT(k)⊙ P
n

)

k = 3, n = 3 62.8938552 62.8933

k = 4, n = 4 168.79986743214627 168.8003

M
1

(

HT(k)⊙ P
n

)

k = 3, n = 3 774 774

k = 4, n = 4 2314 2314

M
2

(

HT(k)⊙ P
n

)

k = 3, n = 3 1582 1582

k = 4, n = 4 5159 5159
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