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a b s t r a c t

Designing a key distribution protocol with minimal computation and storage complexity

is a challenging issue in secure multimedia multicast. In most of the multimedia

multicast applications, the group membership requires secured dynamic key generation

andupdation operations that usually consumemuch of the computation time. In this paper,

we propose a new GCD (Greatest Common Divisor) based Key Distribution Protocol which

focuses on two dimensions. The first dimension deals with the reduction of computation

complexity which is achieved in our protocol by performing fewer multiplication

operations during the key updation process. To optimize the number of multiplication

operations, the existing Karatsuba divide and conquer approach for multiplication is used

in this proposed work. The second dimension aims at reducing the amount of information

stored in the Group Center and group members while performing the update operation in

the key content. The proposed algorithmwhich focuses on these two dimensions has been

implemented and tested using a Cluster tree based key management scheme and has been

found to produce promising results. Comparative analysis to illustrate the performance of

various key distribution protocols is shown in this paper and it has been observed that this

proposed algorithm reduces the computation and storage complexity significantly.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Multimedia services, such as pay-per-view, videoconferences, some sporting events, audio and video broadcasting are
baseduponmulticast communicationwheremultimediamessages are sent to a group ofmembers. In such a scenario, groups
can be either opened or closed with regard to senders. In a closed group, only registeredmembers can sendmessages to this
closed group. In contrast, data from any sender is forwarded to the groupmembers in open groups. Groups can be classified
into static and dynamic groups. In static groups, membership of the group is predetermined and does not change during
the communication. In dynamic groups, membership can change during multicast communication. Therefore, in a dynamic
group communication, members either join or depart from the service at any time. When a new member joins into the
service, it is the responsibility of the Group Center (GC) to disallow newmembers from having access to previous data. This
provides backward secrecy in a secure multimedia communication. Similarly, when an existing group member leaves from
any group, he/she should not have further access to data. This achieves forward secrecy. In order to provide forward and
backward secrecy the keys are frequently updated whenever a member joins/leaves the multicast service. Furthermore, if a
device lacks storage capabilities, it may be impossible within the receiving device to implement a group key management
protocol based on a key tree structure. Hence the amount of information to be stored to find the updated key byGC and group
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members should also be minimized. GC also takes care of the job of distributing the Secret key and Group key to the group
members. In this paper, we propose a Key Distribution algorithm that reduces the computational complexity and at the
same time, it decreases the number of keys to be stored by GC and groupmembers. The remainder of this paper is organized
as follows: Section 2 provides the features of some of the related works. Section 3 discusses the proposed key distribution
protocol and a detailed explanation of the proposed work. Section 4 explains the Cluster tree based keymanagement where
the proposed key distribution is employed. Section 5 provides the optimization method based on Karatsuba multiplication
approach for key updation process. Section 6 analyzes the comparative performance of our proposed algorithm with the
other existing key distribution methods. Section 7 gives concluding remarks and suggests some future directions.

2. Literature survey

There are many works that are present in the literature on key management and key distribution [1–13]. In most of the
existing Key Management schemes, different types of group users obtain a new distributed multicast Group key which is
used for encrypting and decryptingmultimedia data for every session update. Among the various works on key distribution,
Maximum Distance Separable (MDS) [14] method focuses on error control coding techniques for distributing re-keying
information. In MDS, the key is obtained based on the use of Erasure decoding functions [15] to compute session keys by the
GC/group members. Moreover, the Group center generates n message symbols by sending the code words into an Erasure
decoding function. Out of the n message symbols, the first message symbol is considered as a session key and the group
members are not provided with this particular key alone by the GC. Group members are given the (n− 1) message symbols
and they compute a code word for each of them. Each of the group members uses this code word and the remaining (n− 1)
message symbols to compute the session key. The main limitation of this scheme is that it increases both computation and
storage complexity. The computational complexity is obtained by formulating lr + (n − 1)m where lr is the size of r bit
random number used in the scheme and m is the number of message symbols to be sent from the group center to group
members. If lr = m = l, computation complexity is nl. The storage complexity is given by ⌈log2 L⌉+ t bits for each member.
L is number of levels of the Key tree. Hence Group Center has to store n (⌈log2 L⌉ + t) bits.

Secure communication using the extended Euclidean algorithm [16] was proposed for centralized secure multicast
environments. The main advantage of this algorithm is that only one message is generated per rekeying operation and
only one key is stored in each user’s memory. In this algorithm, two values (δ, L) are computed in the intermediate steps of
GC. The main limitation of the Euclidean algorithm is that the two computed values must be relatively prime. If this is not
the case, then the algorithm fails in which the user cannot recover the secret information sent by GC. Also, the time taken for
defining a new multiplicative group is high, whenever a new member joins or leave the multicast operation. This approach
is only suitable for a star based key management scheme.

The Data Embedding Scheme proposed in [17] is used to transmit a rekeying message by embedding the rekeying
information in multimedia data. In this scheme, the computation complexity is O(log n). The storage complexity also
increases to the value of O(n) for the server machine and O(log n) for group members. This technique is used to update
and maintain keys in a secure multimedia multicast via a media dependent channel. One of the limitations of this scheme
is that a new key called an embedding key has to be provided to the group members in addition to the original keys, which
causes a lot of overheads. A level homogeneous key tree [18] based key management scheme was proposed in [19] to
reduce computation and storage complexity. A Key management scheme using key graphs has been proposed by Wong
Gouda [20] which consists of the creation of secure group and basic key management graphs scheme using a Star and Tree
based method. The limitation of this approach is that scalability is not achieved. A new group keying method that uses one-
way functions [21] to compute a tree of keys, called the One-way Function Tree (OFT) algorithm has been proposed by David
and Alan. In this method, the keys are computed up the tree, from the leaves to the root. This approach reduces re-keying
broadcasts to only about log n keys. Themajor limitation of this approach is that it consumesmore space. However, the time
complexity is more important than space complexity. The storage complexity of GC is 2nK and group member is LK , where
K is the key size in bits. In our work, we focused on reduction of computation time complexity.

Wade Trappe and Jie Song proposed a Parametric One Way Function (POWF) [22] based binary tree Key Management.
Each node in the tree is assigned a Key Encrypting Key (KEK) and each user is assigned to a leaf and given the IKs of the nodes
from the leaf to the root node in addition to the session key. These keys must be updated and distributed using top down or
bottomup approach. The storage complexity is given by (logτ n)+2 keys for a group center. The amount of storage needed by

the individual user is given as
(τ L+1−1)

τ−1
keys. Computation time is represented in terms of amount ofmultiplication required.

The amount ofmultiplication needed to update the KEKs using the bottomup approach is τ logτ n−1.Multiplication needed

to update the KEKs using the top down approach is
(τ−1) logτ n(logτ n+1)

2
. This complexity can be reduced substantially if the

numbers of multiplications are reduced. Therefore, in this paper we propose a new cluster tree based Key Management
Scheme that reduces computation time by reducing the number of multiplications required in the existing approaches. We
also use the Karatsuba fast multiplication algorithm to optimize the multiplication operations used in the key distribution
protocol in the GC. The proposed method also reduces the amount of information that needs to be stored for updating the
keys when there is a change in the group membership. Our proposed algorithm is suitable for single join/leave operation
(Single Rekeying operation).When the number of joining or leaving operations ismore, batch join and leaving operations can
be integrated for a group of users in our proposed key distribution protocol. To perform batch joining and leaving operation
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marking, merging and Batch balanced algorithms have been proposed in the past [23–26] and the merging algorithm takes
fewer re-keying operations thanmarking algorithms. The batch balanced algorithm requires less rekeying and updating cost
than merging algorithms.

3. GCD based key distribution protocol

The proposed framework works in three phases. The first phase is the Group Center Initialization, where a multiplicative
group is created at GC. In the second phase called the Member Initial Join phase, the members send join requests to the
GC and obtain all the necessary keys for participation through secure channel. The final phase of this protocol is known as
‘‘Member Leave’’ that deals with all the operations to be performed after a member leaves the group (providing forward
secrecy). The proposed work mainly concentrates on the third phase of ‘‘Member Leave’’ phase because the computation
time is extremely large in most of the existing systems for providing forward secrecy. This is an extremely great challenge
in most of the multimedia multicast applications.

3.1. GC initialization

Initially, the GC selects a large prime number p and q, where p > q and q ≤ ⌈p/4⌉. The value p helps in defining a
multiplicative group z∗

p and q is used to fix a threshold value µ, where µ = a+ q. The value a is a random element from the
group z∗

p and hence when the ‘a’ value increases, the value of µ also increases.

3.2. Member initial join

Whenever a new user ‘i’ is authorized to join the multicast group for the first time, the GC sends (using a secure unicast)
a secret key Ki which is known only to the user Ui and GC. Ki is a random element in z∗

p and the necessary condition is that all
Ki are greater than µ. If this condition is not satisfied the value of ‘a’ must be adjusted so that it is possible to select Ki > µ.
Using this Ki, the Sub Group Keys (SGK) or auxiliary Keys, γ and a Group key kg are given for that user ui which will be kept
in the user ui database. The following steps describe the key updation process used for amember join operation at the Group
Center.

(1) Initially, GC selects a random element β from z∗
p .

(2) GC now computes the shared secret key γ = βa mod p.

(3) The GC calculates ∂g =
n

i=1 (ki).

(4) The GC computes a GCD value of (µ, ∂g) by using the extended Euclidian algorithm described in [27] fromwhich it finds
x, y, d such that

x × µ + y × ∂g = d.

(5) The GC multicasts β, x, p, q and d to the group members. Upon receiving all the above information (β, x, p, q, d) from
the GC, an authorized user ui of the current group executes the following steps to obtain the new group key γ .

(1) Computes x1 using the relation x mod ki = x1.

(2) Computes µ using x1−1 mod ki = µ.

(3) Performs the following operation to find the shared secret key.

βd×µ

βq
mod p = β(d×µ)−q mod p = γ .

The γ obtained in this way must be equal to the γ computed in Step 2 of GC.

Security.

Computing the newly updated γ in the proposed scheme depends on the method used to calculate the member’s secret
key Ki in a particular amount of time. In this scheme, the group center distributes the elements β, x, p, q and d to the group
members throughmulticast communication. Hence an attacker will try to capture all the distributed elements and by using
these elements, the attacker can try to find the value of µ. This µ can be computed only by using the user’s secret key Ki.

If the attacker is not an active adversary, (i.e., not a previous member of the multicast group) the attacker can use brute
force attack to learn about any one member’s secret key Ki. If the size of Ki is w bits, then the attacker has to use the total
number of trials of 2w . The time taken to derive Ki can be increased by choosing the large Ki for each user’s secret key. In
this work, the size of Ki must be 64 bits even though the experiments were conducted with 32 bits and 64 bits. If the time
required to perform one attempt using brute force attack is 1µs, then the total time required will be 263

µs = 292 471
years. Therefore when a large size Ki is used it is not possible to find the value of µ and hence γ can’t be computed by
an adversary.
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Fig. 1. Clustered tree based key management with cluster sizeM = 5 and number of users = N .

3.3. Member leave

Whenever some new members wish to join or some old members wish to leave the multicast group, the GC needs to
distribute a new Group key to all the current members in a secure way with minimal computation time. When a new
member joins the service, it is easy to communicate the newgroup keywith the help of the old group key. Since the old group
key is not known to the new user, the newly joining user cannot view the past communications. This provides backward
secrecy. Member leave operation is completely different from member join operation. In member leave operation, when
a member leaves the group, the GC must avoid the use of an old Group key/SGK to encrypt a new Group key/SGK. Since
the old member knows the old GK/SGK, it is necessary to use each user’s secret key to perform a re-keying operation when
a member departs from the services. In the existing key management approaches [1,2,6,28] this process increases GC’s
computation time, because the number of multiplication operations to be done in the key updation is more. In our proposed
key distribution scheme, the computation times are equalized for member join and leave operations. Therefore, our work
aims at reducing the computation time by decreasing the number of multiplication operations to be carried out. Moreover,
this work reduces the number of keys to be stored by the group members to recover the new GK.

4. Clustered tree based key management scheme

Scalability can be achieved in this proposed key distribution approach by applying this scheme in a clustered tree based
key management scheme to update the GK and SGK. Fig. 1 shows a cluster tree in which the root is the group key, leaf
nodes are individual keys, and the intermediate level is Sub Group Key (SGK). The tree shown in Fig. 1 consists of only three
levels. The lowest level (0th level) is the group key. The next higher level (1st level) contains the shared secret keys, γi where
i = 1, 2, . . . , n. The last level (2nd level) is the user’s level, where M number of users are grouped into k clusters, Ck. Each
cluster is attached to the upper level (1st level) node and in turnwith the group key node.When the number of joining users
exceeds the cluster size, a new node is created from the root to form the second cluster. The number of clusters formed is
based on the cluster sizeM which is fixed by GC and the number of joining users. If the cluster tree based key management
consists of N number of users M1,M2, . . . ,MN and each cluster size is of size M then there will be ⌈N/M⌉ clusters. In this
cluster tree based key management scheme, updating is necessary for each rekeying operation used for member leave and
member join operations. For example, if a member M10 in cluster 2 from the Fig. 1 leaves the group, then the keys on the
path from his leaf node to the tree’s root node must be changed.

Hence, only the keys γ2 and kg will become invalid. Therefore, these two keys must be updated.
In order to update these two keys, two approaches are used in the member’s departure (Leave) operation. In the first

approach, updation of the sub group key, γ2 for the cluster 2 is performed as given in Algorithm 1. When a member M10

leaves from the service, GC computes ∂g


k6,9


for the existing users using their own secret keys which are kept in GC.When

computing ∂g


k6,9


for the members M6,M7,M8 and M9 the GC uses K6, K7, K8 and K9 which are the secret keys for the
remaining members of cluster 2. Since the secret key K10 is known to the member M10 who had left from the service, GC
is not using the secret key K10 when it computes the function ∂g



k6,9


for the members M6,M7,M8 and M9. However, the

computation time of ∂g


k6,9


can be reduced by dividing the γ2 by k10 as shown in Step 1 rather than multiplying all users

secret key once again. Next the GC computes µ, GCD value of


µ, ∂g


k6,9


and generates a multicast message as indicated

in Step 4 and sends the message to all the existing members of the cluster in order to update the new SGK γ 1
2 .

Algorithm 1.

(1) ∂g


k6,9


=
∂g(k6,10)

k10
.

(2) GC generates the new β, q and computes µ and γ 1
2 values as explained in Sections 3.1 and 3.3.
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(3) Now GC computes GCD value of


µ, ∂g


k6,9


and finds out x, y, d values.

(4) Finally GC multicasts β, x, p, q, and d to the existing group members.

Group membersM6,M7,M8 and M9 execute the following steps to obtain the new sub group key γ 1
2 .

(5) Compute x mod ki = x1.

(6) Compute x1−1 mod ki = µ.

(7) Perform the following operation to find the shared secret key.

βd×µ

βq
mod p = β(d×µ)−q mod p = γ 1

2 .

After updating the above SGK successfully, GC has to use the second approach in order to update the group key kg using a
different procedure as explained below. The new group key kg is used to encrypt the multimedia data. For updating the GK,

GC generates a new group key from z∗
p , with a condition that the new group key k1g < γi. If this condition is not satisfied

then append a value 1 in front [1] of γi in order to make γi a greater value than k1g . Every time a new cluster is created its
corresponding SGK is multiplied with all other SGKs and the result is stored in a temporary variable X . Therefore whenever
a new cluster is created, only the new γi of the newly created cluster is multiplied with the value X which is stored in GC.
Hence only one multiplication is needed for updating the GK. Similarly when an existing cluster is completely deleted X is
divided by the corresponding γi value and hence only one division is necessary for updating the GK. In order to understand
the key updation when a single member leaves a group, consider an example using Fig. 1 where only one member M10 is
allowed to leave the cluster (cluster 2). In this case, γ2 must be updated and let the updated γ2 be represented as γ 1

2 . In order

to update γ2, the GC must divide X by γ2 first and then the result must be multiplied with the newly computed γ 1
2 and the

final result is stored in the variable X . This X is added with the newly generated group key k1g to obtain γg and the rekeying

message is formed by using the equation γg = k1g + X . In this way, member leave operations are handled effectively by
reducing the number of multiplications/divisions.

The resultant value γg is broadcast to the remaining members of the group. The members of the group can recover the
updated group key with the help of γi using the relation,

γg mod (γi) = k1g .

The key strength of our algorithm is that the scalability increases sufficiently. The number of keys to be used by the GC and
group members are reduced in comparison to the other existing approaches [1,2,15,4,22,6]. Each user has to store 3 keys,
since the tree described in the proposed algorithm has 3 levels. If the numbers of clusters are k and each cluster consists of
n users, then the storage complexity of GC is (n × k) + 2k + 1, where 2k is used to denote the total number of ∂g(ki,j) and
γi used for every cluster that are stored in GC and 1 represents group key storage area.

5. Optimization method

Assumption. Let ∂g =
n

i=1 (ki) be a multiplication function which is used for member join operation, where ki = secret
is the key of a user. Now, ‘σi’ is the size of the ki, where i = 1, 2, 3, . . . , n (n = size of the group).

Algorithm. Consider a scenario, where σ1 = 2 and σ2 = 2. A set of ‘σi’ are multiplied to form ∂g as shown in Step 3 in
Section 3.3 using the traditional multiplication operation present in most of the existing key distribution approaches [3,15].
In order to multiply σ1 and σ2 using traditional multiplication operation, the algorithm takes 4 multiplication operations.
In general, when two ‘σ ’ digit numbers are to be multiplied, it takes (σ 2) multiplication operations in order to obtain the
solution.

For optimizing the number of multiplication operations used for computing ∂g Karatsuba fast multiplication, the divide
and conquer approach [29–31,5] is used in our proposed key distribution algorithm. The number ofmultiplication operations
to be performed in total to obtain the solution for the ‘σ ’ digit number will be (σ 1.585). If σ is a long digit number, it divides
the number into two halves, and those products can be multiplied by recursive calls of the Karatsuba divide and conquer
algorithm. The recursion can be applied until the numbers are so small that they can (or must) be computed directly. We
can obtain thewhole product used in the function ∂g by using the ‘‘divide and conquer’’ method recursively as they compute
the Batch verification process which is implemented in the Merkle tree [32]. Hence, the multiplication time complexity is
given by O



σ log2 3


. Therefore it is faster than the traditional multiplication, which requires σ 2 single-digit products and the

complexity is O


σ log2 4


. The Karatsuba fast multiplication approach works well when the value of σ > 16 digits. However,
if the number of digits of σ < 16, this algorithm shall not show a significant difference. In order to optimize the use of
the Karatsuba fast multiplication approach, the group size in our proposed key distribution algorithm can have 16-digits,
32-digits, 64-digits, 128-digits, etc. In the proposed algorithm given in Section 3.3, we have analyzed and tested the
algorithm for a group size p as 16-digit, 32-digit and 64-digit prime numbers. The key values used in our algorithm are
16 and 32 digit numbers.
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Table 1

Computation, storage complexity of various key management approaches.

Parameters ETF MDS Binary Proposed method

Computation cost (GC) τ + 2 (logτ n − 2) + logτ n lr + (n − 1)m τ × logτ n − 1 3 + G

Computation

cost(user)

(logτ n − 1) (M + E) (logτ n − 1) (H + ED) (logτ n − 1) (M + Ap) 1 + I + 1M

Storage complexity

(user)

logτ n + 1 ⌈log2 L⌉ + t (logτ n) + 2 3

Storage

complexity (GC)

n (logτ n + 1) n (⌈log2 L⌉ + t)
(τ L+1−1)

τ−1
(n × k) + 2k + 1

Communication

complexity

(logτ n − 1) [(3 × p) − 1]+

2p

τ logτ n (logτ n − 1) [(3×p) + 1]+ (2p + 1) 2multicast + 1 unicast

Theorem 1. The number of multiplications in the computation of ∂g is in the order of O


σ 1.585


when Karatsuba divide and

conquer multiplication is employed for the key computation process where the key size is a σ digit number.

Proof. Initially, divide the input number σ into three σ
2
digit numbers, each can take threemultiplications of σ

2
digits, which

is represented as σ
2

× 3. Break each of the resulting numbers further into σ
4
digit parts and perform the multiplications with

these parts. Do the same steps until we get single digits of the input numbers in the level log2 σ . Simplifying the above
statements, the following formulations are done.

= σ +
σ

2
× 3 +

σ

4
× 32 +

σ

8
× 33 + · · · +

σ

2log2 σ
× 3log2 σ

= σ +
3

2
× σ +

32

22
× σ +

33

23
× σ + · · · +

3log2 σ

2log2 σ
× σ

= σ +
3

2
× σ +



3

2

2

× σ +



3

2

3

× σ + · · · +



3

2

log2 σ

× σ

= σ



1 +
3

2
+



3

2

2

+



3

2

3

+ · · · +



3

2

log2 σ


.

This series is in the form of finite geometric series 1+ω+ω2 +· · ·+ωr and this can be written as, 1+ω+ω2 +· · ·+ωr =
ωr+1−1

ω−1
.

Substitute ω = 3
2
to simplify this equation.

= σ







3
2

log2 σ+1
− 1





3
2

− 1




 = σ







3
2

log2 σ+1
− 1





1
2







= 2σ



3

2

log2 σ+1

− 1



= 2σ





3

2

log2 σ 
3

2

1

− 1



= 2σ



3

2

log2 σ 
3

2

1

− 2σ = 3σ



3

2

log2 σ

− 2σ = 3σ



3log2 σ

2log2 σ



− 2σ

= 3σ



3log2 σ

σ



− 2σ = 3σ log2 3 − 2σ = O(σ 1.585). �

6. Performance analysis

The proposed method has been implemented in JAVA (Intel Core i3 processor, with 2 GB RAM) for more than 6000
users and we have compared the computation time with the existing approaches to perform the rekeying operation. For
implementing this approach a cluster based key tree is created in which cluster size is fixed as 100 users, hence totally 65
clusters(in approx) are created. Table 1 shows the computation (in terms of the number of multiplications required) and
storage complexities of various key management approaches [1,15,22]. The notations used for comparisons are defined as:
n is the number of members, k is the number clusters available in the clustered tree, τ is the maximum number of children
of each node of the tree, p is the size of the prime number used to define the multiplicative group, I is the time taken to find
the inverse element of a multiplicative group, G is the time taken to perform a GCD operation, L is the number of levels and
t is used to represent the size of the seed key in bits used in MDS.

E, ED,M , Ap and H denote the computation costs of finding Euler’s value, erasure decoding, modulo division, appending
and hash operation respectively. Erasure decoding operations for anMDS code needO



n2


arithmetic operations if standard
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Table 2

Group key computation time for various key distribution approaches.

No.

of

users

Length of

prime

number

(in digits)

Length of

new GK (in

digits)

ETF (ns) MDS (ns) Binary tree (ns) GCD (ns)

Server Client Server Client Server Client Server Client

2 8 5 211948432 87477763 753408 520372 599231 494678 347744 419111

2 8 6 74401457 62202985 846185 588792 760156 637209 347898 587531

2 16 5 108734791 87105870 876905 640457 790874 569879 485644 559196

2 16 6 87838705053 86853329641 976493 433325 878956 397543 485232 532064

3 8 5 66234234 58699556 894126 526888 832145 578213 356298 466762

3 8 6 66173260 61553685 1027245 450018 965623 481432 356398 449892

3 16 5 134731825 154361288 1079355 897951 945647 844304 696690 758903

3 16 6 1317281552 1244607297 1316729 987455 1162346 913456 866194 890654

10 8 5 1.12197632E9 2.883584E8 4201236 977812 3645136 971778 1287652 932178

10 16 6 2.46677504E9 3.9834256E8 9206421 1976342 6828321 1334098 3706212 1043527

Fig. 2. GC key computation time of various key distribution schemes.

erasure decoding algorithms are used. Even if the fast decoding algorithms are used it needs O(n log n) operations in the
receiver side. Similarly, the time taken to compute the totient value for a 32 digit key value used in ETF is extremely high
compared with performing simple subtraction and modulo division used in our proposed approach.

Table 2 compares the computation timewhich is defined as the time taken to compute the group key at the Group Center
area and the Group Members’ area for various key management approaches.

For comparing the computation time of the proposed algorithmwith three different algorithms present in the literature,
the group size is taken to be 8-digit and 16-digit. Table 2 shows the measured computation time in nanoseconds for such
comparisons. It is evident from the values that the computation time for our proposed algorithm is found to be better both
in the GC area and the client area than the other algorithms. It is to be noted that in our algorithm the key recovery time
taken by single user is large when compared to GC’s key computation time for M users. The reasons behind this amount of
time are (1) calculating mod value of x is high, when the x value is computed for an entire cluster, and (2) finding an inverse
element also takes an enormous amount of time.

The graphical result shown in Fig. 2 is used to compare the GC key computation time of the proposed method with the
existing methods. It compares the results obtained from our proposed Cluster tree key distribution protocol with the Binary
tree based, and erasure encodingwhich is namedMDS. The comparison results of key computation time taken for computing
the group key using Euler’s totient function [1] based method is not included in Fig. 2.

Because the group key computation time increases rapidly when Euler’s totient function is used, since the function takes
longer to find the prime factors of 16-digit key value. However, if security is a major concern in implementing the multicast
security, the Euler’s totient based approach can be used.Most of the applications like PAY-TV, sporting events are fully based
on the idea of reducing the computation time where our proposed algorithm will be more suitable.

From Fig. 2 it is observed that when the group size is around 6000, the key computation time is found to be 1968 µs in
our proposed approach for updating all the keys from the leaf node to the root node where the key size=16 digits, which
is better in comparison with the other existing schemes. Moreover if the number of members who are joining and leaving
with in a cluster increases, then the computation time gradually increases. However it is less in comparisonwith the existing
approaches. The result shown in Fig. 3 is used to compare the user’s key computation time of our proposed method with
the existing methods. It compares the results obtained from the Cluster tree based key distribution scheme with existing
approaches and it is observed that when the group size is 6561, the key recovery time of a user is found to be 1781 µs in
our proposed approach, which is better in comparison with the other existing schemes.
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Fig. 3. User key computation for obtaining the new key value.

7. Concluding remarks

This paper proposes a new solution to reduce the computation and storage complexity while providing secure
multimedia multicast through effective key management techniques. For this purpose a new Clustered tree-based key
distribution protocol (key value = ‘n’ bit numbers) has been proposed in this paper. The proposed algorithm has two
dimensional focuses—minimal computation complexity and minimal storage complexity. When the key size is small (key
size=8 digits), the computation time decreases by 0.2 ms and when the key size increases (16 or 32 digits) the computation
time decreases by 0.15–0.18 ms for updating a single key from any level of the clustered tree by using Karatsuba fast
multiplication. With regard to the storage complexity, the amounts of keys stored by GC and group members are reduced
substantially by employing the cluster tree approach. Further extensions to this work are to devise techniques for reducing
the communication complexity which is the number of keys to be sent from GC to the group members’ area in order to
recover the updated keying information and to reduce rekeying cost for batch join and batch leave operations.
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