
Procedia Computer Science  00 (2010) 000–000 

Procedia 
Computer 
Science

www.elsevier.com/locate/procedia

WCIT-2010

Cluster based bit vector mining algorithm for finding frequent 

itemsets in temporal databases 

M. Krishnamurthy
a
*, A. Kannan

b
, R. Baskaran 

c
, M. Kavitha

d

aAssistant Professor,Department of Computer Applications,Sri Venkateswara College of Engineering,Sriperumbudur,602105,India 
bProfessor,Department of Information Science and Technology,AnnaUniversity,Chennai,600025,India                                                        

cAssistant Professor,Department of Computer Science and Engineering,AnnaUniversity,Chennai,600025,India                                               
dFinal Year MCA Student,Sri Venkateswara College of Engineering,Sriperumbudur,602105,India 

Abstract 

In this paper,  we introduce an efficient  algorithm using a new technique to find frequent itemsets from a huge set  of itemsets 
called Cluster based Bit Vectors for Association Rule Mining (CBVAR). In this work, all the items in a transaction are converted 
into bits (0 or 1). A cluster is created by scanning the database only once. Then frequent 1-itemsets are extracted directly from the 
cluster table. Moreover, frequent k-itemsets, where k 2 are obtained by using Logical AND between the items in a cluster table. 
This approach reduces main memory requirement since it considers only a small cluster at a time and as scalable for any large 

size of database. The overall performance of this method is significantly better than that of the previously developed algorithms 

for effective decision making.

Keywords : Frequent  Itemsets;Association Rule; Clustering; Cluster Table; Bit Vector; Temporal Database 

1. Introduction 

1.1 Data Mining 
Data mining is the key step in Knowledge Discovery (KDD) process. It is increasingly becoming important tool 

in extracting interesting knowledge from large databases. Moreover, many data mining problems involve temporal 

aspects, with examples ranging from engineering to scientific research, finance and medicine. Temporal data mining 

is an extension of data mining which deals with temporal data. In this paper, we consider temporal database for 

finding out frequent items. 

1.2 Frequent Itemsets 

Finding out frequent itemsets is an important issue in many data management systems. The discovery of 
association rules has been discussed in the past using two steps namely finding the frequent itemsets and generating  

association rules [1]. Though Apriori is the basis for all rule mining algorithms. The database in Apriori has to be 

repeatedly scanned and large number of candidates has to be generated which is the major limitation of this Apriori 

algorithm. Therefore it is necessary to propose much faster algorithms to address the above issue. 
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1.3 Clustering 

In a given set of data items, Clustering is used to partition a data set into a set of classes such that items with 

similar characteristics are grouped together. Clustering helps to make faster decisions and to explore data efficiently. 

Moreover, the process of creating clusters is iterative, which is time consuming and requires more space. Hence 
clustering along with bit vector can help to solve the above issues which are prominent in iterative methods. 

1.4 Proposed Work 

In order to reduce the temporal and space constraint as well as to address scalability, we introduce a new 
algorithm called Cluster based Bit Vector Association Rule Mining algorithm (CBVAR) to perform temporal 

mining in temporal database which is basically different from all the previous algorithms.  

The main advantage of this algorithm is that it is scalable with all types of databases regardless of their sizes. 

Moreover, it is easy to implement as it uses simple cluster and bit vector concepts. However, it is efficient since it 

requires less memory and time to generate frequent itemsets. This proposed algorithm occupies less space because it 

uses Bit Vectors instead of full data. 

1.5 Organization of Paper 

The remainder of this paper is organized as follows: Section 2 explain the Temporal Mining and related works, 

Section 3, explains the Fast Updating Frequent Itemsets Algorithm (FUFIA) and Clustering and Graph based 

Association Rule (CGAR). Section 4, discusses our algorithm called Clustering and Bit Vector based Association 

Rule Mining (CBVAR). Section 5, provides the performance of these algorithms by showing the experimental 
results graphically and using tables.  Section 6 gives the conclusion on this work and suggests some possible future 

works. 

2. Temporal Mining 

Temporal data mining is an extension of data mining which deals with temporal data. Mining temporal data poses 

more challenges than mining static data.  

2.1 Related Works 

There are many works in the literature that discuss about Association rules, Temporal Mining and Frequent 

Itemsets. The Association Rule mining raised by R.Agarwal [1] is an important research in data mining field. His 

Apriori algorithm can discover meaningful itemsets and build association rules. However, a large number of 

candidate sets are generated and the database needs repeated scanning. 

 In order to reduce the database scanning various studies were undergone. Further studies in data mining have 

presented many efficient algorithms for discovering association rules.  In improved Apriori algorithm [4], the 
mining efficiency is very unsatisfactory when memory for database is considered.  

In the past,  the omission of   time dimension in association rule was very clearly mentioned by Banu Ozden et 

al[11]. Different strategies were proposed after Apriori as in FP-growth [2], which outperforms all candidate 

generations but still have problems in the case of no common prefixes within the data items. Temporal FP tree uses 

divide and conquer technique for construction and traversing of tree which is used to decompose the mining task 

into a set of smaller task which reduces the search space. Howver, Temporal FP Tree technique is better only when 

the data is dense.. Paper [12] is useful for the retailer to create its own strategy as per the requirement of time. But, 

the performance is very less. 

In paper [7], mining frequent itemsets using Matrix reduces scanning cost and execution times, but the algorithm 

works  only  for  nine  transactions.  The  partition  algorithm  [8],  to  further  improve  the  efficiency,  it  does  so  by  

reducing the number of database scans, however, considerable time is still wasted in scanning infrequent candidate 
itemsets. In [14], the proposed Boolean algorithm mines association rules in two steps. In the first step logical OR 

and AND operations are used to compute frequent itemsets. In the second step, logical AND and XOR operations 

are applied to derive all interesting association rules based on the computed frequent itemsets. But the computational 

time is more as well as it occupies more memory. 

Finally,  Clustering  and Graph based Association  Rule  [9]  was  proposed in  which  a  cluster  table  is  created  by  

scanning the database and then the transactions are further clustered into clusters based on their length. Even though, 

the algorithm is scalable much time is wasted in constructing graphs for each cluster, which reduces the 

performance. 
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2.2 Limitation of Existing Works 

In the existing works [10][11][13], though many algorithms were proposed to reduce space and efficiency a 
considerable disadvantage was addressed. Most of the algorithms occupied more space or generate many candidate 

itemsets. Comparing with the previous work our algorithm CBVAR reduces these problems and the Performance is 

considerably increased. Hence, the scanning cost is also reduced by using our new proposed algorithm. 

 2.3 Three Dimensional Itemset Matrix Experiment:  Bit Vector: 

Let BVi = (bv1, bv2,….bvN) be Bit Vector, where N is the number of transactions in database D. If an item i is 

present in the transaction represent it as 1 else 0. The number of 1’s shows the presence of an item in the transaction. 

 2.3.1 Matrix Formation:  

The  values  of  M  [Ii,  Ij,  Ik] are determined by concurrence number of (Ii,  Ij) and it is stored. The following 

algorithm explains to find the matrix possibilities. 

Algorithm: 

For each transaction in S find its length L. 

For each value of x find the substring  P=substring (S, x) where x =     1,2,....L. 

For each value of y find the substring     Q=substring (S, y) where y = x+1…L. 

Increase the count of M [P, Q, 1]. 

For each value of z find the substring R=substring (S, z) where z = y+1…L. 

Increase the count of M [P, Q, R]. 

2.3.2 Finding Frequent Itemsets: 

Algorithm: 
1. For every value of M [Ii, Ij, I1], if M [Ii, Ij, I1]  Min_num then store v1v2 in L[a], where i=1 to N, j=i+1 to 

N and a is the length of the array. If count of M [Ii, Ij, Ik] Min_num then append Ik, where k=j+1 else if Ii,

Ij is in some one of L[a] then divide L[a] into two parts. Thus step1 finds the temporal frequent itemsets 

which has 2, 3, 4, etc itemsets values. 

2. For  every  temporal  item  in  L[]  the  length  of  the  array  should  be  greater  than  3,  now  perform  AND  

operation on BV I0, BV I1, BV I2 where I0, I1, I2 is the index of the first three characters of [i]. BV I0, BVI1,

BVI2 are the bit vector corresponding to the three chars. The result of this operation shows the occurrence 

of item I0, I1, I2 in the respective transaction. The same operation should be performed with the remaining 

items j, where j N. If the number of 1’s in the result is less than Min_num then divide the itemset into two. 

3. Fast Updating Frequent Itemsets Algorithm (FUFIA) 

 In order to gain the frequent itemsets when the database or support threshold is changed, which is the updating 

strategy of TIMV, we know the process of gaining itemset matrix is dynamic, so we should only modify the primary 

itemsets matrix when the database is changed: If new transaction data are added, we should consider it as a part of 

primary data. So the primary itemsets matrix should be modified. The length of bit vector should be increased and 
the corresponding bits should be set. If we want to delete the value of M [Ii,Ij,Ik] decrease rather than increase, and 

lessen the length of bit vector. 

3.1 Limitation: 

The above algorithm occupies more space and the algorithm is having some complexity to proceed. This can be 

used for handling only 9 transactions. 

3.2 Clustering and Graph-based Association Rule (CGAR)   
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Although, the cluster based Association Rule (CBAR) algorithm [10] outperforms Apriori as it scans the database 

only once, CGAR has been proposed using graph data structure to provide efficiency which simplifies the process of 
generating frequent k-itemsets, where k 2.

CGAR scans the database only once to build a cluster table as a two-dimensional array where the columns 

represent items and the rows represent transaction ID’s. The contents of the table are 0 and 1’s where 1 is to indicate 

the presence of an item and 0 is to indicate the absence of an item.  

Frequent 1-itemsets are determined by counting the number of 1’s in the cluster table. If its threshold isn’t less 

than the minimum threshold then it  is considered further for building the graph otherwise discarded.  Frequent 1-

itemsets are recorded by providing a sequential number to each item in order to construct the graph. The graph is 

constructed by doing logical AND operation between each pair of consecutive frequent 1-itemsets <itemi, itemj> | 

i<j, if the number of 1’s is greater than or equal to minimum support threshold, a directed edge is drawn from itemi

to itemj which is repeated for all frequent 1-itemsets. Frequent 2-itemsets are generated from the graph and it will 

direct to find the frequent k-itemsets such as k 3.

3.3 Limitation 
This algorithm will work for Boolean Association rules only. The graph has to be constructed for each and every 

cluster table which is tedious process. 

4. Cluster based Bit Vector Association rule Mining (CBVAR) Algorithm 

The above mentioned issues are reduced by using the combination of Clustering and Bit Vector concepts. This 

new algorithm is named Cluster based Bit Vector Association Rule Mining.  

CBVAR scans the database of transactions only once to build the clustering table as a two dimensional array 

where the columns represent items and the rows represent Transaction ID’s (TID).  The table consists of bits (0 or 1) 

to indicate the presence or absence of an item. 1 indicates the presence of an item and 0 indicates the absence of an 

item. The cluster table now consists of bit vectors for all individual items. The number of 1’s indicates the presence 

of an item in a transaction. The number of 1’s multiplied by total number of items gives the support threshold of 

each item. 

 If the support threshold is greater than the minimum support threshold then the item is considered frequent 1-

itemset. The cluster table is updated with only frequent items.  

Frequent 2-itemset is determined by doing logical AND between each pair of consecutive frequent 1-itemset.  
Frequent 3-itemset is determined by doing logical AND between each pair of consecutive frequent 2-itemset. 

Now, the cluster table is updated (i.e.) all the transactions with 2-itemsets are removed and the cluster table will 

consist of transactions with k 3, where k is the total number of items. Thus after applying logical AND, the cluster 

table is updated till N-1 transactions where N is the total number of transactions. 

We provide an example to understand the algorithm. Let the minimum threshold be 45%. There are 18 

transactions with 5 different items in the transaction database shown in Table 1. All the items are first converted into 

bit vectors and stored as shown in table 2. 

In our example, the maximum transaction length is 4 where, length indicates the number of items and hence there 
will be four clusters in a cluster table. Since, there is no transaction with length 1; the total number of clusters will 
be 3. 

4.1 Proposed Algorithm 

Input: Temporal Database, TD 

Output: Frequent Itemsets 

begin 

        Form a cluster table from given transaction database 

        Convert the given transaction database into bit vectors 
        Get the minimum threshold, min_thres 

        Determine the frequent 1-itemsets 
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        begin 

               Calculate the support count for each bit vector 
                begin 

                      Implement i loop from 1 to NI times 

                      Implement j loop from 1 to NT times 

                         If itembit = 1 

                                          Increment the count of item i 

                         end 

                        Sup_count = count*NI 

                        if sup_count>min_thresh 

                                    Print i as frequent 1-itemset 

                                    Return L1

                       end  
                       else 

                                    Delete i 

                       end 

                end 

        end 

        Determine frequent k-itemsets 

        Begin 

                  Lk: frequent itemset of size k 

                  Ck: candidate itemset of size k 

                  Generate candidate itemset, ck by joining lk-1with itself where k=2 

                  Set the minimum threshold to new threshold, new_thresh if needed  

                  Make logical AND (^) between each pair of lk-1 itemsets 
                 Calculate the support count, sup_count for each frequent-1itemset 

                if 

                     Sup_count >min_thresh 

                     Return Lx

                     Delete the cluster with k-1 items 

                end 

        end 

end 

4.2 Implementation of CBVAR: Consider the following medicine table as transaction database. 

Table 1: Transaction Database

TID ITEMS DATE TID ITEMS DATE 

T1 Benoquin, Dialyte ,Ibuprofen <02,04,09> T10 Benoquin, Nutradrops <07,04,09> 

T2 Dialyte, Ibuprofen <02,04,09> T11 Benoquin, Dialyte, Nutradrops <07,04,09> 

T3 Ibuprofen, Veetids <03,04,09> T12 Ibuprofen, Veetids <09,04,09> 

T4 Benoquin ,Ibuprofen, Nutradrops,Veetids <03,04,09> T13 Benoquin, Dialyte, Ibuprofen,Veetids <11,04,09> 

T5 Benoquin, Ibuprofen <03,04,09> T14 Ibuprofen, Nutradrops <13,04,09> 

T6 Benoquin, Ibuprofen, Veetids <04,04,09> T15 Dialyte, Ibuprofen, Nutradrops <17,04,09> 

T7 Ibuprofen, Veetids <05,04,09> T16 Benoquin, Nutradrops,Veetids <19,04,09> 

T8 Dialyte, Ibuprofen, Veetids <06,04,09> T17 Dialyte, Nutradrops,Veetids <20,04,09> 

T9 Benoquin, Dialyte, Ibuprofen, Nutradrops <06,04,09> T18 Benoquin, Ibuprofen, Nutradrops <26,04,09> 
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The bit vectors for the items Benoquin, Dialyte, Ibuprofen, Nutradrops and Veetids are as follows

(based on table 2): 

BVBenoquin = 011010011010101111   BVDialyte = 100000010111010011 

BVIbuprofen = 101101111101001111   BVNutradrops = 000010100011111110 

BVVeetids = 010101001100110101 

Support threshold for an item = (Number of 1’s) * (Total Number of items)  

Support threshold for items Benoquin, Dialyte, Ibuprofen, Nutradrops and Veetids are: 

BVBenoquin = 11 * 5 = 55%  BVDialyte = 8 * 5 = 40% 

BVIbuprofen = 13 * 5 = 65%  BVNutradrops = 9 * 5 = 45% 

BVVeetids = 9 * 5 = 45% 

For our convenience, Let us replace these real time items Benoquin, Dialyte, Ibuprofen, Nutradrops and Veetids 

with A,B,C,D and E respectively in tables.  

The support threshold of item B(Dialyte) is less than 45% and hence removed from the database. Since, the 

support thresholds of A(Benoquin), C(Ibuprofen), D(Nutradrops) and E(Veetids) are greater than are equal to 

45% the frequent 1-itemsets are A(Benoquin), C(Ibuprofen), D(Nutradrops) and E(Veetids) and  is  shown  in  

Table 3. 

Table:2 C1uster table for the data base in Table 1 

Table 3: Frequent 1-itemsets 

Item / 

Transaction 
A B C D E Date 

T2 0 1 1 0 0 <02,04,09> 

T3 1 0 0 0 1 <03,04,09> 

T5 1 0 1 0 0 <03,04,09> 

T7 0 0 1 0 1 <05,04,09> 

T10 1 0 0 1 0 <07,04,09> 

T12 0 0 1 0 1 <09,04,09> 

T14 0 0 1 1 0 <13,04,09> 

T1 1 1 1 0 0 <02,04,09> 

T6 1 0 1 0 1 <04,04,09> 

T8 0 1 1 0 1 <06,04,09> 

T11 1 1 0 1 0 <07,04,09> 

T15 0 1 1 1 0 <17,04,09> 

T16 1 0 0 1 1 <19,04,09> 

T17 0 1 0 1 1 <20,04,09> 

T18 1 0 1 1 0 <26,04,09> 

T4 1 0 1 1 1 <03,04,09> 

T9 1 1 1 1 0 <06,04,09> 

T13 1 1 1 0 1 <11,04,09> 
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Table 4: Table with all 2-itemsets 

Item /Transaction {A, C} {A, D} {A,E} {C, D} {C,E} {D,E} Date 

T2

T3

0

0

0

0

0

1

0

0

0

0

0

0

<02,04,09> 

<03,04,09> 

T5 1 0 0 0 0 0 <03,04,09> 

T7 0 0 0 0 1 0 <05,04,09> 

T10 0 1 0 0 0 0 <07,04,09> 

T12 0 0 0 0 1 0 <09,04,09> 

T14 0 0 0 1 0 0 <13,04,09> 

T1 1 0 0 0 0 0 <02,04,09> 

T6 1 0 1 0 1 0 <04,04,09> 

T8 0 0 0 0 1 0 <06,04,09> 

T11 0 1 0 0 0 0 <07,04,09> 

T15 0 0 0 1 0 0 <17,04,09> 

T16 0 1 1 0 0 1 <19,04,09> 

T17 0 0 0 0 0 1 <20,04,09> 

T18 1 1 0 1 0 0 <26,04,09> 

T4 1 1 1 1 1 1 <03,04,09> 

T9 1 1 0 1 0 0 <06,04,09> 

T13 1 0 1 0 1 0 <11,04,09> 

Table 5: Frequent 2-itemsets 

Item /Transaction {A, C} {A, D} {C, E} Date 

Item / 

Transaction 
A C D E Date 

T2 0 1 0 0 <02,04,09> 

T3 1 0 0 1 <03,04,09> 

T5 1 1 0 0 <03,04,09> 

T7 0 1 0 1 <05,04,09> 

T10 1 0 1 0 <07,04,09> 

T12 0 1 0 1 <09,04,09> 

T14 0 1 1 0 <13,04,09> 

T1 1 1 0 0 <02,04,09> 

T6 1 1 0 1 <04,04,09> 

T8 0 1 0 1 <06,04,09> 

T11 1 0 1 0 <07,04,09> 

T15 0 1 1 0 <17,04,09> 

T16 1 0 1 1 <19,04,09> 

T17 0 0 1 1 <20,04,09> 

T18 1 1 1 0 <26,04,09> 

T4 1 1 1 1 <03,04,09> 

T9 1 1 1 0 <06,04,09> 

T13 1 1 0 1 <11,04,09> 
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T2

T3

0

0

0

0

0

0

<02,04,09> 

<03,04,09> 

T5 1 0 0 <03,04,09> 

T7 0 0 1 <05,04,09> 

T10 0 1 0 <07,04,09> 

T12 0 0 1 <09,04,09> 

T14 0 0 0 <13,04,09> 

T1 1 0 0 <02,04,09> 

T6 1 0 1 <04,04,09> 

T8 0 0 1 <06,04,09> 

T11 0 1 0 <07,04,09> 

T15 0 0 0 <17,04,09> 

T16 0 1 0 <19,04,09> 

T17 0 0 0 <20,04,09> 

T18 1 1 0 <26,04,09> 

T4 1 1 1 <03,04,09> 

T9 1 1 0 <06,04,09> 

T13 1 0 1 <11,04,09> 

All the candidates with 2-itemsets are shown in Table 4. Frequent 2-itemsets are determined by doing Logical 

AND between each pair of frequent 1- itemsets. Let the threshold support be 30%.  For example, let us find the 

Logical AND between A and C. In Transaction T2 the Logical AND of 0 and 1 is 0, in Transaction T3 the Logical 

AND of 1 and 0 is 0, in Transaction T5 the Logical AND of 1 and 1 is 1, and so on.  

Thus, the frequent 2-itemsets will be {Benoquin, Ibuprofen},  {Benoquin, Nutradrops}  and  {Ibuprofen, 

Veetids} as shown in Table 5. Since, there are no transactions with 1 item on updating the table will yield the same 

result.   

Frequent 3-itemsets are obtained by doing Logical AND between each pair of frequent 2-itemsets. Logical AND 

is done similarly as shown in finding 2-itemsets. Let the threshold be 15%. The frequent 3-itemsets obtained are 

{Benoquin, Ibuprofen, Nutradrops} and {Benoquin, Ibuprofen, Veetids}. Now the table is updated by deleting 

all the 2-itemsets as shown in table 6. 

Table 6:  Frequent 3-Itemsets 

Item/ 

Transaction
{A, C, D} {A, C, E} Date 

T1 0 0 <02,04,09> 

T6 0 1 <04,04,09> 

T8 0 0 <06,04,09> 

T11 0 0 <07,04,09> 

T15 0 0 <17,04,09> 

T16 0 0 <19,04,09> 

T17 0 0 <20,04,09> 

T18 1 0 <26,04,09> 

T4 1 1 <03,04,09> 

T9 1 0 <06,04,09> 

T13 0 1 <11,04,09> 
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Frequent 4 itemset is {Benoquin, Ibuprofen, Nutradrops, Veetids} whose support threshold is 5% which is less 

than the minimum threshold. Hence, the algorithm terminates with frequent 3-itemsets. In real time, thousands of 
data will be there. Hence, this algorithm reduces space and works for N transactions. 

5. Experimental Results: 

Figure1 shows a comparison of results of Apriori, CGAR and CBVAR algorithms for various values of 

minimum thresholds. From the diagram it can be seen that the time taken for CBVAR is considerably reduced. 

Moreover, the Space occupied by CBVAR is also very less when compared with Apriori algorithm and CGAR 

algorithm. 

Figure 1: Comparison of Execution Times of Apriori, CGAR and CBVAR 

Time complexity  

Apriori algorithm 

The apriori algorithm visits the lattice of itemsets in a level-wise fashion, as shown in Figure 2 and Algorithm: 

Apriori. Thus it is a breadth first-search or BFS procedure. At each level the data base is scanned to determine the 

support of items in the candidate itemset Ck. 

Apriori Algorithm: 

C1 = A(X) is the set of all one-itemsets, k = 1 

while Ck 0; do 

scan database to determine support of all ay with y Ck

extract frequent itemsets from Ck into Lk

generate Ck+1

k := k + 1.  

end while 

The major determining parameter for the complexity of the algorithm is  C k mkk where mk = Ck .
It is often pointed out that much of the time is spent in dealing with pairs of items. We know that m1 = d as one 

needs to consider all single items. Furthermore, one would not have any items which alone are not frequent and so 

one has m2 = d(d-1) /2. Thus we get the lower bound for C: C  m1 + 2m2 = d2.
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As one sees in practice that this is a large portion of the total computations one has a good approximation C  d2.

Including   the dependence on the data size we get for the time complexity of apriori:   T = O(d
2
n).

Thus we have scalability in the data size but quadratic dependence on the dimension or number of attributes.

Consider the first (row-wise) storage where T  d2n . If we have d = 10, 000 items and n = 1,000, 000 data records 

and the  speed of  the  computations  is  such that  = 1ns the apriori algorithm would require 105 seconds  which  is  

around 30 hours, more than one day.  

CBVAR 

The complexity of the algorithm is C k mkk where mk = Ck .

We know that m1 = d as one needs to consider all single items. Since, it requires only one database scan, and also the 

database is updated after finding the frequent itemsets, m2=d-1. Thus we get the lower bound for C:

C  m1 + 2m2 = d. 

So, the time complexity of CBVAR is less than that of apriori algorithm which is T = O(dn).

If we have d = 10, 000 items and n = 1,000, 000 data records and the speed of the computations is such that =

1ns the apriori algorithm would require 10 seconds. Thus the time spent for the algorithm is clearly considerable.

6. Conclusions and Future Works 

The existing CGAR uses more space and consumes time. However in some applications it is necessary to handle 

large volume of data. In such situations our new algorithms provides better performance in terms of time and space 
complexity when it is used with temporal database for mining frequent itemises. Since our CBVAR uses only single 

scan, the number of database scans are reduced and hence the computation time taken is also very less. By taking 

synthetic data, the efficiency of the algorithm is explained theoretically and experimentally. Future work in this 

direction could be the use of association rules in past data to predict the future. 
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