
Procedia Computer Science 00 (2010) 000–000

Procedia
Computer
Science

www.elsevier.com/locate/procedia

WCIT-2010

Cluster based bit vector mining algorithm for finding frequent

itemsets in temporal databases

M. Krishnamurthy
a
*, A. Kannan

b
, R. Baskaran

c
, M. Kavitha

d

aAssistant Professor,Department of Computer Applications,Sri Venkateswara College of Engineering,Sriperumbudur,602105,India
bProfessor,Department of Information Science and Technology,AnnaUniversity,Chennai,600025,India

cAssistant Professor,Department of Computer Science and Engineering,AnnaUniversity,Chennai,600025,India
dFinal Year MCA Student,Sri Venkateswara College of Engineering,Sriperumbudur,602105,India

Abstract

In this paper, we introduce an efficient algorithm using a new technique to find frequent itemsets from a huge set of itemsets
called Cluster based Bit Vectors for Association Rule Mining (CBVAR). In this work, all the items in a transaction are converted
into bits (0 or 1). A cluster is created by scanning the database only once. Then frequent 1-itemsets are extracted directly from the
cluster table. Moreover, frequent k-itemsets, where k 2 are obtained by using Logical AND between the items in a cluster table.
This approach reduces main memory requirement since it considers only a small cluster at a time and as scalable for any large

size of database. The overall performance of this method is significantly better than that of the previously developed algorithms

for effective decision making.

Keywords : Frequent Itemsets;Association Rule; Clustering; Cluster Table; Bit Vector; Temporal Database

1. Introduction

1.1 Data Mining
Data mining is the key step in Knowledge Discovery (KDD) process. It is increasingly becoming important tool

in extracting interesting knowledge from large databases. Moreover, many data mining problems involve temporal

aspects, with examples ranging from engineering to scientific research, finance and medicine. Temporal data mining

is an extension of data mining which deals with temporal data. In this paper, we consider temporal database for

finding out frequent items.

1.2 Frequent Itemsets

Finding out frequent itemsets is an important issue in many data management systems. The discovery of
association rules has been discussed in the past using two steps namely finding the frequent itemsets and generating

association rules [1]. Though Apriori is the basis for all rule mining algorithms. The database in Apriori has to be

repeatedly scanned and large number of candidates has to be generated which is the major limitation of this Apriori

algorithm. Therefore it is necessary to propose much faster algorithms to address the above issue.

* M.Krishnamurthy. Tel.: +919444349150; fax: +91-44-27162462

E-mail address: mkrish@svce.ac.in

Procedia Computer Science 3 (2011) 513–523

www.elsevier.com/locate/procedia

1877-0509 c⃝ 2010 Published by Elsevier Ltd.

doi:10.1016/j.procs.2010.12.086

c⃝ 2010 Published by Elsevier Ltd.

Selection and/or peer-review under responsibility of the Guest Editor.

Open access under CC BY-NC-ND license.

Open access under CC BY-NC-ND license.

http://www.elsevier.com/locate/procedia
http://dx.doi.org/10.1016/j.procs.2010.12.086

1.3 Clustering

In a given set of data items, Clustering is used to partition a data set into a set of classes such that items with

similar characteristics are grouped together. Clustering helps to make faster decisions and to explore data efficiently.

Moreover, the process of creating clusters is iterative, which is time consuming and requires more space. Hence
clustering along with bit vector can help to solve the above issues which are prominent in iterative methods.

1.4 Proposed Work

In order to reduce the temporal and space constraint as well as to address scalability, we introduce a new
algorithm called Cluster based Bit Vector Association Rule Mining algorithm (CBVAR) to perform temporal

mining in temporal database which is basically different from all the previous algorithms.

The main advantage of this algorithm is that it is scalable with all types of databases regardless of their sizes.

Moreover, it is easy to implement as it uses simple cluster and bit vector concepts. However, it is efficient since it

requires less memory and time to generate frequent itemsets. This proposed algorithm occupies less space because it

uses Bit Vectors instead of full data.

1.5 Organization of Paper

The remainder of this paper is organized as follows: Section 2 explain the Temporal Mining and related works,

Section 3, explains the Fast Updating Frequent Itemsets Algorithm (FUFIA) and Clustering and Graph based

Association Rule (CGAR). Section 4, discusses our algorithm called Clustering and Bit Vector based Association

Rule Mining (CBVAR). Section 5, provides the performance of these algorithms by showing the experimental
results graphically and using tables. Section 6 gives the conclusion on this work and suggests some possible future

works.

2. Temporal Mining

Temporal data mining is an extension of data mining which deals with temporal data. Mining temporal data poses

more challenges than mining static data.

2.1 Related Works

There are many works in the literature that discuss about Association rules, Temporal Mining and Frequent

Itemsets. The Association Rule mining raised by R.Agarwal [1] is an important research in data mining field. His

Apriori algorithm can discover meaningful itemsets and build association rules. However, a large number of

candidate sets are generated and the database needs repeated scanning.

 In order to reduce the database scanning various studies were undergone. Further studies in data mining have

presented many efficient algorithms for discovering association rules. In improved Apriori algorithm [4], the
mining efficiency is very unsatisfactory when memory for database is considered.

In the past, the omission of time dimension in association rule was very clearly mentioned by Banu Ozden et

al[11]. Different strategies were proposed after Apriori as in FP-growth [2], which outperforms all candidate

generations but still have problems in the case of no common prefixes within the data items. Temporal FP tree uses

divide and conquer technique for construction and traversing of tree which is used to decompose the mining task

into a set of smaller task which reduces the search space. Howver, Temporal FP Tree technique is better only when

the data is dense.. Paper [12] is useful for the retailer to create its own strategy as per the requirement of time. But,

the performance is very less.

In paper [7], mining frequent itemsets using Matrix reduces scanning cost and execution times, but the algorithm

works only for nine transactions. The partition algorithm [8], to further improve the efficiency, it does so by

reducing the number of database scans, however, considerable time is still wasted in scanning infrequent candidate
itemsets. In [14], the proposed Boolean algorithm mines association rules in two steps. In the first step logical OR

and AND operations are used to compute frequent itemsets. In the second step, logical AND and XOR operations

are applied to derive all interesting association rules based on the computed frequent itemsets. But the computational

time is more as well as it occupies more memory.

Finally, Clustering and Graph based Association Rule [9] was proposed in which a cluster table is created by

scanning the database and then the transactions are further clustered into clusters based on their length. Even though,

the algorithm is scalable much time is wasted in constructing graphs for each cluster, which reduces the

performance.

514 M. Krishnamurthy et al. / Procedia Computer Science 3 (2011) 513–523

2.2 Limitation of Existing Works

In the existing works [10][11][13], though many algorithms were proposed to reduce space and efficiency a
considerable disadvantage was addressed. Most of the algorithms occupied more space or generate many candidate

itemsets. Comparing with the previous work our algorithm CBVAR reduces these problems and the Performance is

considerably increased. Hence, the scanning cost is also reduced by using our new proposed algorithm.

 2.3 Three Dimensional Itemset Matrix Experiment: Bit Vector:

Let BVi = (bv1, bv2,….bvN) be Bit Vector, where N is the number of transactions in database D. If an item i is

present in the transaction represent it as 1 else 0. The number of 1’s shows the presence of an item in the transaction.

 2.3.1 Matrix Formation:

The values of M [Ii, Ij, Ik] are determined by concurrence number of (Ii, Ij) and it is stored. The following

algorithm explains to find the matrix possibilities.

Algorithm:

For each transaction in S find its length L.

For each value of x find the substring P=substring (S, x) where x = 1,2,....L.

For each value of y find the substring Q=substring (S, y) where y = x+1…L.

Increase the count of M [P, Q, 1].

For each value of z find the substring R=substring (S, z) where z = y+1…L.

Increase the count of M [P, Q, R].

2.3.2 Finding Frequent Itemsets:

Algorithm:
1. For every value of M [Ii, Ij, I1], if M [Ii, Ij, I1] Min_num then store v1v2 in L[a], where i=1 to N, j=i+1 to

N and a is the length of the array. If count of M [Ii, Ij, Ik] Min_num then append Ik, where k=j+1 else if Ii,

Ij is in some one of L[a] then divide L[a] into two parts. Thus step1 finds the temporal frequent itemsets

which has 2, 3, 4, etc itemsets values.

2. For every temporal item in L[] the length of the array should be greater than 3, now perform AND

operation on BV I0, BV I1, BV I2 where I0, I1, I2 is the index of the first three characters of [i]. BV I0, BVI1,

BVI2 are the bit vector corresponding to the three chars. The result of this operation shows the occurrence

of item I0, I1, I2 in the respective transaction. The same operation should be performed with the remaining

items j, where j N. If the number of 1’s in the result is less than Min_num then divide the itemset into two.

3. Fast Updating Frequent Itemsets Algorithm (FUFIA)

 In order to gain the frequent itemsets when the database or support threshold is changed, which is the updating

strategy of TIMV, we know the process of gaining itemset matrix is dynamic, so we should only modify the primary

itemsets matrix when the database is changed: If new transaction data are added, we should consider it as a part of

primary data. So the primary itemsets matrix should be modified. The length of bit vector should be increased and
the corresponding bits should be set. If we want to delete the value of M [Ii,Ij,Ik] decrease rather than increase, and

lessen the length of bit vector.

3.1 Limitation:

The above algorithm occupies more space and the algorithm is having some complexity to proceed. This can be

used for handling only 9 transactions.

3.2 Clustering and Graph-based Association Rule (CGAR)

M. Krishnamurthy et al. / Procedia Computer Science 3 (2011) 513–523 515

Although, the cluster based Association Rule (CBAR) algorithm [10] outperforms Apriori as it scans the database

only once, CGAR has been proposed using graph data structure to provide efficiency which simplifies the process of
generating frequent k-itemsets, where k 2.

CGAR scans the database only once to build a cluster table as a two-dimensional array where the columns

represent items and the rows represent transaction ID’s. The contents of the table are 0 and 1’s where 1 is to indicate

the presence of an item and 0 is to indicate the absence of an item.

Frequent 1-itemsets are determined by counting the number of 1’s in the cluster table. If its threshold isn’t less

than the minimum threshold then it is considered further for building the graph otherwise discarded. Frequent 1-

itemsets are recorded by providing a sequential number to each item in order to construct the graph. The graph is

constructed by doing logical AND operation between each pair of consecutive frequent 1-itemsets <itemi, itemj> |

i<j, if the number of 1’s is greater than or equal to minimum support threshold, a directed edge is drawn from itemi

to itemj which is repeated for all frequent 1-itemsets. Frequent 2-itemsets are generated from the graph and it will

direct to find the frequent k-itemsets such as k 3.

3.3 Limitation
This algorithm will work for Boolean Association rules only. The graph has to be constructed for each and every

cluster table which is tedious process.

4. Cluster based Bit Vector Association rule Mining (CBVAR) Algorithm

The above mentioned issues are reduced by using the combination of Clustering and Bit Vector concepts. This

new algorithm is named Cluster based Bit Vector Association Rule Mining.

CBVAR scans the database of transactions only once to build the clustering table as a two dimensional array

where the columns represent items and the rows represent Transaction ID’s (TID). The table consists of bits (0 or 1)

to indicate the presence or absence of an item. 1 indicates the presence of an item and 0 indicates the absence of an

item. The cluster table now consists of bit vectors for all individual items. The number of 1’s indicates the presence

of an item in a transaction. The number of 1’s multiplied by total number of items gives the support threshold of

each item.

 If the support threshold is greater than the minimum support threshold then the item is considered frequent 1-

itemset. The cluster table is updated with only frequent items.

Frequent 2-itemset is determined by doing logical AND between each pair of consecutive frequent 1-itemset.
Frequent 3-itemset is determined by doing logical AND between each pair of consecutive frequent 2-itemset.

Now, the cluster table is updated (i.e.) all the transactions with 2-itemsets are removed and the cluster table will

consist of transactions with k 3, where k is the total number of items. Thus after applying logical AND, the cluster

table is updated till N-1 transactions where N is the total number of transactions.

We provide an example to understand the algorithm. Let the minimum threshold be 45%. There are 18

transactions with 5 different items in the transaction database shown in Table 1. All the items are first converted into

bit vectors and stored as shown in table 2.

In our example, the maximum transaction length is 4 where, length indicates the number of items and hence there
will be four clusters in a cluster table. Since, there is no transaction with length 1; the total number of clusters will
be 3.

4.1 Proposed Algorithm

Input: Temporal Database, TD

Output: Frequent Itemsets

begin

 Form a cluster table from given transaction database

 Convert the given transaction database into bit vectors
 Get the minimum threshold, min_thres

 Determine the frequent 1-itemsets

516 M. Krishnamurthy et al. / Procedia Computer Science 3 (2011) 513–523

 begin

 Calculate the support count for each bit vector
 begin

 Implement i loop from 1 to NI times

 Implement j loop from 1 to NT times

 If itembit = 1

 Increment the count of item i

 end

 Sup_count = count*NI

 if sup_count>min_thresh

 Print i as frequent 1-itemset

 Return L1

 end
 else

 Delete i

 end

 end

 end

 Determine frequent k-itemsets

 Begin

 Lk: frequent itemset of size k

 Ck: candidate itemset of size k

 Generate candidate itemset, ck by joining lk-1with itself where k=2

 Set the minimum threshold to new threshold, new_thresh if needed

 Make logical AND (^) between each pair of lk-1 itemsets
 Calculate the support count, sup_count for each frequent-1itemset

 if

 Sup_count >min_thresh

 Return Lx

 Delete the cluster with k-1 items

 end

 end

end

4.2 Implementation of CBVAR: Consider the following medicine table as transaction database.

Table 1: Transaction Database

TID ITEMS DATE TID ITEMS DATE

T1 Benoquin, Dialyte ,Ibuprofen <02,04,09> T10 Benoquin, Nutradrops <07,04,09>

T2 Dialyte, Ibuprofen <02,04,09> T11 Benoquin, Dialyte, Nutradrops <07,04,09>

T3 Ibuprofen, Veetids <03,04,09> T12 Ibuprofen, Veetids <09,04,09>

T4 Benoquin ,Ibuprofen, Nutradrops,Veetids <03,04,09> T13 Benoquin, Dialyte, Ibuprofen,Veetids <11,04,09>

T5 Benoquin, Ibuprofen <03,04,09> T14 Ibuprofen, Nutradrops <13,04,09>

T6 Benoquin, Ibuprofen, Veetids <04,04,09> T15 Dialyte, Ibuprofen, Nutradrops <17,04,09>

T7 Ibuprofen, Veetids <05,04,09> T16 Benoquin, Nutradrops,Veetids <19,04,09>

T8 Dialyte, Ibuprofen, Veetids <06,04,09> T17 Dialyte, Nutradrops,Veetids <20,04,09>

T9 Benoquin, Dialyte, Ibuprofen, Nutradrops <06,04,09> T18 Benoquin, Ibuprofen, Nutradrops <26,04,09>

M. Krishnamurthy et al. / Procedia Computer Science 3 (2011) 513–523 517

The bit vectors for the items Benoquin, Dialyte, Ibuprofen, Nutradrops and Veetids are as follows

(based on table 2):

BVBenoquin = 011010011010101111 BVDialyte = 100000010111010011

BVIbuprofen = 101101111101001111 BVNutradrops = 000010100011111110

BVVeetids = 010101001100110101

Support threshold for an item = (Number of 1’s) * (Total Number of items)

Support threshold for items Benoquin, Dialyte, Ibuprofen, Nutradrops and Veetids are:

BVBenoquin = 11 * 5 = 55% BVDialyte = 8 * 5 = 40%

BVIbuprofen = 13 * 5 = 65% BVNutradrops = 9 * 5 = 45%

BVVeetids = 9 * 5 = 45%

For our convenience, Let us replace these real time items Benoquin, Dialyte, Ibuprofen, Nutradrops and Veetids

with A,B,C,D and E respectively in tables.

The support threshold of item B(Dialyte) is less than 45% and hence removed from the database. Since, the

support thresholds of A(Benoquin), C(Ibuprofen), D(Nutradrops) and E(Veetids) are greater than are equal to

45% the frequent 1-itemsets are A(Benoquin), C(Ibuprofen), D(Nutradrops) and E(Veetids) and is shown in

Table 3.

Table:2 C1uster table for the data base in Table 1

Table 3: Frequent 1-itemsets

Item /

Transaction
A B C D E Date

T2 0 1 1 0 0 <02,04,09>

T3 1 0 0 0 1 <03,04,09>

T5 1 0 1 0 0 <03,04,09>

T7 0 0 1 0 1 <05,04,09>

T10 1 0 0 1 0 <07,04,09>

T12 0 0 1 0 1 <09,04,09>

T14 0 0 1 1 0 <13,04,09>

T1 1 1 1 0 0 <02,04,09>

T6 1 0 1 0 1 <04,04,09>

T8 0 1 1 0 1 <06,04,09>

T11 1 1 0 1 0 <07,04,09>

T15 0 1 1 1 0 <17,04,09>

T16 1 0 0 1 1 <19,04,09>

T17 0 1 0 1 1 <20,04,09>

T18 1 0 1 1 0 <26,04,09>

T4 1 0 1 1 1 <03,04,09>

T9 1 1 1 1 0 <06,04,09>

T13 1 1 1 0 1 <11,04,09>

518 M. Krishnamurthy et al. / Procedia Computer Science 3 (2011) 513–523

Table 4: Table with all 2-itemsets

Item /Transaction {A, C} {A, D} {A,E} {C, D} {C,E} {D,E} Date

T2

T3

0

0

0

0

0

1

0

0

0

0

0

0

<02,04,09>

<03,04,09>

T5 1 0 0 0 0 0 <03,04,09>

T7 0 0 0 0 1 0 <05,04,09>

T10 0 1 0 0 0 0 <07,04,09>

T12 0 0 0 0 1 0 <09,04,09>

T14 0 0 0 1 0 0 <13,04,09>

T1 1 0 0 0 0 0 <02,04,09>

T6 1 0 1 0 1 0 <04,04,09>

T8 0 0 0 0 1 0 <06,04,09>

T11 0 1 0 0 0 0 <07,04,09>

T15 0 0 0 1 0 0 <17,04,09>

T16 0 1 1 0 0 1 <19,04,09>

T17 0 0 0 0 0 1 <20,04,09>

T18 1 1 0 1 0 0 <26,04,09>

T4 1 1 1 1 1 1 <03,04,09>

T9 1 1 0 1 0 0 <06,04,09>

T13 1 0 1 0 1 0 <11,04,09>

Table 5: Frequent 2-itemsets

Item /Transaction {A, C} {A, D} {C, E} Date

Item /

Transaction
A C D E Date

T2 0 1 0 0 <02,04,09>

T3 1 0 0 1 <03,04,09>

T5 1 1 0 0 <03,04,09>

T7 0 1 0 1 <05,04,09>

T10 1 0 1 0 <07,04,09>

T12 0 1 0 1 <09,04,09>

T14 0 1 1 0 <13,04,09>

T1 1 1 0 0 <02,04,09>

T6 1 1 0 1 <04,04,09>

T8 0 1 0 1 <06,04,09>

T11 1 0 1 0 <07,04,09>

T15 0 1 1 0 <17,04,09>

T16 1 0 1 1 <19,04,09>

T17 0 0 1 1 <20,04,09>

T18 1 1 1 0 <26,04,09>

T4 1 1 1 1 <03,04,09>

T9 1 1 1 0 <06,04,09>

T13 1 1 0 1 <11,04,09>

M. Krishnamurthy et al. / Procedia Computer Science 3 (2011) 513–523 519

T2

T3

0

0

0

0

0

0

<02,04,09>

<03,04,09>

T5 1 0 0 <03,04,09>

T7 0 0 1 <05,04,09>

T10 0 1 0 <07,04,09>

T12 0 0 1 <09,04,09>

T14 0 0 0 <13,04,09>

T1 1 0 0 <02,04,09>

T6 1 0 1 <04,04,09>

T8 0 0 1 <06,04,09>

T11 0 1 0 <07,04,09>

T15 0 0 0 <17,04,09>

T16 0 1 0 <19,04,09>

T17 0 0 0 <20,04,09>

T18 1 1 0 <26,04,09>

T4 1 1 1 <03,04,09>

T9 1 1 0 <06,04,09>

T13 1 0 1 <11,04,09>

All the candidates with 2-itemsets are shown in Table 4. Frequent 2-itemsets are determined by doing Logical

AND between each pair of frequent 1- itemsets. Let the threshold support be 30%. For example, let us find the

Logical AND between A and C. In Transaction T2 the Logical AND of 0 and 1 is 0, in Transaction T3 the Logical

AND of 1 and 0 is 0, in Transaction T5 the Logical AND of 1 and 1 is 1, and so on.

Thus, the frequent 2-itemsets will be {Benoquin, Ibuprofen}, {Benoquin, Nutradrops} and {Ibuprofen,

Veetids} as shown in Table 5. Since, there are no transactions with 1 item on updating the table will yield the same

result.

Frequent 3-itemsets are obtained by doing Logical AND between each pair of frequent 2-itemsets. Logical AND

is done similarly as shown in finding 2-itemsets. Let the threshold be 15%. The frequent 3-itemsets obtained are

{Benoquin, Ibuprofen, Nutradrops} and {Benoquin, Ibuprofen, Veetids}. Now the table is updated by deleting

all the 2-itemsets as shown in table 6.

Table 6: Frequent 3-Itemsets

Item/

Transaction
{A, C, D} {A, C, E} Date

T1 0 0 <02,04,09>

T6 0 1 <04,04,09>

T8 0 0 <06,04,09>

T11 0 0 <07,04,09>

T15 0 0 <17,04,09>

T16 0 0 <19,04,09>

T17 0 0 <20,04,09>

T18 1 0 <26,04,09>

T4 1 1 <03,04,09>

T9 1 0 <06,04,09>

T13 0 1 <11,04,09>

520 M. Krishnamurthy et al. / Procedia Computer Science 3 (2011) 513–523

Frequent 4 itemset is {Benoquin, Ibuprofen, Nutradrops, Veetids} whose support threshold is 5% which is less

than the minimum threshold. Hence, the algorithm terminates with frequent 3-itemsets. In real time, thousands of
data will be there. Hence, this algorithm reduces space and works for N transactions.

5. Experimental Results:

Figure1 shows a comparison of results of Apriori, CGAR and CBVAR algorithms for various values of

minimum thresholds. From the diagram it can be seen that the time taken for CBVAR is considerably reduced.

Moreover, the Space occupied by CBVAR is also very less when compared with Apriori algorithm and CGAR

algorithm.

Figure 1: Comparison of Execution Times of Apriori, CGAR and CBVAR

Time complexity

Apriori algorithm

The apriori algorithm visits the lattice of itemsets in a level-wise fashion, as shown in Figure 2 and Algorithm:

Apriori. Thus it is a breadth first-search or BFS procedure. At each level the data base is scanned to determine the

support of items in the candidate itemset Ck.

Apriori Algorithm:

C1 = A(X) is the set of all one-itemsets, k = 1

while Ck 0; do

scan database to determine support of all ay with y Ck

extract frequent itemsets from Ck into Lk

generate Ck+1

k := k + 1.

end while

The major determining parameter for the complexity of the algorithm is C k mkk where mk = Ck .
It is often pointed out that much of the time is spent in dealing with pairs of items. We know that m1 = d as one

needs to consider all single items. Furthermore, one would not have any items which alone are not frequent and so

one has m2 = d(d-1) /2. Thus we get the lower bound for C: C m1 + 2m2 = d2.

M. Krishnamurthy et al. / Procedia Computer Science 3 (2011) 513–523 521

As one sees in practice that this is a large portion of the total computations one has a good approximation C d2.

Including the dependence on the data size we get for the time complexity of apriori: T = O(d
2
n).

Thus we have scalability in the data size but quadratic dependence on the dimension or number of attributes.

Consider the first (row-wise) storage where T d2n . If we have d = 10, 000 items and n = 1,000, 000 data records

and the speed of the computations is such that = 1ns the apriori algorithm would require 105 seconds which is

around 30 hours, more than one day.

CBVAR

The complexity of the algorithm is C k mkk where mk = Ck .

We know that m1 = d as one needs to consider all single items. Since, it requires only one database scan, and also the

database is updated after finding the frequent itemsets, m2=d-1. Thus we get the lower bound for C:

C m1 + 2m2 = d.

So, the time complexity of CBVAR is less than that of apriori algorithm which is T = O(dn).

If we have d = 10, 000 items and n = 1,000, 000 data records and the speed of the computations is such that =

1ns the apriori algorithm would require 10 seconds. Thus the time spent for the algorithm is clearly considerable.

6. Conclusions and Future Works

The existing CGAR uses more space and consumes time. However in some applications it is necessary to handle

large volume of data. In such situations our new algorithms provides better performance in terms of time and space
complexity when it is used with temporal database for mining frequent itemises. Since our CBVAR uses only single

scan, the number of database scans are reduced and hence the computation time taken is also very less. By taking

synthetic data, the efficiency of the algorithm is explained theoretically and experimentally. Future work in this

direction could be the use of association rules in past data to predict the future.

References

[1] R.Agarwal, T.Imielinski, and A.Swami, “Mining Association Rules Between Sets of Items in Large Databases”,

In Proceedings of the ACM SIGMOD Conference on Management of Data, Washington, DC, 1993, pp 207-216.

 [2] Han J, Pei J, Yin Y “Mining Frequent Patterns Without Candidate Generation” Proceedings of the ACM

SIGMOD International Conference on Management of Data. New York, ACM press 2000, pp. 1-12.

 [3] R.Agarwal, and R.Srikant, “Fast Algorithms for Mining Association Rules”, In the Proceedings of VLDB
Conference 1994, pp.487-499.

 [4] Li Chao, Yu Zhao-ping, “Improved Method of Apriori Algorithm based on Matrix[j]”, In the Proceedings of

Computer Engineering of China”, 2006, Vol. 23, pp.68-69.

 [5] Niu Xiao-fei, Shi Bing. “A High Efficiency Algorithm Based on Vectors and Matrix for Mining Association

Rules”. Chinese Journal of Computer Engineering and Application, 2004, Vol. 12, pp.170-173.

[6] F.Berzal, J.C.Cubero, N.Marin, J.M.Serrano, TBAR “An Efficient Method for Association Rule Mining in

Relational Databases”, In Elsevier, Data and Knowledge, Engineering Vol 37, 2001 pp. 47-64.

 [7] Chaohui Liu, Jiancheng an, The Software Engineering School, China “Fast Mining and Updating Frequent

Itemsets”, 2008 ISECS International Colloquium on Computing, Communication, Control and Management, Vol.1,

pp. 365-368.

[8] Ashok Savasere, Edward Omiecinski, and Shamkanth Navathe, “An Efficient Algorithm for Mining Association
Rules in Large Databases” In VLDB 1994, Zurich, Switzerland, pp.432-443.

 [9] Wael A.Alzoubi, Azuraliza Abu Bakar, Khairuddin Omar, “Scalable and Efficient Method for Mining

Association Rules” 2009 International Conference on Electrical Engineering and Informatics 5-7 August 2009.

 [10] Yuh-Jiuan Tsay, Jiunn-Yann Chiang, “CBAR: An Efficient Method for Mining Association Rules”,

Knowledge-Based Systems Vol. 18, 2005, pp.99-105.

522 M. Krishnamurthy et al. / Procedia Computer Science 3 (2011) 513–523

 [11] Banu Ozden, Sridhar Ramaswamy, Avi Siberschatz R: “Cyclic Association Rule”, In Proceedings of

Fourteenth International Conference on Data Engineering 1998, pp 412-425.
 [12] Keshri Verma, O.P. Vyas, “Efficient Calendar Based Temporal Association Rule”, SIGMOD Record, Vol.34,

No.3, Sept.2005, pp.63-70.

 [13] Muthukumar, Nadarajan, “Efficient and Scalable Partition Based Algorithm for Mining Association Rules”.

Academic Open Internet Journal(ISSN 1311-4360), 2006, Vol. 19.

 [14] Suh-Ying Wur and Yungho Leu, “An Efficient Boolean Algorithm for Mining Association Rules in Large

Databases”. 6th International Conference on Database Systems for Advanced Applications, 1999, pp: 179.-186.

M. Krishnamurthy et al. / Procedia Computer Science 3 (2011) 513–523 523

