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1. Introduction

In 2006, Z. Mustafa in collaboration with B. Sims introduced a new notion of generalized metric space called G-metric
space [1]. In this generalization to every triplet of elements in the space, a non-negative real number is assigned. Analysis of
the structure of these spaceswas done in some detail in [1]. Fixed point theory in such spaceswas initiated in [2] and studied
further in [3,4]. In particular, the Banach contraction mapping principle was established in these works. Subsequently,
several authors proved fixed point results in these spaces (see, e.g., [5–10]).

The notion of a cone metric space (under various names) is very old. Metric spaces, in which the metric takes values in
an ordered space, were first introduced in 1934 by Kurepa [11]. Huang–Zhang’s definition [12] of a cone metric space can
be seen, e.g., in Chung’s papers [13,14]. Chung named such spaces ‘‘cone-valued metric spaces’’. In these papers Chung also
introduced the notions of convergence and completeness in cone metric spaces (over a solid Banach space). See also [15],
the well-known monograph of Colatz [16], and the well-known survey paper of Zabrejko [17].

Several authors obtained further fixed point results in such spaces (see, e.g., [18–21] and a review of these results in [22]).
Recently, Beg et al. [23] introducedG-conemetric spaceswhich are generalization ofG-metric spaces and conemetric spaces.
They proved some fixed point theorems under certain contractive conditions. Shatanawi [10] worked on fixed points for
ϕ-maps in G-metric spaces which are extended to G-cone metric spaces for a pair of maps by Ozturk and Basarir [24].

Fixed point theory has also developed rapidly in metric spaces endowed with a partial ordering (see details in [25–32]
and references therein). Fixed point problems have also been considered in partially ordered cone metric spaces [33] and
partially ordered G-metric spaces [34].
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In this paper, we study common fixed point theorems for mappings satisfying contractive conditions related to a
nondecreasing ϕ-map [19,20] in partially ordered G-cone metric spaces. Our results are ordered G-cone version extension
of work presented by Shatanawi [10] and Ozturk and Basarir [24]. It is worth mentioning that we do not use normality of
the cone to obtain the results. On the way, we correct some formulations of results from [23].

2. Preliminaries

To ease understanding of the material incorporated in this paper we recall some basic definitions and results. For details
on the following notions we refer to [10,12,22,24] and references therein.

The following concept (usually cited as taken from [12]) can also be seen in many earlier papers (see, e.g., [35–39] and
historical notes in the beginning of Section 3 of Proinov [40]).

Let B be a real Banach space and P be a subset of B. By θ we denote the zero element of B and by int P the interior of P .
The subset P is called an order cone if:

(i) P is closed, nonempty and P ≠ {θ};
(ii) a, b ∈ R, a, b ≥ 0, x, y ∈ P ⇒ ax + by ∈ P;
(iii) x ∈ P and −x ∈ P ⇒ x = θ .

Given an order cone P ⊂ B, we define a partial ordering ≤ with respect to P by x ≤ y if and only if y− x ∈ P . We write x < y

if x ≤ y but x ≠ y, while x ≪ y stands for y − x ∈ int P .
There exist two kinds of cones, normal and nonnormal ones. The order cone P is normal if

inf{∥x + y∥ : x, y ∈ P and ∥x∥ = ∥y∥ = 1} > 0 (2.1)

or equivalently, if there is a numberM > 0 such that for all x, y ∈ B,

θ ≤ x ≤ y ⇒ ∥x∥ ≤ M∥y∥. (2.2)

The least positive number M satisfying (2.2) is called the normal constant of P . From (2.1) one can conclude that P is
nonnormal if and only if there exist sequences xn, yn ∈ P such that

θ ≤ xn ≤ xn + yn, lim
n→∞

(xn + yn) = θ, but lim
n→∞

xn ≠ θ.

Definition 2.1 ([23]). Let X be a nonempty set, B be a real Banach space and P ⊂ B be an order cone. Suppose a mapping
G : X × X × X → B satisfies

(G1) G(x, y, z) = θ if x = y = z;
(G2) θ < G(x, x, y) for all x, y ∈ X with x ≠ y;
(G3) G(x, x, y) ≤ G(x, y, z) for all x, y, z ∈ X with z ≠ y;
(G4) G(x, y, z) = G(x, z, y) = G(y, z, x) = · · · (symmetry in all three variables);
(G5) G(x, y, z) ≤ G(x, a, a)+ G(a, y, z) for all x, y, z, a ∈ X (rectangle inequality).

Then the function G is called a generalized cone metric on X and X is called a generalized cone metric space or, shortly, a
G-cone metric space.

It is obvious that the concept of a G-cone metric space is more general than that of a G-metric space or a cone metric
space. If B = R and P = [0,+∞) then a G-cone metric space becomes a G-metric space.

Example 2.2. Let X = [0,+∞), d(x, y) = |x − y|, g(x, y, z) = max{d(x, y), d(y, z), d(z, x)}, B = R
2, P = {(x, y) | x ≥

0, y ≥ 0} and let G : X × X × X → P be defined by G(x, y, z) = {g(x, y, z), αg(x, y, z)} where α > 0 is fixed. Then (X,G) is
a G-cone metric space over the normal cone P .

Example 2.3. Let B = C1
R
[0, 1] with ∥u∥ = ∥u∥∞ + ∥u′∥∞ and P = {u ∈ B : u(t) ≥ 0 for t ∈ [0, 1] }. It is well known

(see, e.g., [41]) that the cone P is not normal. Let X = [0,+∞), d(x, y) = |x − y|, g(x, y, z) = d(x, y)+ d(y, z)+ d(z, x), for
x, y, x ∈ X , and let G : X × X × X → P be defined by G(x, y, z) = g(x, y, z)u where u ∈ P is fixed. Then (X,G) is a G-cone
metric space over a nonnormal cone.

The following remark will be useful in the sequel.

Remark 2.4. For elements u, v, w of an order cone P , the following hold:

(1) if u ≤ v and v ≪ w, then u ≪ w;
(2) if u ≪ v and v ≤ w, then u ≪ w;
(3) if θ ≤ u ≪ c for each c ∈ int P , then u = θ .

Throughout the paper we assume that B is a real Banach space and P is a cone in B with int P ≠ ∅ (such cones are called
solid). In this way, we uniquely determine the limit of a sequence. Normality of the cone is not assumed unless otherwise
stated.
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Definition 2.5 ([23]). Let (X,G) be a G-cone metric space.

(1) A sequence {xn} in X is said to converge to x ∈ X if for every c ∈ Bwith θ ≪ c there is N ∈ N such that for all n,m ≥ N ,
G(xn, xm, x) ≪ c.

(2) A sequence {xn} in X is called a Cauchy sequence if for every c ∈ B with θ ≪ c there is a positive integer N such that
G(xn, xm, xℓ) ≪ c , for all n,m, ℓ ≥ N .

(3) (X,G) is said to be complete if every Cauchy sequence in X is convergent in X .

The following assertion was stated (without proof) in [23], claiming that it holds for arbitrary cones. In fact it is valid only
if the underlying cone P is normal.

Lemma 2.6. Let X be a G-cone metric space over a normal cone, x ∈ X and let {xn} be a sequence in X. Then the following are

equivalent:

(1) {xn} is convergent to x;

(2) G(xn, xn, x) → θ as n → ∞;

(3) G(xn, x, x) → θ as n → ∞;

(4) G(xm, xn, x) → θ as m, n → ∞.

Remark 2.7. The respective assertion when the cone is nonnormal can be proved for the so-called c-sequences. Namely, a
sequence {an} in B is called a c-sequence if for each c ∈ int P there exists N ∈ N such that an ≪ c holds whenever n > N .
Note that an → θ when n → ∞ implies that {an} is a c-sequence, but the converse is true only if the cone P is normal.

It was proved in [1] that every G-metric space is topologically equivalent to a metric space. In a similar way, one can
prove that each G-cone metric space is topologically equivalent to a cone metric space. Namely, the base of such topology
τG is given by the family of G-balls of the form

BG(x0, c) = { y ∈ X : G(x0, y, y) ≪ c }

for x0 ∈ X and c ∈ int P . A sequence in X G-converges in X if and only if it τG-converges.
If G is a G-cone metric, then a cone metric defined by

dG(x, y) = G(x, y, y)+ G(y, x, x)

satisfies that

3

2
G(x, y, y) ≤ dG(x, y) ≤ 2G(x, y, y).

We conclude that G-cone metric and cone metric dG give rise to the same topology, and so, among other things, they have
the same convergent sequences. In particular, this topology is Hausdorff and hence the limit of a sequence is unique.

The following assertion about the topological structure of G-cone metric space was stated in [23]. However, the proof
given there uses normality of the cone and in fact cannot be done without this assumption. We will give here an alternative
proof.

Lemma 2.8. Let (X,G) be a G-cone metric space over a normal cone P. If {xm}, {yn}, and {zℓ} are sequences in X such that

xm → x, yn → y and zℓ → z, then G(xm, yn, zℓ) → G(x, y, z) as m, n, ℓ → ∞.

Proof. Let e ∈ int P and let ε be a fixed positive real number. Then, similarly as in [23], it can be proved that

− εe < −
ε

2
e ≤ G(xm, yn, zℓ)− G(x, y, z) ≤

ε

2
e < εe. (2.3)

Let qe be theMinkowski functional of the order interval [−e, e], which is an absolutely convex neighbourhood of θ in B. Since
the cone P is solid and normal, qe is a norm in B, equivalent to the given norm (for details see [21]). Relation (2.3) implies
that

qe(G(xm, yn, zℓ)− G(x, y, z)) < ε

and so ∥G(xm, yn, zl)− G(x, y, z)∥ → 0 when m, n, ℓ → ∞. Hence,

G(xm, yn, zℓ)− G(x, y, z) → θ whenm, n, ℓ → ∞. �

Definition 2.9. Let X be a nonempty set. Then (X,G,≼) is called an ordered G-cone metric space if:

(i) (X,G) is a G-cone metric space,
(ii) (X,≼) is a partially ordered set.



704 H.K. Nashine et al. / Mathematical and Computer Modelling 57 (2013) 701–709

Let (X,≼) be a partially ordered set. Then x, y ∈ X are called comparable if x ≼ y or y ≼ x holds.
In [30], Nashine and Samet introduced the following concept.
Let X be a non-empty set and let R : X → X be a given mapping. For every x ∈ X , we denote by R−1(x) the subset of X

defined by R−1(x) := { u ∈ X : Ru = x }.

Definition 2.10. Let (X,≼) be a partially ordered set and let T , S, R : X → X be given mappings such that TX ⊆ RX and
SX ⊆ RX . We say that S and T are weakly increasing with respect to R if for all x ∈ X , we have:

Tx ≼ Sy, ∀ y ∈ R−1(Tx) and Sx ≼ Ty, ∀ y ∈ R−1(Sx).

If T = S, we say that T is weakly increasing with respect to R.

Remark 2.11. If R : X → X is the identity mapping (Rx = x for all x ∈ X), then S and T are weakly increasing with respect
to R if and only if S and T are weakly increasing mappings in the sense of [42], i.e., Tx ≼ S(Tx) and Sx ≼ T (Sx) hold for each
x ∈ X .

Definition 2.12. Let (X,≼) be an ordered G-cone metric space. We say that X is regular if the following condition holds: if
{zn} is a non-decreasing sequence in X with respect to ≼ such that zn → z ∈ X as n → ∞, then zn ≼ z for all n ∈ N.

3. Main results

To formulate the results, we give the definition of a ϕ-map.

Definition 3.1 ([19,20]). Let P be an order cone. A nondecreasing function ϕ : P → P is called a ϕ-map if:

(i) ϕ(θ) = θ and θ < ϕ(ω) < ω for ω ∈ P \ {θ},
(ii) ω ∈ int P implies ω − ϕ(ω) ∈ int P ,
(iii) if ω ∈ P \ {θ} and c ∈ int P , then there exists n0 ∈ N such that ϕn(ω) ≪ c for each n ≥ n0.

Example 3.2 ([19]). (i) If P is an arbitrary cone in a Banach space B and λ ∈ (0, 1), then ϕ : P → P , defined by ϕ(ω) = λω
for ω ∈ P , is a ϕ-map.

(ii) Let ψ : [0,+∞) → [0,+∞) be any real-valued ϕ-map. Let P be a cone in a Banach space B and λ ∈ (0, 1) be fixed.
Then the function ϕλ : P → P defined by ϕλ(ω) = ψ(λ)ω, is a ϕ-map. Examples of this kind are of particular interest
in the case when the cone P is nonnormal. For example, one can take B = C1

R
[0, 1], P = { x ∈ B : x(t) ≥ 0, t ∈ [0, 1] }

(see Example 2.3) and ψ(λ) = λ
1+λ , λ ∈ (0, 1).

Our first result is the following.

Theorem 3.3. Let (X,≼) be a partially ordered set, P be an order cone and let G be a G-cone metric on X. Let T , R : X → X be

two mappings such that

G(Tx, Ty, Tz) ≤ ϕ(G(Rx, Ry, Rz)) (3.1)

for all x, y, z ∈ X with Rx ≽ Ry ≽ Rz, where ϕ is a ϕ-map. We suppose the following:

(i) T is weakly increasing with respect to R;

(ii) RX is a complete subspace of X;

(iii) X is regular.

Then T and R have a coincidence point.

Proof. Let x0 be an arbitrary point in X . Since TX ⊆ RX (by Definition 2.10), we can construct a sequence {xn} in X defined
by

Rxn+1 = Txn, ∀ n ∈ N0.

Now, since x1 ∈ R−1(Tx0) and x2 ∈ R−1(Tx1), using that T is weakly increasing with respect to R, we obtain that

Rx1 = Tx0 ≼ Tx1 = Rx2 ≼ Tx2 = Rx3.

Continuing this process, we get that

Rx1 ≼ Rx2 ≼ Rx3 ≼ · · · ≼ Rxn ≼ Rxn+1 ≼ · · · .

We will prove that {Rxn} is a Cauchy sequence in (R(X),G). We distinguish two cases.
First case. There exists n ∈ N such that Rxn = Rxn+1. Using the considered contractive condition, we get Txn = Txn+1,

thats is, Rxn+1 = Rxn+2. So, for every m ≥ n, we have Rxm = Rxn. This implies that {Rxn} is a Cauchy sequence.
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Second case. The successive terms of {Rxn} are different. From (3.1), we have

G(Rxn, Rxn+1, Rxn+1) = G(Txn−1, Txn, Txn)

≤ ϕ(G(Rxn−1, Rxn, Rxn))

≤ ϕ2(G(Rxn−2, Rxn−1, Rxn−1))

...

≤ ϕn(G(Rx0, Rx1, Rx1)).

Fix c , θ ≪ c . According to property (iii) of function ϕ, there is n0 ∈ N such that ϕn(G(Rx0, Rx1, Rx1)) ≪ c for n ≥ n0. Using
Remark 2.4(1), we get that G(Rxn, Rxn+1, Rxn+1) ≪ c for n ≥ n0. In a similar way, there is N1 ∈ N such that

G(Rxm, Rxm+1, Rxm+1) < c − ϕ(c) for all m ≥ N1. (3.2)

We claim that

G(Rxn, Rxm, Rxm) ≪ c ∀ m > n ≥ N1 (3.3)

and prove it by induction on m. The inequality (3.3) holds for m = n + 1 by using (3.2) and the fact that c − ϕ(c) < c.
Assume that (3.3) holds form = k. Form = k + 1, we have (using Remark 2.4)

G(Rxn, Rxk+1, Rxk+1) ≤ G(Rxn, Rxn+1, Rxn+1)+ G(Rxn+1, Rxk+1, Rxk+1)

≪ c − ϕ(c)+ ϕ(G(Rxn, Rxk, Rxk))

≪ c − ϕ(c)+ ϕ(c) = c.

By induction on m, we conclude that (3.3) holds for all m > n ≥ N1. Now axiom (G5) of G-metric (see also Remark 2.7)
implies that

G(xm, xn, xℓ) ≤ G(xm, xn, xn)+ G(xn, xn, xℓ) ≪ 2c

holds for m, n, ℓ ≥ N1. Hence {Rxn} is a G-Cauchy sequence in (RX,G) which is complete by assumption. Then, there exist
u = Rv, z ∈ X such that

lim
n→∞

Rxn = u = Rz. (3.4)

Since {Rxn} is a non-decreasing sequence and X is regular, it follows from (3.4) that Rxn ≼ Rz for all n ∈ N. Assume Rxn ≠ Rz.
Fix c , θ ≪ c , and, using Remark 2.7, choose a natural number n such that G(Rxn, Rxn, Rz) ≪ c

2 and G(Rxn+1, Rz, Rz) ≪ c

2 .
Hence, we can apply the considered contractive condition to obtain

G(Tz, Rz, Rz) ≤ G(Tz, Txn, Txn)+ G(Txn, Rz, Rz)

≤ ϕ(G(Rxn, Rxn, Rz))+ G(Rxn+1, Rz, Rz) (by (3.1))

< G(Rxn, Rxn, Rz)+ G(Rxn+1, Rz, Rz)

≪
c

2
+

c

2
= c.

Since c ∈ int P is arbitrary, it follows by Remark 2.4(3) that G(Tz, Rz, Rz) = θ which by axiom (G2) implies that Tz = Rz.
Then z is a coincidence point for the mappings T and R. �

Example 3.4. Let (X,G) be the G-cone metric space introduced in Example 2.3, but with the reverse order:

x ≼ y ⇔ x ≥ y.

Consider mappings T : X × X → X and R : X × X → X given by Tx = 2x and Rx = 3x, and a ϕ-map given by ϕ(ω) = 1
2ω,

ω ∈ P . Then all the conditions of Theorem 3.3 are satisfied. In particular, condition (3.1) reduces to

2(|x − y| + |y − z| + |z − x|)u ≥
1

2
· 3(|x − y| + |y − z| + |z − x|)u,

and holds for all x, y, z ∈ [0,+∞). Also, T is weakly increasing with respect to R since Ry = Tx implies 3y = 2x, i.e., y = 2
3x,

which in turn implies Tx = 2x ≥ 2y = Ty, i.e., Tx ≼ Ty. Obviously, 0 is a coincidence point of T and R.

The following result is an immediate consequence of Theorem 3.3.

Corollary 3.5. Let (X,≼) be a partially ordered set, P be an order cone and suppose that G is a G-cone metric on X. Let

T , R : X → X be nondecreasing mappings such that for some k ∈ [0, 1)

G(Tx, Ty, Tz) ≤ k G(Rx, Ry, Rz)
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holds for all x, y, z ∈ X with x ≽ y ≽ z. We suppose the following:

(i) T is weakly increasing with respect to R;

(ii) RX is a complete subspace of X;

(iii) X is regular.

Then T and R have a coincidence point.

Proof. The result follows from Theorem 3.3 taking ϕ(ω) = kω. �

If R : X → X is the identity mapping, we get the following fixed point result.

Corollary 3.6. Let (X,≼) be a partially ordered set, P be an order cone and suppose there is a metric G on X such that (X,G) is
a complete G-cone metric space. Let T : X → X be a mapping such that

G(Tx, Ty, Tz) ≤ ϕ(G(x, y, z))

holds for all x, y, z ∈ X with x ≽ y ≽ z where ϕ is a ϕ-map. We suppose the following:

(i) Tx ≼ T (Tx) for all x ∈ X;

(ii) X is regular.

Then T has a fixed point.

Now, our second result is the following generalization of Theorem 3.3.

Theorem 3.7. Let (X,≼) be a partially ordered set, P be an order cone and suppose there is a G-cone metric G on X such that

(X,G) is a complete G-cone metric space. Let T , R : X → X be nondecreasing mappings such that for all x, y, z ∈ X with

Rx ≽ Ry ≽ Rz there exists

Θ(x, y, z) ∈ {G(Rx, Ry, Rz),G(Rx, Tx, Tx),G(Ry, Ty, Ty),G(Tx, Ry, Rz)}

such that

G(Tx, Ty, Tz) ≤ ϕ(Θ(x, y, z)),

where ϕ is a ϕ-map. We suppose the following:

(i) T is weakly increasing with respect to R,

(ii) X is regular.

Then T and R have a coincidence point.

Proof. Let x0 be an arbitrary point in X . Since TX ⊆ RX (by Definition 2.10), we can construct a sequence {xn} in X defined
by:

Rxn+1 = Txn, ∀ n ∈ N.

Now, since x1 ∈ R−1(Tx0) and x2 ∈ R−1(Tx1), using that T is weakly increasing with respect to R, we obtain that

Rx1 = Tx0 ≼ Tx1 = Rx2 ≼ Tx2 = Rx3.

Continuing this process, we get that

Rx1 ≼ Rx2 ≼ Rx3 ≼ · · · ≼ Rxn ≼ Rxn+1 ≼ · · · .

If there exists n0 ∈ {1, 2, . . .} such thatΘ(xn0 , xn0−1, xn0−1) = θ then it is clear that Rxn0−1 = Rxn0 = Txn0−1 and so we are
finished. Now we can suppose

Θ(xn, xn−1, xn−1) > θ

for all n ≥ 1.
Assume Rxn ≠ Rxn−1, for each n ∈ N. Thus for n ∈ N, we have

G(Rxn, Rxn+1, Rxn+1) = G(Txn−1, Txn, Txn) ≤ ϕ(Θ(xn−1, xn, xn))

where

Θ(xn−1, xn, xn) ∈ {G(Rxn−1, Rxn, Rxn),G(Rxn−1, Txn−1, Txn−1),G(Rxn, Txn, Txn),G(Txn−1, Rxn, Rxn)}

= {G(Rxn−1, Rxn, Rxn),G(Rxn−1, Rxn, Rxn),G(Rxn, Rxn+1, Rxn+1),G(Rxn, Rxn, Rxn)}

= {G(Rxn−1, Rxn, Rxn),G(Rxn, Rxn+1, Rxn+1), θ}.
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• IfΘ(xn−1, xn, xn) = G(Rxn, Rxn+1, Rxn+1), then

G(Rxn, Rxn+1, Rxn+1) ≤ ϕ(G(Rxn, Rxn+1, Rxn+1))

and by the property of ϕ we have

G(Rxn, Rxn+1, Rxn+1) < G(Rxn, Rxn+1, Rxn+1)

which is impossible.
• IfΘ(xn−1, xn, xn) = θ , then

G(Rxn, Rxn+1, Rxn+1) ≤ ϕ(θ) < θ

which is a contradiction. Therefore,Θ(xn−1, xn, xn) = G(Rxn−1, Rxn, Rxn), and then

G(Rxn, Rxn+1, Rxn+1) ≤ ϕ(G(Rxn−1, Rxn, Rxn)).

Thus for n ∈ N , we have

G(Rxn, Rxn+1, Rxn+1) = G(Txn−1, Txn, Txn)

≤ ϕ(G(Rxn−1, Rxn, Rxn))

≤ ϕ2(G(Rxn−2, Rxn−1, Rxn−1))

...

≤ ϕn(G(Rx0, Rx1, Rx1)).

By an argument similar to that in the proof of Theorem 3.3, one can show that {Rxn} is a Cauchy sequence. Since X is
G-complete, Rxn is convergent to u ∈ X . Now we show that Ru = Tu.

Since {Rxn} is a nondecreasing sequence and Rxn → u, by regularity of X we have Rxn ≼ u for all n. If Rxn = u for some
n, then, by construction, Rxn+1 = u and u is a fixed point. So we assume that Rxn ≠ u. Then, for n ∈ N, we have

G(Ru, Ru, Tu) ≤ G(Ru, Ru, Rxn)+ G(Rxn, Rxn, Tu)

= G(Ru, Ru, Rxn)+ G(Txn−1, Txn−1, Tu)

≤ G(Ru, Ru, Rxn)+ ϕ(Θ(xn−1, xn−1, u))

where

Θ(xn−1, xn−1, u) ∈ {G(Rxn−1, Rxn−1, Ru),G(Rxn−1, Txn−1, Txn−1),G(Rxn−1, Txn−1, Txn−1),G(Txn−1, Rxn−1, Ru)}

= {G(Rxn−1, Rxn−1, Ru),G(Rxn−1, Rxn, Rxn),G(Rxn, Rxn−1, Ru)}.

Fix c , θ ≪ c. Choose a natural number N1 such that G(Ru, Ru, Rxn) ≪ c

2 and G(Rxn−1, Rxn−1, Ru) ≪ c

2 , for all n ≥ N1. We
investigate these situations as follows:

Case 1. IfΘ(xn−1, xn−1, u) = G(Rxn−1, Rxn−1, Ru), then we have

G(Ru, Ru, Tu) ≤ G(Ru, Ru, Rxn)+ ϕ(G(Rxn−1, Rxn−1, Ru))

< G(Ru, Ru, Rxn)+ G(Rxn−1, Rxn−1, Ru)

≪
c

2
+

c

2
= c.

Case 2. IfΘ(xn−1, xn−1, u) = G(Rxn−1, Rxn, Rxn), then we have

G(Ru, Ru, Tu) ≤ G(Ru, Ru, Rxn)+ ϕ(G(Rxn−1, Rxn, Rxn))

< G(Ru, Ru, Rxn)+ G(Rxn−1, Rxn, Rxn) ≪ c.

Case 3. IfΘ(xn−1, xn−1, u) = G(Rxn, Rxn−1, Ru), then we have

G(Ru, Ru, Tu) ≤ G(Ru, Ru, Rxn)+ ϕ(G(Rxn, Rxn−1, Ru))

< G(Ru, Ru, Rxn)+ G(Rxn, Rxn−1, Ru)

≤ G(Ru, Ru, Rxn)+ G(Rxn, Rxn−1, Rxn−1)+ G(Rxn−1, Rxn−1, Ru)

≪ c

whenever n ∈ N. Thus in all cases G(Ru, Ru, Tu) ≪ c for arbitrary c ∈ int P . By Remark 2.4(3), it follows that G(Ru, Ru, Tu)
= θ which implies that Tu = Ru. Then u is a coincidence point for the mappings T and R. �
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The following result is an immediate consequence of Theorem 3.7.

Corollary 3.8. Let (X,≼) be a partially ordered set, P be an order cone and suppose there is a G-cone metric G on X such that

(X,G) is a complete G-cone metric space. Let T , R : X → X be nondecreasing mappings such that for some k ∈ [0, 1), and for all

x, y, z ∈ X with Rx ≽ Ry ≽ Rz, there exists

Θ(x, y, z) ∈ {G(Rx, Ry, Rz),G(Rx, Tx, Tx),G(Ry, Ty, Ty),G(Tx, Ry, Rz)}

such that

G(Tx, Ty, Tz) ≤ kΘ(x, y, z).

We suppose the following:

(i) T is weakly increasing with respect to R,

(ii) X is regular.

Then T and R have a coincidence point.

If R : X → X is the identity mapping, we get easily the following fixed point result from Theorem 3.7.

Corollary 3.9. Let (X,≼) be a partially ordered set, P be an order cone and suppose there is a G-cone metric G on X such that

(X,G) is a complete G-cone metric space. Let T : X → X be a nondecreasing mapping such that

G(Tx, Ty, Tz) ≤ ϕ(Θ(x, y, z))

where

Θ(x, y, z) ∈ {G(x, y, z),G(x, Tx, Tx),G(y, Ty, Ty),G(Tx, y, z)}

for all x, y, z ∈ X with x ≽ y ≽ z, and ϕ is a ϕ-map. We suppose the following:

(i) Tx ≼ T (Tx) for all x ∈ X;

(ii) X is regular.

Then T has a fixed point.

In the following result we present a sufficient condition for the uniqueness of the point of coincidence.

Theorem 3.10. Under assumptions of Theorem 3.7 suppose that X is a totally ordered set. Then the point of coincidence of R and

T is unique. If, additionally, R and T are weakly compatible, then they have a unique common fixed point.

Proof. Suppose that T and R have two points of coincidence,

Tu = Ru and Tw = Rw, Ru ≠ Rw.

As X is totally ordered set and u, w ∈ X , suppose that u ≺ w. Applying the contractive condition we have that for some

Θ(u, u, w) ∈ {G(Ru, Ru, Rw),G(Ru, Tu, Tu),G(Ru, Tu, Tu),G(Tu, Ru, Rw)}

= {θ,G(Ru, Ru, Rw)},

G(Ru, Ru, Rw) = G(Tu, Tu, Tw) ≤ ϕ(Θ(u, u, w)) holds. In both possible cases, using property of ϕ-function, a contradiction
is obtained. Thus Ru = Rw. Hence T and R have a unique point of coincidence Tu = Ru.

The final assertion follows from a classical result of G. Jungck. �
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