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Abstract

For a symmetric stable process X (¢, w) with index « € (1,2], f € LP[0,2n], p > o, ap = % fozﬂ eii"’f(t) dt and A, (w) =

. int
% foz T e~ dX (t, w), we establish that the random Fourier—Stieltjes (RFS) series Z;;O:o—oo % converges in the mean

to the stochastic integral % 02 4 fp(t —u)dX(u, w), where fg is the fractional integral of order 8 of the function f for % <B<

100 ap Ay (w)elt

n=—00 " (imP is Abel summable to ﬁ 02” fpt —u)dX (u, w). Also we

1+ % Further it is proved that the RFS series )

define fractional derivative of the sum ZZ‘; anAn(w)e'™ of order B for a,, A, (w) as above and % <l-B<1+ % We have

int

—0oQ
shown that the formal fractional derivative of the series tho: anAp(w)e
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NS of order B exists in the sense of mean.
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1. Introduction

Let X (¢, w), t € R be a continuous stochastic process with independent increments and f be a continuous function
in [a, b]. Then the stochastic integral f ab f(t)dX(t,w) is defined convergence in the probability and is a random
variable (cf. Lukacs [3, p. 148, Theorem (6.2.3)]). If X (¢, w) is a symmetric stable process of index «, « € (1, 2] then
the stochastic integral % f02n f()dX(t, ) is defined convergence in the probability for f € L?([0,2x]), p > «
(Nayak, Pattanayak and Mishra [4]).

If X (¢, w) is a symmetric stable process with independent increments of index « € (1, 2], then it is shown that
the stochastic integral f ab f(®)dX(t, ) is defined in the sense of convergence in the mean (cf. Kwapien and Woy-
czynski [2]).
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Again if X (¢, w) is a symmetric stable process of index « € (1, 2] then it is shown that the RFS series

Z anAp(w)e™ (D

n=—oo
converges in the mean to the stochastic integral % fozn f(@t —u)dX(u, ), where

2
1 .
Ay(w) = E/eﬂm dX(t,w) forneZ 2)
0

and a, = 7 fozn f()e " dt for f € LP, p >« and n € Z (Pattanayak and Sahoo [6]).

In Pattanayak and Sahoo [5], it is shown that the RFS series Z;’Ozo_ o % (where Z’ means, that the summa-

tion does not include the term n = 0) converges in the probability to the stochastic integral % f02 & fpt—u)ydX(u, w)
with B € (%, 1+ %), where f3 is the fractional integral of f. But we know that the fractional integral fg of order
B belongs to LP, Vp > 1, if f € LP([0,27]) with p>1, B € (%, 1+ %) (cf. Zygmund [7, vol. 11, p. 138]). We

have shown in this paper that the RFS series Z;":O_OO %‘;ﬁ)em
LTt — u)dX (u, w), with B € CRE!

If feLP([0,27]), p>1and

converges in the mean to the stochastic integral

) 2w
a=s [ 0 3)
2
0
for n € Z are the Fourier coefficients of f, then it is easy to see that for each r with 0 < r < 1, the series

oo .

Z ayre™t 4)
n=—o0

converges uniformly and represents a continuous function on [0, 2rr]. Let us write

F@= )" apre™. 5)

n=—oo

Then the stochastic integral
2
/fr(t)dX(t,w) (6)
0

is defined convergence in the mean. Since each f; () is continuous, it belongs to L” ([0, 27r]) for all p > 1 and a,r'!,
n € 7 are the Fourier coefficients of f;-(¢). So the random series

(o)
Z an Apr™etnt @)

n=—0oo

will converge to the stochastic integral
2
1
—/fr(t—u)dX(u,w) ®)
2
0

in the sense of convergence in mean. Here f;(-) is the harmonic extension of f to the disc {z: |z| < 1} given by the
Poission integral
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1 = (1 —r?) f@)dt

27 ) 1—2rcos(@ —1)+r2
0

€))

It is shown that fozn fr(t —u)dX(u, w) converges to f02n f({t —u)dX(u,w) as r — 17 in the sense of mean
(Pattanayak and Sahoo [6]).

This would mean Z;’o:_oo apApe™ is Abel summable to fOZH f(t —u)dX (u, ). A Fourier series Y ane'™ is said

to be Abel summable to “s” if for r with 0 < r < 1, lim, | 220:—00 apre™ =g.

We have shown that the RFS series Y /> % is Abel summable to - [ f5(t — u)dX (u, w) in the

sense of mean.
2. Definitions

Definition 2.1. Let f be defined in a closed interval 7, and let

o (@ f)=sup{|f(x2) — fGxD]: x1.x2€ 1, |xa—x1] <8}
The function w(§; f) is called the modulus of continuity of f.

Definition 2.2. The class Ag, for 0 < B < 1, is the class of functions f on the closed interval / whose modulus of
continuity w(3; f) satisfies the condition w(§; f) = 0(8#).

Definition 2.3. Let Zi’,i_oo anAn(w)e’™ be a RFS series, where A,(w) are the random variables as defined in
(2) with X (¢, w) a symmetric stable process of index «, 1 < @ < 2 and a, are the Fourier coefficients of some
feLP((0,2n]), p > «a with fOZ” f(@®)dt = 0. Then the fractional integral of this RFS series of order § such that

1 1 100 an Ay (w)e™ . . s
5 < B<1+ 5 18 defined to be ) , = i which converges in the sense of mean to the stochastic integral

% 02” fp( —u)dX(u, ), where fg is the fractional integral of f of order B.

Let us write
! 2
F/;(t,a))=Z/f,3(t—u)dX(u,w).
0

Now this definition of fractional integration leads to the following definition of fractional differentiation of the RFS
series (1).
Definition 2.4. The RFS series Zf;foo anA,(w)e'™ as in Definition(2.3) is said to have fractional derivative of
order B in the sense of mean at r = f, if for § > 0 with % <l-B<1+ %, the stochastic integral Fi_g (¢, ) is
differentiable in the sense of mean.

Denote this derivative by F B, w).

Definition 2.5. If the fractional derivative of the RFS series (1) exists at each ¢ € [0, 2] then it is said to have
fractional derivative of order 8 in mean in [0, 27 ].

3. Results

Theorem 3.1. Let X (¢, w) be a symmetric stable process of index o, 1 < a < 2, and let A, (w) be defined as in (2).
Suppose ay, are the Fourier coefficients of some f € LP([0,2x]), p > o with f02n f()dt =0. Then the RFS series
> anAp(w)e™
yo (10)
(in)P
n=-—00

converges in the mean to the stochastic integral
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l J
E/f,g(t—u)dX(u,a)) an
0

where fg is the fractional integral of f of order B.
Proof of this theorem requires the following lemma.

Lemma 3.2. If X (¢, w) is a symmetric stable process with independent increment of index «, 1 <o <2 and f €
L?([a, b)), p > « then the following inequality holds:

b b o b o
E(/f(t)dX(t,a)))SL/U(IHWCJMLE / Lo expC el Jy 101D,
(e —1) T u?

lu|>1

Proof. Let X (z,.) be a symmetric stable process with independent increments and let the characteristic function of
the increment X (¢1) — X (#) is equal to exp(—|t; — t2||u|*). We know that the stochastic integral f ab f(t)dX(t) exists
in the sense of convergence in the mean for f € L*([a, b]) (cf. Kwapien and Woyczyfiski [2]), and the characteristic
function of this stochastic integral is

b
W () =exp<—|u|”‘ f}f(z)}"‘dt).

Expressing the expectation of the absolute value of a random variable in terms of its characteristic function (cf.
Chow and Teicher [1, p. 285]), we get:

2001 Rew
_fi(“)du
T

MdX(@)| = 5
u
—00
2 1 —Revy 2 1 —Revy
_2 / &dw_/#(u)du
T u? T u?
lul<1 lul>1

But

1

1 —Re W (u) 1 —exp(—|ul® [71 £ ()| dr)

72 du = > du
u

Jul<1 -1

/ jul® [ If(t)l"‘ dl

u

(1—e* <x, forx >0)

= /|u|“ Zdu/\f(r)\ dt

2 «

Therefore

M

b
£| [ rwaxm|< 1)/|f(t)| i+ > / | —eptlut [ 1f 01D,

|u\>l

Hence the result. O
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Proof of Theorem 3.1. Consider the fractional integral fg of f of order 8 > 0. This fg € A -1 (Definition 2.2)
as f € LP([0,27]), (p > 1) and B > 0 is such that l <B<l1 +5 Lo(cf. Zygmund [7, vol. II, p. 138]). It is clear
that fg € Ag, the class of continuous functions and hence fpel? ([0 2r]) for all p > 1. Hence (cf. Kwapien and
Woyczynski [2]), we have that fo fp()dX (t, w) is defined in the sense of mean.

Now let
i/ agAx (w)et*!

be the nth partial sum of the RFS series (Theorem 3.1) and that of fg be

n /akeikt
Sn(t) = Z W
k=—n
Therefore

", ikt
S, (1) = Z arAr(w)e

(ik)P
2
_ —ik ikt
Z (zk)ﬁ< /e ! ”dX(u,a)))e’
0
n 1 21
_ I ak ik(t— u)dX
Z kP 21 / @, @)
0
2r 4
Ak 1k(t—u)
/Z 0 dX (u, »)
1
:—/sn(t—u)dX(u,a)).
2
0
Now

2

>2n

27
:E( /f/g(t—u)dX(u a))—%/sn(t—u)dX(u,a))
0

o

)

2
=E< / fp(t —u) — s, (t —u)]dX (u, )
0

2
2 o
<m/!fﬁ(r—u)—sn<r—u)! du
0

1 1 —exp(—[v]® [ | f5(t — ) — (¢ — u)|*du)

5 dv (by Lemma 3.2).

w2 v
lv|>1
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It is known that (cf. Zygmund [7, p. 266]) for fg € L?([0,2x]), p > 1,

2
lim /|flg(t—u)—sn(t—u)|pdu=0.
n—oo

0

Now if p > o then we have:

):o.

In the next theorem it is established that the RFS series

2
lim E( L/.flg(l‘—l,t)dX(u,a))—Sn(t)
n— 00 2w
0

Hence the result. O

i/ anAp(w)e™
(in)p

n=—oo

is Abel summable to

2
% / fp —u)dX(u,w)
0

in the sense of mean.

IfA,(w) = % fozn e M dX (t, w) and a, = % fozn e~ £ (1) dt, then the RFS series
i/ an Ap(w)ei™
(in)P

n=—0oo

is Abel summable to

2
% / fpt —u)dX(u,w)
0

in the sense of mean.

Proof. As we know, for each r with 0 < r < 1, the series

00
§ anr\nlemt

n=—oo

converges uniformly and represents a continuous function and hence belongs to L?, for all p > 1.

Therefore the series
i, anr\nleint
(in)p

n=—oo

also converges uniformly and represents a continuous function and hence belongs to L?, for all p > 1. Denote

int

ady a,r'™e
fpy=Y " ——0,
o

- 0<r«l.
S n)f

103

Theorem 3.3. Let X (t, w) be a symmetric stable process of index a, with 1 <o <2, and f(t) € L?([0,2x]), p > «.
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Since fp € L?, p > a, a, are the Fourier coefficients of f € L”, and 0 <r < I, each f,; € L?, p > . So by

Theorem 3.1 the RFS series
%, anAnrlnleint
N n)p

will converge to the stochastic integral

27
% / frﬁ(t —u)dX(u,w)
0
in the sense of mean. Since the RFS series
i/ anAne™
e (in)P

converges to the stochastic integral

2
% f St —u)dX (u, w)
0

in the sense of mean, we have:

d
:E<

27
2 o
< oy /|fr,3(r —u)— fg(t —w)|" du
0

2 2
%/frﬁ(t—u)dX(u,a))—%/fﬂ(t—u)dX(u,w)
0 0

)

)

2

1
Zf[frﬁa —u) — 5t — w)]dX (u, w)

0

1 1 —exp(—[v[® [ | fry (t — ) — fp(t — w)|*due)

2 v2
lv|>1

dv (by Lemma 3.2).

We know that the integral foh | frg(t —u) — fp(t —u)|*du tends to 0 as r — 1if fg € LP, p > 1 (cf. Zygmund

[7, p. 150]). As ULZ in the integrand of the second integral is dominated by “1,” the second integral also tends to “0.”
Hence the result. O

A sufficient condition for the existence of fractional derivative of order 8 in the sense of mean of the RFS series (1)
is obtained in the following theorem.

Theorem 3.4. The RFS series (1) having conditions as stated in Definition 2.3 has fractional derivative of order 8 in
the sense of mean, for B > 0 with % <l-8<1+ % if

o0
Z ’nﬂanyz < 0.

n=—oo

Proof of this theorem requires the following lemma.
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Lemma 3.5. Let X (¢, w) be a symmetric stable process, A, (®), a,, as defined above. Then the sum function of the RFS
series (1) is differentiable in the sense of mean if a, satisfy the condition

o0
Z |na,,|2 < 00.

n=—oo

Proof. By the condition on the coefficients, we have that there exists a function g € L2, such that

2
1 ,
na, = —/ef"”g(t)dt.
2
0
Let

00
Sy, w) = Z anAn(w)einy.

n=-—00
Then
Sy +h,0)—S(y,w) > enFh) _ piny
h = Z anAn (w) T
n=—oo
o inh
. -1
= Z anAn(a))e”’y(eT>
n=—oo
S inh
- -1
N N Gy
= inh
e .
=i Y dyAy(w)e™
n=—o00
which is a RFS series with weights d,,, where d,, = bn(ei::;I) and b, = na,.
Again

inh 1 ] 0 1 0 ] 27‘[1 0
el — . _ .
d,,:b,,( P ):bnﬁfe ’"tdtzna,,E/e ””dt:E/Z/g(y—t)dte Y dy.
0 —h

Thus d, is the Fourier coefficients of an integral which is absolutely continuous and hence belongs to L”, p > 0.
So we have

o0
i Y dyAn(@)e™

n=—oo

converges in the mean to

2 0
i 1
Z/%/g(y—t—é)déd)((t,w)
0 h

by the result of Pattanayak and Sahoo [6].
Thus

E( S +ho) =S 1 T

Y E/.g(y—t)dX(t,w)

0

)
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2r 0
:E< S(y+h,w2—S(ysw) _;_/lfg(y_,_g)dgdxu,w)
) h
0 —h

2

0
+2l—/—/g(y—t—§)d§dX(t w) — /g(y—t)dX(t )
T h
0 —h

A o)

C. w converges in the mean to # 02” 1 h gly—t—§&)dEdX(t,w)).
But we know that the characteristic function of

)

2 0

' 1
é/(ﬁ/g(y_t_g)dé_8(y—l)>dX(t,a))

0 —h

2 0

1
/(Z/g(y—t—é)dé—g(y—t)>dX(t,w)
0 —h

is:
o=l 13 S g—1=) ds—g(y—)|* dt

Therefore

2 0
1
(f/( /g(y—r—é)ds—g(y—r))dxa,w)
0 —h

1 ]"1 o=l 13 [ g G—t—8) ds—g (y—)|* dt
—0o0

)

du,

o u?

and by Lemma 3.2, we have:

2 0
] 1
E( ;/(-/g(y—t—sms—g(y—r))dxa,w))
T h
0 —h

/g(y—t—é)dé—g(y—t) dt

2 0
2 / 1
<— _
72 —1)
0 —h

h

1 1 — o IS5 [0 g—1=§) ds—g(y—)| dt
+—/ 3 dv.
v
lv|>1
It is known that for g € L? ([0, 27]), p > 1,
hm/‘ /g(y—t—é)dé g(y—t) dt =
Now if ?) > oz,hthen we have:
SG+ho)—SGw) 1 [
. y+n,w)— y, w
lim E - — —-1dX(t, =
hf})< A 2ﬂ/g(y ) (w)>
0

Hence the result. O
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Proof of Theorem 3.4. If 8 is such that % <l-B<l1+ %, the fractional integration of (1) of order 1 — g is defined,
which is:

o0 .

1 apAny(w)e™
Flfﬂ(t, Cl)) = Z (171)71_/3
n=—o0
By Lemma 3.5, F_g is differentiable in the sense of mean if

o]

2

n=—oo

2
< 00,

nay,
(in)!=#

that is:

o0
Z |n’3an|2 < 00.

n=—oo

Hence the result. O
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