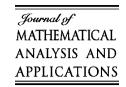


J. Math. Anal. Appl. 339 (2008) 98-107



www.elsevier.com/locate/jmaa

Convergence in mean of some random Fourier series

Saroj Kumar Dash¹, Swadheenananda Pattanayak*

Institute of Mathematics and Applications, Bhubaneswar 751007, India
Received 4 October 2006
Available online 28 June 2007
Submitted by J. Glaz

Abstract

For a symmetric stable process $X(t,\omega)$ with index $\alpha \in (1,2]$, $f \in L^p[0,2\pi]$, $p \geqslant \alpha$, $a_n = \frac{1}{2\pi} \int_0^{2\pi} e^{-int} f(t) dt$ and $A_n(\omega) = \frac{1}{2\pi} \int_0^{2\pi} e^{-int} dX(t,\omega)$, we establish that the random Fourier–Stieltjes (RFS) series $\sum_{n=-\infty}^{\prime \infty} \frac{a_n A_n(\omega) e^{int}}{(in)^{\beta}}$ converges in the *mean* to the stochastic integral $\frac{1}{2\pi} \int_0^{2\pi} f_{\beta}(t-u) dX(u,\omega)$, where f_{β} is the fractional integral of order β of the function f for $\frac{1}{p} < \beta < 1 + \frac{1}{p}$. Further it is proved that the RFS series $\sum_{n=-\infty}^{\prime \infty} \frac{a_n A_n(\omega) e^{int}}{(in)^{\beta}}$ is Abel summable to $\frac{1}{2\pi} \int_0^{2\pi} f_{\beta}(t-u) dX(u,\omega)$. Also we define fractional derivative of the sum $\sum_{n=-\infty}^{\infty} a_n A_n(\omega) e^{int}$ of order β for a_n , $A_n(\omega)$ as above and $\frac{1}{p} < 1 - \beta < 1 + \frac{1}{p}$. We have shown that the formal fractional derivative of the series $\sum_{n=-\infty}^{\infty} a_n A_n(\omega) e^{int}$ of order β exists in the sense of *mean*. © 2007 Elsevier Inc. All rights reserved.

Keywords: Symmetric stable process; Random Fourier-Stieltjes series; Stochastic integral; Fractional integral

1. Introduction

Let $X(t,\omega)$, $t\in\mathbb{R}$ be a continuous stochastic process with independent increments and f be a continuous function in [a,b]. Then the stochastic integral $\int_a^b f(t)\,dX(t,\omega)$ is defined convergence in the probability and is a random variable (cf. Lukacs [3, p. 148, Theorem (6.2.3)]). If $X(t,\omega)$ is a symmetric stable process of index $\alpha, \alpha \in (1,2]$ then the stochastic integral $\frac{1}{2\pi}\int_0^{2\pi} f(t)\,dX(t,\omega)$ is defined convergence in the probability for $f\in L^p([0,2\pi]),\ p\geqslant \alpha$ (Nayak, Pattanayak and Mishra [4]).

If $X(t,\omega)$ is a symmetric stable process with independent increments of index $\alpha \in (1,2]$, then it is shown that the stochastic integral $\int_a^b f(t) dX(t,\omega)$ is defined in the sense of convergence in the mean (cf. Kwapień and Woyczyński [2]).

^{*} Corresponding author. Fax: +91 674 2540604. E-mail address: swadhyn@yahoo.com (S. Pattanayak).

¹ This work is supported by the National Board for Higher Mathematics (NBHM) fellowship, Department of Atomic Energy, Government of India.

Again if $X(t, \omega)$ is a symmetric stable process of index $\alpha \in (1, 2]$ then it is shown that the RFS series

$$\sum_{n=-\infty}^{\infty} a_n A_n(\omega) e^{int} \tag{1}$$

converges in the mean to the stochastic integral $\frac{1}{2\pi} \int_0^{2\pi} f(t-u) dX(u,\omega)$, where

$$A_n(\omega) = \frac{1}{2\pi} \int_0^{2\pi} e^{-int} dX(t, \omega) \quad \text{for } n \in \mathbb{Z}$$
 (2)

and $a_n = \frac{1}{2\pi} \int_0^{2\pi} f(t) e^{-int} dt$ for $f \in L^p$, $p \geqslant \alpha$ and $n \in \mathbb{Z}$ (Pattanayak and Sahoo [6]).

In Pattanayak and Sahoo [5], it is shown that the RFS series $\sum_{n=-\infty}^{\prime\infty} \frac{a_n A_n(\omega) e^{int}}{(in)^{\beta}}$ (where \sum' means, that the summation does not include the term n=0) converges in the probability to the stochastic integral $\frac{1}{2\pi} \int_0^{2\pi} f_{\beta}(t-u) \, dX(u,\omega)$ with $\beta \in (\frac{1}{p}, 1+\frac{1}{p})$, where f_{β} is the fractional integral of f. But we know that the fractional integral f_{β} of order β belongs to L^p , $\forall p \geqslant 1$, if $f \in L^p([0,2\pi])$ with $p \geqslant 1$, $\beta \in (\frac{1}{p}, 1+\frac{1}{p})$ (cf. Zygmund [7, vol. II, p. 138]). We have shown in this paper that the RFS series $\sum_{n=-\infty}^{\prime\infty} \frac{a_n A_n(\omega) e^{int}}{(in)^{\beta}}$ converges in the *mean* to the stochastic integral $\frac{1}{2\pi} \int_0^{2\pi} f_{\beta}(t-u) \, dX(u,\omega)$, with $\beta \in (\frac{1}{p}, 1+\frac{1}{p})$. If $f \in L^p([0,2\pi])$, p>1 and

$$a_n = \frac{1}{2\pi} \int_{0}^{2\pi} e^{-int} f(t) dt$$
 (3)

for $n \in \mathbb{Z}$ are the Fourier coefficients of f, then it is easy to see that for each r with $0 \le r < 1$, the series

$$\sum_{n=-\infty}^{\infty} a_n r^{|n|} e^{int} \tag{4}$$

converges uniformly and represents a continuous function on $[0, 2\pi]$. Let us write

$$f_r(t) = \sum_{n = -\infty}^{\infty} a_n r^{|n|} e^{int}.$$
 (5)

Then the stochastic integral

$$\int_{0}^{2\pi} f_r(t) dX(t, \omega) \tag{6}$$

is defined convergence in the mean. Since each $f_r(t)$ is continuous, it belongs to $L^p([0, 2\pi])$ for all p > 1 and $a_n r^{|n|}$, $n \in \mathbb{Z}$ are the Fourier coefficients of $f_r(t)$. So the random series

$$\sum_{n=-\infty}^{\infty} a_n A_n r^{|n|} e^{int} \tag{7}$$

will converge to the stochastic integral

$$\frac{1}{2\pi} \int_{0}^{2\pi} f_r(t-u) dX(u,\omega) \tag{8}$$

in the sense of convergence in mean. Here $f_r(\cdot)$ is the harmonic extension of f to the disc $\{z: |z| < 1\}$ given by the Poission integral

$$\frac{1}{2\pi} \int_{0}^{2\pi} \frac{(1-r^2)f(t)dt}{1-2r\cos(\theta-t)+r^2}.$$
 (9)

It is shown that $\int_0^{2\pi} f_r(t-u) dX(u,\omega)$ converges to $\int_0^{2\pi} f(t-u) dX(u,\omega)$ as $r \to 1^-$ in the sense of mean (Pattanayak and Sahoo [6]).

This would mean $\sum_{n=-\infty}^{\infty} a_n A_n e^{int}$ is Abel summable to $\int_0^{2\pi} f(t-u) dX(u,\omega)$. A Fourier series $\sum a_n e^{int}$ is said to be Abel summable to "s" if for r with $0 \le r < 1$, $\lim_{r \to 1} \sum_{n=-\infty}^{\infty} a_n r^{|n|} e^{int} = s$.

We have shown that the RFS series $\sum_{n=-\infty}^{\infty} \frac{a_n A_n(\omega) e^{int}}{(in)^{\beta}}$ is Abel summable to $\frac{1}{2\pi} \int_0^{2\pi} f_{\beta}(t-u) dX(u,\omega)$ in the

sense of mean.

2. Definitions

Definition 2.1. Let f be defined in a closed interval I, and let

$$\omega(\delta; f) = \sup\{ |f(x_2) - f(x_1)| \colon x_1, x_2 \in I, |x_2 - x_1| \le \delta \}.$$

The function $\omega(\delta; f)$ is called the *modulus of continuity* of f.

Definition 2.2. The class λ_{β} , for $0 \le \beta < 1$, is the class of functions f on the closed interval I whose modulus of continuity $\omega(\delta; f)$ satisfies the condition $\omega(\delta; f) = o(\delta^{\beta})$.

Definition 2.3. Let $\sum_{n=-\infty}^{\infty} a_n A_n(\omega) e^{int}$ be a RFS series, where $A_n(\omega)$ are the random variables as defined in (2) with $X(t,\omega)$ a symmetric stable process of index α , $1 < \alpha \le 2$ and a_n are the Fourier coefficients of some $f \in L^p([0,2\pi]), \ p \geqslant \alpha$ with $\int_0^{2\pi} f(t) dt = 0$. Then the fractional integral of this RFS series of order β such that $\frac{1}{p} < \beta < 1 + \frac{1}{p}$ is defined to be $\sum_{n=-\infty}^{\infty} \frac{a_n A_n(\omega) e^{int}}{(in)^{\beta}}$ which converges in the sense of mean to the stochastic integral $\frac{1}{2\pi} \int_0^{2\pi} f_{\beta}(t-u) dX(u,\omega)$, where f_{β} is the fractional integral of f of order β .

Let us write

$$F_{\beta}(t,\omega) = \frac{1}{2\pi} \int_{0}^{2\pi} f_{\beta}(t-u) dX(u,\omega).$$

Now this definition of fractional integration leads to the following definition of fractional differentiation of the RFS series (1).

Definition 2.4. The RFS series $\sum_{n=-\infty}^{\infty} a_n A_n(\omega) e^{int}$ as in Definition(2.3) is said to have fractional derivative of order β in the sense of mean at $t=t_0$, if for $\beta>0$ with $\frac{1}{p}<1-\beta<1+\frac{1}{p}$, the stochastic integral $F_{1-\beta}(t,\omega)$ is differentiable in the sense of mean.

Denote this derivative by $F^{\beta}(t, \omega)$.

Definition 2.5. If the fractional derivative of the RFS series (1) exists at each $t \in [0, 2\pi]$ then it is said to have fractional derivative of order β in mean in $[0, 2\pi]$.

3. Results

Theorem 3.1. Let $X(t, \omega)$ be a symmetric stable process of index α , $1 < \alpha \le 2$, and let $A_n(\omega)$ be defined as in (2). Suppose a_n are the Fourier coefficients of some $f \in L^p([0, 2\pi])$, $p \geqslant \alpha$ with $\int_0^{2\pi} f(t) dt = 0$. Then the RFS series

$$\sum_{n=-\infty}^{\infty} \frac{a_n A_n(\omega) e^{int}}{(in)^{\beta}} \tag{10}$$

converges in the mean to the stochastic integral

$$\frac{1}{2\pi} \int_{0}^{2\pi} f_{\beta}(t-u) dX(u,\omega) \tag{11}$$

where f_{β} is the fractional integral of f of order β .

Proof of this theorem requires the following lemma.

Lemma 3.2. If $X(t, \omega)$ is a symmetric stable process with independent increment of index α , $1 < \alpha \le 2$ and $f \in L^p([a, b])$, $p \ge \alpha$ then the following inequality holds:

$$E\left(\left|\int_{a}^{b} f(t) dX(t,\omega)\right|\right) \leqslant \frac{4}{\pi(\alpha-1)} \int_{a}^{b} \left|f(t)\right|^{\alpha} dt + \frac{2}{\pi} \int_{|u|>1} \frac{1 - \exp(-|u|^{\alpha} \int_{a}^{b} |f(t)|^{\alpha} dt)}{u^{2}} du.$$

Proof. Let X(t, .) be a symmetric stable process with independent increments and let the characteristic function of the increment $X(t_1) - X(t_2)$ is equal to $\exp(-|t_1 - t_2||u|^{\alpha})$. We know that the stochastic integral $\int_a^b f(t) dX(t)$ exists in the sense of convergence in the mean for $f \in L^{\alpha}([a,b])$ (cf. Kwapień and Woyczyński [2]), and the characteristic function of this stochastic integral is

$$\Psi(u) = \exp\left(-|u|^{\alpha} \int_{a}^{b} |f(t)|^{\alpha} dt\right).$$

Expressing the expectation of the absolute value of a random variable in terms of its characteristic function (cf. Chow and Teicher [1, p. 285]), we get:

$$E\left|\int_{a}^{b} f(t) dX(t)\right| = \frac{2}{\pi} \int_{-\infty}^{\infty} \frac{1 - \operatorname{Re} \Psi(u)}{u^{2}} du$$

$$= \frac{2}{\pi} \int_{|u| \le 1} \frac{1 - \operatorname{Re} \Psi(u)}{u^{2}} du + \frac{2}{\pi} \int_{|u| > 1} \frac{1 - \operatorname{Re} \Psi(u)}{u^{2}} du.$$

But

$$\int_{|u| \leqslant 1} \frac{1 - \text{Re}\,\Psi(u)}{u^2} \, du = \int_{-1}^{1} \frac{1 - \exp(-|u|^{\alpha} \int_{a}^{b} |f(t)|^{\alpha} \, dt)}{u^2} \, du$$

$$\leqslant \int_{-1}^{1} \frac{|u|^{\alpha} \int_{a}^{b} |f(t)|^{\alpha} \, dt}{u^2} \, du \quad (\because 1 - e^{-x} \leqslant x, \text{ for } x > 0)$$

$$= 2 \int_{0}^{1} |u|^{\alpha - 2} \, du \int_{a}^{b} |f(t)|^{\alpha} \, dt$$

$$= \frac{2}{\alpha - 1} \int_{a}^{b} |f(t)|^{\alpha} \, dt.$$

Therefore

$$E\left|\int_{a}^{b} f(t) \, dX(t)\right| \leq \frac{4}{\pi(\alpha - 1)} \int_{a}^{b} \left|f(t)\right|^{\alpha} dt + \frac{2}{\pi} \int_{|u| > 1} \frac{1 - \exp(-|u|^{\alpha} \int_{a}^{b} |f(t)|^{\alpha} \, dt)}{u^{2}} \, du.$$

Hence the result. \Box

Proof of Theorem 3.1. Consider the fractional integral f_{β} of f of order $\beta > 0$. This $f_{\beta} \in \lambda_{\beta - \frac{1}{p}}$ (Definition 2.2) as $f \in L^p([0, 2\pi])$, $(p \ge 1)$ and $\beta > 0$ is such that $\frac{1}{p} < \beta < 1 + \frac{1}{p}$ (cf. Zygmund [7, vol. II, p. 138]). It is clear that $f_{\beta} \in \lambda_0$, the class of continuous functions and hence $f_{\beta} \in L^p([0, 2\pi])$ for all $p \ge 1$. Hence (cf. Kwapień and Woyczyński [2]), we have that $\int_0^{2\pi} f_{\beta}(t) dX(t, \omega)$ is defined in the sense of mean.

Now let

$$S_n(t) = \sum_{k=-n}^{n'} \frac{a_k A_k(\omega) e^{ikt}}{(ik)^{\beta}}$$

be the *n*th partial sum of the RFS series (Theorem 3.1) and that of f_{β} be

$$s_n(t) = \sum_{k=-n}^{n} \frac{a_k e^{ikt}}{(ik)^{\beta}}.$$

Therefore

$$S_{n}(t) = \sum_{k=-n}^{n'} \frac{a_{k} A_{k}(\omega) e^{ikt}}{(ik)^{\beta}}$$

$$= \sum_{k=-n}^{n'} \frac{a_{k}}{(ik)^{\beta}} \left(\frac{1}{2\pi} \int_{0}^{2\pi} e^{-iku} dX(u, \omega)\right) e^{ikt}$$

$$= \sum_{k=-n}^{n'} \frac{a_{k}}{(ik)^{\beta}} \cdot \frac{1}{2\pi} \int_{0}^{2\pi} e^{ik(t-u)} dX(u, \omega)$$

$$= \frac{1}{2\pi} \int_{0}^{2\pi} \sum_{k=-n}^{n'} \frac{a_{k}}{(ik)^{\beta}} e^{ik(t-u)} dX(u, \omega)$$

$$= \frac{1}{2\pi} \int_{0}^{2\pi} s_{n}(t-u) dX(u, \omega).$$

Now

$$E\left(\left|\frac{1}{2\pi}\int_{0}^{2\pi}f_{\beta}(t-u)dX(u,\omega) - S_{n}(t)\right|\right)$$

$$= E\left(\left|\frac{1}{2\pi}\int_{0}^{2\pi}f_{\beta}(t-u)dX(u,\omega) - \frac{1}{2\pi}\int_{0}^{2\pi}s_{n}(t-u)dX(u,\omega)\right|\right)$$

$$= E\left(\left|\frac{1}{2\pi}\int_{0}^{2\pi}\left[f_{\beta}(t-u) - s_{n}(t-u)\right]dX(u,\omega)\right|\right)$$

$$\leqslant \frac{2}{\pi^{2}(\alpha-1)}\int_{0}^{2\pi}\left|f_{\beta}(t-u) - s_{n}(t-u)\right|^{\alpha}du$$

$$+ \frac{1}{\pi^{2}}\int_{0}^{2\pi}\frac{1 - \exp(-|v|^{\alpha}\int_{0}^{2\pi}|f_{\beta}(t-u) - s_{n}(t-u)|^{\alpha}du)}{v^{2}}dv \quad \text{(by Lemma 3.2)}.$$

It is known that (cf. Zygmund [7, p. 266]) for $f_{\beta} \in L^p([0, 2\pi]), p > 1$,

$$\lim_{n\to\infty}\int_{0}^{2\pi}\left|f_{\beta}(t-u)-s_{n}(t-u)\right|^{p}du=0.$$

Now if $p \ge \alpha$ then we have:

$$\lim_{n\to\infty} E\left(\left|\frac{1}{2\pi}\int_{0}^{2\pi} f_{\beta}(t-u) dX(u,\omega) - S_{n}(t)\right|\right) = 0.$$

Hence the result. \Box

In the next theorem it is established that the RFS series

$$\sum_{n=-\infty}^{\infty} \frac{a_n A_n(\omega) e^{int}}{(in)^{\beta}}$$

is Abel summable to

$$\frac{1}{2\pi} \int_{0}^{2\pi} f_{\beta}(t-u) dX(u,\omega)$$

in the sense of mean.

Theorem 3.3. Let $X(t, \omega)$ be a symmetric stable process of index α , with $1 < \alpha \le 2$, and $f(t) \in L^p([0, 2\pi])$, $p \ge \alpha$. If $A_n(\omega) = \frac{1}{2\pi} \int_0^{2\pi} e^{-int} dX(t, \omega)$ and $a_n = \frac{1}{2\pi} \int_0^{2\pi} e^{-int} f(t) dt$, then the RFS series

$$\sum_{n=-\infty}^{\infty} \frac{a_n A_n(\omega) e^{int}}{(in)^{\beta}}$$

is Abel summable to

$$\frac{1}{2\pi} \int_{0}^{2\pi} f_{\beta}(t-u) dX(u,\omega)$$

in the sense of mean.

Proof. As we know, for each r with $0 \le r < 1$, the series

$$\sum_{n=-\infty}^{\infty} a_n r^{|n|} e^{int}$$

converges uniformly and represents a continuous function and hence belongs to L^p , for all p > 1.

Therefore the series

$$\sum_{n=-\infty}^{\infty} \frac{a_n r^{|n|} e^{int}}{(in)^{\beta}}$$

also converges uniformly and represents a continuous function and hence belongs to L^p , for all p > 1. Denote

$$f_{r_{\beta}}(t) = \sum_{n=-\infty}^{\infty} \frac{a_n r^{|n|} e^{int}}{(in)^{\beta}}, \quad 0 \leqslant r \leqslant 1.$$

Since $f_{\beta} \in L^p$, $p \geqslant \alpha$, a_n are the Fourier coefficients of $f \in L^p$, and $0 \leqslant r < 1$, each $f_{r_{\beta}} \in L^p$, $p \geqslant \alpha$. So by Theorem 3.1 the RFS series

$$\sum_{n=-\infty}^{\infty} \frac{a_n A_n r^{|n|} e^{int}}{(in)^{\beta}}$$

will converge to the stochastic integral

$$\frac{1}{2\pi} \int_{0}^{2\pi} f_{r_{\beta}}(t-u) dX(u,\omega)$$

in the sense of mean. Since the RFS series

$$\sum_{n=-\infty}^{\infty} \frac{a_n A_n e^{int}}{(in)^{\beta}}$$

converges to the stochastic integral

$$\frac{1}{2\pi} \int_{0}^{2\pi} f_{\beta}(t-u) dX(u,\omega)$$

in the sense of mean, we have:

$$\begin{split} E\left(\left|\frac{1}{2\pi}\int_{0}^{2\pi}f_{r_{\beta}}(t-u)\,dX(u,\omega) - \frac{1}{2\pi}\int_{0}^{2\pi}f_{\beta}(t-u)\,dX(u,\omega)\right|\right) \\ &= E\left(\left|\frac{1}{2\pi}\int_{0}^{2\pi}\left[f_{r_{\beta}}(t-u) - f_{\beta}(t-u)\right]dX(u,\omega)\right|\right) \\ &\leqslant \frac{2}{\pi^{2}(\alpha-1)}\int_{0}^{2\pi}\left|f_{r_{\beta}}(t-u) - f_{\beta}(t-u)\right|^{\alpha}du \\ &+ \frac{1}{\pi^{2}}\int_{|u|>1}\frac{1-\exp(-|v|^{\alpha}\int_{0}^{2\pi}|f_{r_{\beta}}(t-u) - f_{\beta}(t-u)|^{\alpha}du)}{v^{2}}\,dv \quad \text{(by Lemma 3.2)}. \end{split}$$

We know that the integral $\int_0^{2\pi} |f_{r_\beta}(t-u) - f_\beta(t-u)|^{\alpha} du$ tends to 0 as $r \to 1$ if $f_\beta \in L^p$, p > 1 (cf. Zygmund [7, p. 150]). As $\frac{1}{v^2}$ in the integrand of the second integral is dominated by "1," the second integral also tends to "0." Hence the result. \Box

A sufficient condition for the existence of fractional derivative of order β in the sense of mean of the RFS series (1) is obtained in the following theorem.

Theorem 3.4. The RFS series (1) having conditions as stated in Definition 2.3 has fractional derivative of order β in the sense of mean, for $\beta > 0$ with $\frac{1}{p} < 1 - \beta < 1 + \frac{1}{p}$ if

$$\sum_{n=-\infty}^{\infty} \left| n^{\beta} a_n \right|^2 < \infty.$$

Proof of this theorem requires the following lemma.

Lemma 3.5. Let $X(t, \omega)$ be a symmetric stable process, $A_n(\omega)$, a_n as defined above. Then the sum function of the RFS series (1) is differentiable in the sense of mean if a_n satisfy the condition

$$\sum_{n=-\infty}^{\infty} |na_n|^2 < \infty.$$

Proof. By the condition on the coefficients, we have that there exists a function $g \in L^2$, such that

$$na_n = \frac{1}{2\pi} \int_{0}^{2\pi} e^{-int} g(t) dt.$$

Let

$$S(y,\omega) = \sum_{n=-\infty}^{\infty} a_n A_n(\omega) e^{iny}.$$

Then

$$\frac{S(y+h,\omega) - S(y,\omega)}{h} = \sum_{n=-\infty}^{\infty} a_n A_n(\omega) \left(\frac{e^{in(y+h)} - e^{iny}}{h} \right)$$

$$= \sum_{n=-\infty}^{\infty} a_n A_n(\omega) e^{iny} \left(\frac{e^{inh} - 1}{h} \right)$$

$$= \sum_{n=-\infty}^{\infty} ina_n A_n(\omega) e^{iny} \left(\frac{e^{inh} - 1}{inh} \right)$$

$$= i \sum_{n=-\infty}^{\infty} d_n A_n(\omega) e^{iny}$$

which is a RFS series with weights d_n , where $d_n = b_n(\frac{e^{inh}-1}{inh})$ and $b_n = na_n$. Again

$$d_n = b_n \left(\frac{e^{inh} - 1}{inh} \right) = b_n \frac{1}{h} \int_{-h}^{0} e^{-int} dt = na_n \frac{1}{h} \int_{-h}^{0} e^{-int} dt = \frac{1}{2\pi} \int_{0}^{2\pi} \frac{1}{h} \int_{-h}^{0} g(y - t) dt e^{-iny} dy.$$

Thus d_n is the Fourier coefficients of an integral which is absolutely continuous and hence belongs to L^p , p > 0. So we have

$$i\sum_{n=-\infty}^{\infty}d_nA_n(\omega)e^{iny}$$

converges in the mean to

$$\frac{i}{2\pi} \int_{0}^{2\pi} \int_{-h}^{0} \int_{-h}^{0} g(y - t - \xi) d\xi dX(t, \omega)$$

by the result of Pattanayak and Sahoo [6].

Thuc

$$E\left(\left|\frac{S(y+h,\omega)-S(y,\omega)}{h}-\frac{1}{2\pi}\int_{0}^{2\pi}g(y-t)\,dX(t,\omega)\right|\right)$$

$$\begin{split} &= E\left(\left|\frac{S(y+h,\omega) - S(y,\omega)}{h} - \frac{i}{2\pi} \int_{0}^{2\pi} \frac{1}{h} \int_{-h}^{0} g(y-t-\xi) \, d\xi \, dX(t,\omega) \right. \\ &+ \frac{i}{2\pi} \int_{0}^{2\pi} \frac{1}{h} \int_{-h}^{0} g(y-t-\xi) \, d\xi \, dX(t,\omega) - \frac{1}{2\pi} \int_{0}^{2\pi} g(y-t) \, dX(t,\omega) \right| \right) \\ &= E\left(\left|\frac{i}{2\pi} \int_{0}^{2\pi} \left(\frac{1}{h} \int_{-h}^{0} g(y-t-\xi) \, d\xi - g(y-t)\right) \, dX(t,\omega)\right| \right) \end{split}$$

 $(\because \frac{S(y+h,\omega)-S(y,\omega)}{h}$ converges in the mean to $\frac{i}{2\pi}\int_0^{2\pi}\frac{1}{h}\int_{-h}^0g(y-t-\xi)\,d\xi\,dX(t,\omega))$. But we know that the characteristic function of

$$\int_{0}^{2\pi} \left(\frac{1}{h} \int_{-h}^{0} g(y - t - \xi) d\xi - g(y - t) \right) dX(t, \omega)$$

is:

$$e^{-c|u|^{\alpha}\int_{0}^{2\pi}|\frac{1}{h}\int_{-h}^{0}g(y-t-\xi)d\xi-g(y-t)|^{\alpha}dt}$$

Therefore

$$E\left(\left|\frac{i}{2\pi}\int_{0}^{2\pi} \left(\frac{1}{h}\int_{-h}^{0} g(y-t-\xi) d\xi - g(y-t)\right) dX(t,\omega)\right|\right)$$

$$= \frac{1}{2\pi}\int_{-\infty}^{\infty} \frac{1 - e^{-c|u|^{\alpha} \int_{0}^{2\pi} \left|\frac{1}{h}\int_{-h}^{0} g(y-t-\xi) d\xi - g(y-t)\right|^{\alpha} dt}}{u^{2}} du,$$

and by Lemma 3.2, we have:

$$E\left(\left|\frac{i}{2\pi}\int_{0}^{2\pi}\left(\frac{1}{h}\int_{-h}^{0}g(y-t-\xi)\,d\xi-g(y-t)\right)dX(t,\omega)\right|\right)$$

$$\leq \frac{2}{\pi^{2}(\alpha-1)}\int_{0}^{2\pi}\left|\frac{1}{h}\int_{-h}^{0}g(y-t-\xi)\,d\xi-g(y-t)\right|^{\alpha}dt$$

$$+\frac{1}{\pi^{2}}\int_{|v|>1}\frac{1-e^{-|v|^{\alpha}\int_{0}^{2\pi}\left|\frac{1}{h}\int_{-h}^{0}g(y-t-\xi)\,d\xi-g(y-t)\right|^{\alpha}dt}}{v^{2}}\,dv.$$

It is known that for $g \in L^p([0, 2\pi]), p > 1$,

$$\lim_{h \to 0} \int_{0}^{2\pi} \left| \frac{1}{h} \int_{-h}^{0} g(y - t - \xi) d\xi - g(y - t) \right|^{\alpha} dt = 0.$$

Now if $p \geqslant \bar{\alpha}$, then we have:

$$\lim_{h\to 0} E\left(\left|\frac{S(y+h,\omega)-S(y,\omega)}{h}-\frac{1}{2\pi}\int_{0}^{2\pi}g(y-t)\,dX(t,\omega)\right|\right)=0.$$

Hence the result. \Box

Proof of Theorem 3.4. If β is such that $\frac{1}{p} < 1 - \beta < 1 + \frac{1}{p}$, the fractional integration of (1) of order $1 - \beta$ is defined, which is:

$$F_{1-\beta}(t,\omega) = \sum_{n=-\infty}^{\infty} \frac{a_n A_n(\omega) e^{int}}{(in)^{1-\beta}}.$$

By Lemma 3.5, $F_{1-\beta}$ is differentiable in the sense of mean if

$$\sum_{n=-\infty}^{\infty} \left| \frac{na_n}{(in)^{1-\beta}} \right|^2 < \infty,$$

that is:

$$\sum_{n=-\infty}^{\infty} \left| n^{\beta} a_n \right|^2 < \infty.$$

Hence the result. \Box

References

- [1] Y.S. Chow, H. Teicher, Probability Theory, third ed., Springer International Edition, 1997.
- [2] S. Kwapień, W.A. Woyczyński, Random Series and Stochastic Integrals: Single and Multiple, Birkhäuser, 1992.
- [3] E. Lukacs, Stochastic Convergence, second ed., Academic Press, 1975.
- [4] C. Nayak, S. Pattanayak, M.N. Mishra, Random Fourier-Stieltjes series associated with stable process, Tohoku Math. J. 39 (1) (1987) 1-15.
- [5] S. Pattanayak, S. Sahoo, Fractional derivative of random Fourier-Stieltjes series, Indian J. Math. 46 (1) (2004) 101-109, MR 2005g:42014.
- [6] S. Pattanayak, S. Sahoo, On summability of random Fourier-Stieltjes series, J. Int. Acad. Phys. Sci. 9 (2005) 9-17.
- [7] A. Zygmund, Trigonometric Series, third ed., Cambridge Univ. Press, 2002.