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Cosmic Censorship in Higher dimension II
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Generalizing earlier results on dust collapse in higher dimensions, we show here that cosmic
censorship can be restored in gravitational collapse with tangential pressure present if we take
the spacetime dimension to be N ≥ 6. This is under conditions to be motivated physically, such
as the smoothness of initial data from which the collapse develops. The models considered here
incorporating a non-zero tangential pressure include the Einstein cluster spacetime.
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I. INTRODUCTION

We pointed out recently ([1], to be referred to here
as paper I), that the naked singularities of dust col-
lapse which were suggested by the analytic work of
Christodoulou, and numerical considerations by Eard-
ley and Smarr [3], can be removed when one goes to
a higher spacetime dimension. These naked singularities
arise as collapse end state when one considers the gravi-
tational collapse of dust developing from a smooth initial
data with various other restrictions. This would thus re-
store the cosmic censorship, at least for collapsing dust,
when one allows for the possibility that spacetime has
a sufficiently higher dimension, and when one can moti-
vate various restrictions such as smoothness of the initial
data, possibly through various considerations on what
is a physically realistic model for gravitational collapse.
Several subcases of dust collapse in higher dimensions
have also been discussed by various authors [2].
There is a considerable motivation provided in recent

years for considering the possibility for the spacetime to
have higher dimensions, which mainly arises from the
string theoretic and other related considerations. How-
ever, an immediate important question that comes up is
whether the results such as those in paper I would gener-
alize when we allow the collapsing matter to have a non-
zero pressure, rather than having strictly the idealized
form of dust where pressures necessarily vanish. Clearly,
any realistic collapsing configuration must take non-zero
pressures into account while figuring out an issue such as
possible final endstates for gravitational collapse.
There have been extensive studies of gravitational col-

lapse models in recent years, particularly from the per-
spective of investigating collapse end states in terms of
either black holes or naked singularity formation, and
to examine the validity or otherwise of the cosmic cen-
sorship conjecture, which is one of the most fundamen-
tal issues in black hole physics today [4]. The generic
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result of such studies has been, depending on the na-
ture of the regular initial data from which the collapse
evolves, either a black hole or a naked singularity devel-
ops as the collapse end state within the usual framework
of four-dimensional spacetime. In order to ask a ques-
tion as to what happens to such naked singularities of
collapse when one goes to higher spacetime dimensions,
it would be appropriate and necessary to examine the
case of gravitational collapse where pressures have been
included explicitly, even if in a somewhat restricted man-
ner. A well-known example of gravitational collapse with
pressure is the so called Einstein cluster, where the pres-
sure is purely tangential, and the radial pressures vanish
identically [5]. This model has been studied extensively
to find the end state of a continual collapse [6], and it
is shown that both black holes or naked singularities do
result as final outcome of collapse.

Our purpose here is to examine the Einstein clus-
ter model, and some other collapse configurations with
purely tangential pressure, in a higher dimensional space-
time. We show that the results such as those in paper I
on the avoidance of naked singularity in a higher space-
time dimension do generalize to this case as well. It is
thus seen that even when the gravitational collapse with
a tangential pressure is considered, rather than just the
pressureless dust, we can still remove the naked singu-
larity and restore the cosmic censorship by going to a
higher spacetime dimension. We consider the collapse
with tangential pressure in N dimensions, and consider
only smooth initial profiles. Two different tangential
pressure models are explicitly discussed to demonstrate
that the gravitational collapse from smooth initial pro-
files would necessarily restore the cosmic censorship in
higher dimensions (N ≥ 6), and that the collapse end-
state will be necessarily a black hole.

In particular, as pointed out above, the Einstein cluster
model has been analyzed extensively towards examining
the final end state of collapse in terms of deducing the
black hole or naked singularity formation, and is known
to provide a useful counter-example to cosmic censor-
ship. It is hence interesting that the naked singularities
of this model can be removed, and cosmic censorship re-
stored, by going to higher dimensions. Both the models
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discussed here, which have radial pressure vanishing but
a non-zero tangential pressure present, include dust as a
special case. Thus the considerations here generalize the
results of paper I, and thus the conclusions derived in
the case of dust there are generalized to the case when a
non-zero pressure is included in the collapse scenario.
The outline of the paper is as follows. In Section II

we discuss the collapse equations and the regularity con-
ditions. In Section III, non-static Einstein cluster model
is discussed and it is demonstrated how the given sets of
initial value parameters, such as the initial density and
angular momentum values, decide the singularity curve
for the collapse. In section IV we construct one more
tangential pressure model with specific choice of one of
the metric functions. The dependence of nature of singu-
larity on the number of dimensions for both these models
is examined in Section V. Some conclusions are given in
Section VI.

II. EINSTEIN EQUATIONS, REGULARITY

AND ENERGY CONDITIONS

Let us consider a general spherically symmetric metric
in N ≥ 4 dimensions which can be written as,

ds2 = −eν(t,r)dt2 + e2ψ(t,r)dr2 +R2(t, r)dΩ2
N−2 (1)

where,

dΩ2
N−2 =

N−2
∑

i=1





i−1
∏

j=1

sin2(θj)



 (dθi)2 (2)

is the line element on (N − 2) sphere. Also let us assume
the above frame is a comoving coordinate system, i.e. the
energy-momentum tensor for a Type I matter field [7] has
the form,

T tt = −ρ; T rr = pr; T
θ
θ = T φφ = pθ (3)

We also take the matter field to satisfy the weak energy

condition, that is, the energy density measured by any
local timelike observer be non-negative, and so for any
timelike vector V i we have,

TikV
iV k

≥ 0 (4)

which amounts to,

ρ ≥ 0; ρ+ pθ ≥ 0 (5)

In the case of a finite collapsing cloud, there is a finite
boundary 0 < r < rb, outside which it is matched to an
asymptotically flat exterior. The range of the coordinates
for the metric is then 0 < r < rb, and −∞ < t < ts(r)
where ts(r) corresponds to the epoch where the shell la-
beled r reached the spacetime singularity. The dynami-
cal evolution of the system is determined by the Einstein
equations, and for the metric (1) these are given as,

ρ =
(N − 2)F ′

2RN−2R′
, pr = −

(N − 2)Ḟ

2RN−2Ṙ
(6)

ν′(ρ+ pr) = (N − 2)(pθ − pr)
R′

R
− p′r (7)

−2Ṙ′ +R′ Ġ

G
+ Ṙ

H ′

H
= 0 (8)

G−H = 1−
F

RN−3
(9)

where,

G(t, r) = e−2ψ(R′)2; H(t, r) = e−2ν(Ṙ)2 (10)

Here F = F (t, r) is called the mass function of the
collapsing cloud which is interpreted as the total mass
within the shell of comoving radius r. The energy con-
dition then implies F ′ ≥ 0. It follows from the above
expression for density that there is a spacetime singu-
larity at R = 0 and at R′ = 0. The later are called
shell-crossing singularities, which occur when successive
shells of matter cross each other. These have not been
considered generally to be genuine spacetime singulari-
ties, and possible extensions of spacetime have been in-
vestigated through the same [8]. On the other hand, the
singularity at R = 0 is where all matter shells collapse to
a zero physical radius, and hence this has been known as
a shell-focusing singularity. The nature of this singular-
ity has been investigated extensively in four-dimensional
spacetimes (see e.g. references in [4]). In particular, it is
known for the case of four dimensional spherical collapse
of tangential pressure models that this singularity can be
naked or covered, depending on the nature of the initial
data from which the collapse develops [9].
We now use the scaling independence of the comoving

coordinate r to write (see e.g. [10]),

R(t, r) = r v(t, r) (11)

and we have,

v(ti, r) = 1 ; v(ts(r), r) = 0 ; v̇ < 0 (12)

where ti and ts stand for the initial and the singular
epochs respectively. The coordinate r has been scaled in
such a way that at the initial epoch we have R = r, and
at the singularity R = 0. The fact that we deal here with
only collapse models gives the condition Ṙ < 0, or equiv-
alently v̇ < 0. It should be noted that we have R = 0
both at the regular center r = 0 of the cloud, and at the
spacetime singularity, where all matter shells collapse to
a zero physical radius. The regular center is then distin-
guished from the singularity by a suitable behaviour of
the mass function F (t, r) so that the density remains fi-
nite and regular there at all times till the singular epoch.
The introduction of the parameter v as above then al-
lows us to distinguish the spacetime singularity from the
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regular center, with v = 1 at the initial epoch, including
at the center r = 0, which then decreases monotonically
with time as collapse progresses to the value v = 0 at the
singularity R = 0.
We shall consider here the models where the radial

component of the pressure necessarily vanishes (pr = 0),
but the tangential pressure can be non-zero. In order
to ensure the regularity of the initial data, and for the
case of vanishing radial pressure, it is evident from the
equation (6) that at the initial epoch the function F (t, r)
must have the following form,

F = r(N−1)M(r) (13)

From equation (7) we get at the initial epoch,

ν0(r) =

∫ r

0

2pθ0
rρ0

dr (14)

Now, to preserve the regularity of the initial data it is
evident that the tangential pressures at the center should
also vanish at any non-singular epoch, i.e. pθ0(0) = 0.
Then we can see that ν0(r) has the form,

ν0(r) = r2g(r) (15)

where g(r) is at least a C1 function of r at r = 0, and at
least a C2 function for r > 0. Let us now define a suitably
differentiable function A(r, v) in the following manner,

ν′(r, v) = A(r, v),vR
′ (16)

That is, A(r, v) ≡ ν′/R′. Then from equation (7) we
have the equation of state given as,

pθ =
1

N − 2
A,vRρ (17)

Now using equation (16) we can integrate (8) to get,

G = b(r)e2rA (18)

Here b(r) is another arbitrary function of the comoving
coordinate r. Following a comparison with dust collapse
models we can write,

b(r) = 1 + r2b0(r) (19)

where b0(r) is the energy distribution function for the
collapsing shells. Finally, using equations (16), (18) and
(19) in (9) we have,

R
N−3

2 Ṙ = −eν
√

(1 + r2b0)RN−3e2rA −RN−3 + rN−1M

(20)
Again, defining a new function h(r, v) as,

h(r, v) =
e2rA − 1

r2
(21)

we can finally integrate the equation (9) to get,

t(v, r) =

∫ 1

v

v
N−3

2 dv
√

e2(ν+rA)b0vN−3 + e2ν(vN−3h+M)
(22)

The time of singularity for a shell at a comoving coordi-
nate radius r is the time when the physical radius R(r, t)
becomes zero, and is given as ts(r) = t(0, r). The shells
collapse consecutively, that is one after the other to the
center as there are no shell-crossings. Taylor expanding
the above function around r = 0, we get,

t(v, r) = t(v, 0) + r
dt(v, r)

dr

∣

∣

∣

∣

r=0

+
r2

2!

d2t(v, r)

d2r2

∣

∣

∣

∣

r=0

(23)

Let us denote,

Xn(v) =
dnt(v, r)

drn

∣

∣

∣

∣

r=0

(24)

We shall now assume that the initial density, pressure
and energy functions ρ(r), pθ0(r) and b0(r) are smooth
and even, ensuring their analytic nature. We note that
the Einstein equations as such do not impose any such
restriction, which are to be physically motivated, and it
implies a certain mathematical simplicity in arguments
to deal with a dynamical collapse. It follows that M(r),
pθ0(r) and b0(r) are now smooth C∞ functions, which
means the Taylor expansions of these functions around
the center must be of the following form,

M(r) = M00 +M02r
2 +M04r

4 + · · · (25)

pθ0(r) = pθ02r
2 + pθ04r

4 + · · · (26)

b0(r) = b00r
2 + b02r

4 + · · · (27)

This means that, all odd terms in r vanish in these ex-
pansions, and the presence of only even terms would en-
sure smoothness. We shall now investigate two different
well-known tangential pressure models with smooth ini-
tial profiles to show that the naked singularities arising
in gravitational collapse in usual four dimensions are re-
moved when we make a transition to higher dimensional
(N ≥ 6) spacetimes.

III. COLLAPSE OF EINSTEIN CLUSTER

The Einstein cluster model [5, 6] has been studied ex-
tensively towards examining the final end state of a grav-
itational collapse in terms of either a black hole or naked
singularity. This is a system in which the radial pres-
sure is vanishing, but a non-zero tangential pressure is
present. It is a spherically symmetric cluster of rotat-
ing particles where the motion of the particles is sus-
tained by an angular momentum which has an average ef-
fect of creating a non-zero tangential pressure within the
cloud. Neighbouring shell particles are counter-rotating
such that spherical symmetry is preserved. In four di-
mensions it is known to show naked singularity as one
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of the possible end states of collapse when smooth initial
profiles are taken into account [11].
We consider a non-static cluster of gravitating particles

moving along circular paths around the center of symme-
try in N dimensions. The neighboring shells are counter-
rotating so that in any small volume their total angular
momentum would be zero. For the non-static Einstein
cluster models, we have equation of state as given by,

pθ =
1

N − 2

(

L2

R2 + L2

)

ρ (28)

where L(r) is a function of the radial coordinate r only
and is known as the specific angular momentum. A com-
parison with equation (17) gives,

A,v =
L2

R(R2 + L2)
(29)

We can integrate the above equation to get,

e2rA =
R2

R2 + L2
(30)

Considering initial density, pressure and energy profiles
to be smooth would ensure L(r) also to be smooth and
it can be seen from equations (25), (26) and (28) that it
is in the form,

L2(r) = L04r
4 + L06r

6 + · · · (31)

Since we have,

ν =

∫

(v + rv′)L2(r)

rv(L2(r) + r2v2)
dr (32)

we see that around the regular center r = 0 the function
ν can be expanded as,

ν ∼ ν02(v)r
2 + ν04(v)r

4 + · · · (33)

From equations (30) and (31) we see that,

e2rA = A00 +A02r
2 +A04r

4 + · · · (34)

Now in this case we can write the function t(v, r) as,

t(v, r) =

∫ 1

v

v
N−3

2

√

v2 + L2

r2
dv

eν
√

b0vN−1 −
(

L2

r4

)

vN−3 +M
(

v2 + L2

r2

)

(35)
As we have taken the initial data with only even powers
of r, the first derivatives of all the functions appearing
in above equation vanish at r = 0, hence we have for the
quantity X which was defined in equation (24),

X1(v) = 0 (36)

The time for the central shell to reach the singularity is
given as

ts0 =

∫ 1

0

v
N−3

2 dv

eν0
√

b0vN−3 +M
(37)

Also, for the ts(0) to be defined one must have the con-
dition,

b0v +M0 > 0 (38)

The time for other shells close to the center to reach the
singularity, i.e. the equation for the singularity curve can
now be given by,

ts(r) = ts0 + r2
X2(0)

2
+ · · · (39)

Here we see that the value of the quantity X2(0) de-
pends on the different functional forms of the free func-
tions L(r) and M(r), which corresponds to the initial
data for this model. In order to determine the visibil-
ity or otherwise of the singularity at R = 0, we need to
analyze the causal structure of the trapped surfaces and
the nature and behaviour of null geodesics in the vicinity
of the same. If there exist future directed null geodesics
with past end point at the singularity, which go out to
faraway observers in the spacetime, then the singularity
is naked. In the case otherwise, we have a black hole re-
sulting as the end state of a continual collapse. We shall
discuss this in section V.

IV. COLLAPSE WITH ν = c(t) + ν0(R)

Now we construct another explicit example of a col-
lapse model with a vanishing radial but non-vanishing
tangential pressure in N dimensions, with smooth initial
data. Let us assume,

ν(t, r) = c(t) + ν0(R) (40)

We note that the above again includes dust as a special
case, which corresponds to ν0 = 0. A comparison with
equation (17) gives,

A,v = ν0,R (41)

Also using equation (40) in equation (8), we have,

G(t, r) = b(r)e2ν0(R) (42)

Also we can integrate the equation (14) and get,

ν0(R) = pθ2R
2 +

(pθ4 − ρ2pθ2)

2
R4 + · · · (43)

Using equations (13),(40) and (42) in equation (9), we
have,

R
N−3

2 Ṙ = −a(t)eν0(R)K(r, R) (44)

where we have defined,

K(r, R) =
√

(1 + r2b0)RN−3e2ν0 −RN−3 + rN−1M

(45)
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Here a(t) is a function of time. By a suitable scaling of
the time coordinate, we can always make a(t) = 1. The

negative sign is due to the fact that Ṙ < 0, which is the
collapsing cloud condition. Let us define a function h(R)
as,

h(R) =
e2ν0(R) − 1

R2
= 2g(R) +O(R2) (46)

Using equation (46) in equation (44), we have after sim-
plification,

v
N−3

2 v̇ = −

√

e4ν0vN−3b0 + e2ν0 (vN−1h(rv) +M) (47)

Integrating the above equation, we get,

t(v, r) =

∫ 1

v

v
N−3

2 dv
√

e4ν0vN−3b0 + e2ν0 (vN−1h(rv) +M)
(48)

As we have taken the initial data with only even powers
of r, the first derivatives of the functions appearing in
above equation vanish at r = 0, hence we have,

X1(v) = 0 (49)

Again, the time for other shells close to the center to
reach the singularity can now be given by the equation,

ts(r) = ts0 + r2
X2(0)

2
+ · · · (50)

V. BEHAVIOUR OF THE APPARENT

HORIZON

The outcome of a gravitational collapse, in terms of
either a black hole or a naked singularity, is determined
by the causal behaviour of non-spacelike curves in the
vicinity of the singularity. If there exist future directed
families of non-spacelike curves which reach the far away
observers in the future, and which have past end point
at the singularity, then the singularity forming as col-
lapse endstate will be visible. In the case otherwise, the
horizon forms early enough and the outcome is a black
hole. To determine this, we can analyze the behaviour of
the apparent horizon within the spacetime, which is the
boundary of the trapped surfaces forming as the collapse
develops.
This boundary of the trapped region of the space-time

is given within the collapsing cloud by the equation,

F

RN−3
= 1 (51)

which is the equation for the apparent horizon. If the
neighborhood of the center gets trapped earlier than the
singularity, then it is covered, otherwise it is naked with
families of non-spacelike future directed trajectories es-
caping away from it. For example, it follows from the
above equation that along the singularity curve t = ts(r)

(which corresponds to R = 0), for any r > 0 we have
F (r) going to a constant positive value, whereas the area
radius R → 0. Hence it follows that trapping already
occurs before the singularity develops at any r > 0 along
the singularity curve ts(r) whenever a suitable energy
condition is satisfied.
What we need to determine now is when there will be

families of non-spacelike paths coming out of the central
singularity at r = 0, t = ts(0), reaching outside observers,
and when there will be none. The visibility or otherwise
of the singularity is decided accordingly. By determin-
ing the nature of the singularity curve, and its relation
to the initial data, we are able to deduce whether the
trapped surface formation in collapse takes place before
or after the central singularity. It is this causal structure
that determines the possible emergence or otherwise of
non-spacelike paths from the singularity, and settles the
final outcome in terms of either a black hole or naked
singularity. From equation (51), we have,

vah(r) = [r2M(r)]
1

N−3 (52)

Using the above equation in (35) and (48) we get the
following results. In case of Einstein cluster, the equation
of apparent horizon in (t, r) plane as,

tah(r) = ts(r)−B1(r) (53)

B1(r) =

∫ vah

0

v
N−3

2

√

v2 + L2

r2
dv

eν
√

b0vN−1 −
(

L2

r4

)

vN−3 +M
(

v2 + L2

r2

)

(54)
whereas in case of the second model we have the equation
of apparent horizon in (t, r) plane given as,

tah(r) = ts(r)−B2(r) (55)

B2(r) =

∫ vah

0

v
N−3

2 dv
√

e4ν0vN−3b0 + e2ν0 (vN−1h(rv) +M)
(56)

As we are considering the behaviour of the apparent hori-
zon close to the central singularity at r = 0, R = 0 (all
other points r > 0 on the singularity curve are already
covered), therefore the upper limit of integration in the
above equation is small, and hence we can expand the in-
tegrand in a power series in v, and keep only the leading
order term, which for both the models amounts to,

tah(r) = ts0 + r2
X2(0)

2
+ · · · − r

N−1

N−3

2

N − 1
M

1

N−3

0 (57)

It is now possible to analyze the effect of the number of
dimensions on the nature and shape of the apparent hori-
zon. Firstly, note when we work in four dimensions, and
if X2 is non-zero positive, then the second term in the
above equation dominates over the last negative term,
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FIG. 1: The apparent horizon in different spacetime dimen-
sions. Here X2 = 0.5 and apparent horizon curves are given
for dimensions 4 to 7.

and the apparent horizon curve is increasing as we move
away from the origin, which allows for the possibility that
the singularity may be naked. On the other hand, as we
increase the number of dimensions and go to dimensions
higher than five, the negative term in equation (57) starts
dominating, thus advancing the trapped surface forma-
tion in time. We thus see that for a smooth initial data
and for dimensions higher than five, the apparent horizon
becomes a decreasing function of r near the center. This
implies that the neighborhood of the center gets trapped
before the central singularity and the central singularity
is then always covered. To be specific, suppose there is
a future directed outgoing null geodesic coming out from
the central singularity at R = 0, r = 0. If (t1, r1) is an
event along the same, then t1 > ts0 and r1 > 0. But
for any such r1, the trapped region already starts before
t = ts0 , hence the event (t1, r1) is already in the trapped

region and the geodesic cannot be outgoing. Thus, there
are no outgoing paths from the central singularity, mak-
ing it covered. It follows that the collapse outcome will be
necessarily a black hole in the dimensions N ≥ 6. Thus
the naked singularities developing in the Einstein cluster
collapse and also in the other tangential collapse model
with a smooth initial data are removed, and the cosmic
censorship is restored when we go to higher dimensions,
thus generalizing the dust results obtained in paper I.

VI. CONCLUSION

We give several concluding remarks in this section.
1. We have shown that the naked singularities forming

in the well-known Einstein cluster model in four dimen-
sions are removed when we go to higher dimensions. It
follows that the results of paper I, obtained for dust col-
lapse, can be preserved even when tangential pressure is
included in the collapse.
2. In five dimensions we have an interesting scenario

arising (see also [2]). As it is clearly seen from the
equation (57), we have a critical value of X2(0), below
which the apparent horizon is decreasing and we will get
a black hole end state. However, in the case otherwise, a
naked singularity can result.
3. It is interesting to note also that the results ob-

tained above are valid, even if the initial profiles, instead
of being absolutely smooth C∞ functions, are taken to be
only sufficiently differentiable (i.e. at least C2 functions).
4. We have of course not shown that the cosmic cen-

sorship is restored for all possible collapse models which
have a tangential pressure non-vanishing. However, this
result shows the interesting effect that changing the num-
ber of dimensions has on the behaviour of the apparent
horizon curve, and hence on the visibility or otherwise of
the resultant spacetime singularity.
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