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We observe critical phenomena in spherically symmetric gravitational collapse of Einstein
Cluster. We show analytically that the collapse evolution ends either in formation of a black
hole or in dispersal depending on the values of initial parameters which characterize initial
density and angular momentum of the collapsing cloud. Near the threshold of black hole
formation, we obtain scaling relation for the mass of the black hole and find the critical
exponent value to be 3/2. We numerically confirm that there exist wide ranges of initial
parameter values around the critical configuration for which the model remains shell-crossing
free.

§1. Introduction

Critical behavior in gravitational collapse was first found by Choptuik in nu-
merical simulations of spherically symmetric massless scalar field.1) For marginally
supercritical data, it was found that the black hole mass scales as M ∼ (p − p∗)γ ,
where p is a parameter of family of the initial data which characterizes strength of
the configuration, and p∗ is the critical value. The critical exponent γ has a value
0.37 for scalar field, and is universal in the sense that it is the same for all one
parameter families of initial data.

Subsequently, the matter models were generalized. Critical behavior was found
in the collapse of radiation fluid,2) perfect fluid with p = kρ,3) and in the collapse
simulations of Yang-Mills field with critical exponent 0.194) and also in axion-dilaton
model from low energy effective string theory.5) Although critical behavior has been
found in numerical simulations of many matter models, very few analytical examples
are available so far. Koike, Hara and Adachi gave explanation of the scaling of
black hole mass and the universality by carrying out renormalization group studies.6)

These studies made it clear that the critical exponent for a given model can be
obtained by finding the growth rate of the unique unstable mode of the self similar
critical solution which is the fixed point of the renormalization group transformation.
Subsequently, linear stability analysis became a standard technique to demonstrate
critical behavior and calculate critical exponent in gravitational collapse models. On
the other hand, it is not necessarily clear where and how the linear order eigenvalue
analysis gets applicable for initial data highly nonlinearly deviated from the critical
solution, prior to numerical simulations.

Exact value of critical exponent has been calculated analytically in few models,
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which include a matter model with thin shell coupled with null fluid,7) massless
scalar field in four dimensions8) and in (2+1) Ads Spacetime.9) We present here
a model in which threshold of black hole formation can be seen and corresponding
exponent can be calculated exactly by a different method.10)

Here we consider a spherically symmetric collapsing model in which non-colliding
particles move in such a way that the radial pressure vanishes and non-zero tangential
pressure is present in the collapsing cloud. Such a static system was first introduced
by Einstein11) which was later generalized to non-static case.12) In recent years, the
properties of this model have been studied extensively.13),14)

We observe that the model shows criticality near the threshold of black hole
formation. We work in the comoving coordinates and investigate evolutions of indi-
vidual shells. It is analytically shown that the collapsing cloud either forms a black
hole or disperses depending on the values of initial parameters which characterize
the initial density and tangential pressure of the collapsing cloud. We derive scaling
relation for the mass of the black hole near its threshold.

This model has a limitation that the radial stress is vanishing and the Misner-
Sharp mass for the collapsing cloud is time independent. However, this simplifies
the Einstein equations and make the model tractable. The model considered here is
different from the models considered for the criticality so far in the following aspects.
Critical exponent is obtained without invoking self similarity. We have found the
critical self similar solution for this system and it will be discussed elsewhere.15)

The no-shell crossing conditions make the initial data restrictive, and only certain
ranges of initial data is allowed in the comoving coordinate system. The model shows
critical behavior for two parameters as long as we assume regularity at the initial
epoch and the smoothness of the initial parameters, and thus, in the space of initial
data sets, the requirement of black hole formation within this model already restricts
the space of possible sets to be of codimension one, in contrast with the standard
critical behavior where the shape of the initial data has very large variety. Despite
all these limitations, the model remains interesting as one can see transparently how
an infinitesimal mass black hole formation can take place when we fine tune the
initial data.

The outline of the paper is as follows. In §2, we discuss collapse equations
and regularity conditions and in §3, the Einstein cluster model is discussed. In §4,
critical behavior is investigated and it is demonstrated how a given sets of initial
value parameters decide the final outcome. In §5 scaling law for the black hole mass
is derived. Shell crossing is discussed in §6 and conclusions are outlined in §7.

§2. Einstein equations, regularity and energy conditions

We use the polar coordinates (t, r, θ, φ) to write the spherically symmetric metric
as

ds2 = −e2ν(t,r)dt2 + e2ψ(t,r)dr2 + R2(t, r)dΩ2, (1)

where dΩ2 is the line element on two-sphere. We also take the energy-momentum
tensor to be diagonal for the collapsing Type I matter field (that is, the frame is a
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comoving coordinate system) which is given by

T t
t = −ρ; T r

r = pr; T θ
θ = Tφ

φ = pθ. (2)

This is a fairly general class of matter fields, which includes various known physical
forms of matter.16) The quantities ρ, pr and pθ are density, radial pressure and
tangential pressure respectively. We take the matter field to satisfy the weak energy

condition, that is, the energy density as measured by any local observer be non-
negative, and so for any timelike vector V i we have

TikV
iV k ≥ 0. (3)

This amounts to
ρ ≥ 0; ρ + pr ≥ 0; ρ + pθ ≥ 0. (4)

The dynamical evolution of the system is determined by the Einstein equations, and
for the metric (1) in the units 8πG = c = 1, these are given as

ρ =
F ′

R2R′
, pr = −

Ḟ

R2Ṙ
, (5)

ν ′(ρ + pr) = 2(pθ − pr)
R′

R
− p′r, (6)

−2Ṙ′ + R′
Ġ

G
+ Ṙ

H ′

H
= 0, (7)

G − H = 1 −
F

R
, (8)

where (˙) and (′) represent partial derivative with respect to t and r respectively and

G(t, r) = e−2ψ(R′)2, H(t, r) = e−2νṘ2. (9)

The quantity F (t, r)/2 is the Misner-Sharp mass for the collapsing cloud, which gives
total mass within a shell of comoving radius r at time t.17) In order to preserve the
regularity at the initial epoch, F (ti, 0) = 0, that is, the mass function should vanish
at the center of the cloud. It can be seen from the equation (5) that density of the
matter blows up when R = 0 or R′ = 0. Here the case R′ = 0 corresponds to the
shell-crossing singularities.

Now let us write physical radius as

R(t, r) = rv(t, r). (10)

Using the scaling independence of the coordinate r and initial collapse condition, we
write

v(ti, r) = 1; v(ts(r), r) = 0; v̇(ti, r) < 0, (11)

where ti and ts stand for the initial and the singular epochs respectively. The condi-
tion v̇(ti, r) < 0 signifies that we are dealing with initially collapsing shells. We scale
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the radial coordinate r in such a way that at the initial epoch R = r, and at the
singularity, R = 0. The advantage of the introduction of this new variable v is that
the regular center at r = 0 (where we also have R = 0) is now distinguished from the
genuine singularity at R = 0. We now have v = 1 at the initial epoch, and v = 0 at
the singular epoch R = 0, but at all other epochs in-between v has a non-zero finite
value for all values of r.

§3. Non-static Einstein cluster model

The spherically symmetric collapse models, where the radial pressure is taken
to be vanishing and the tangential pressure could be non-zero have been studied in
quite some detail over past many years.13),14),18)

The Einstein cluster is an example of such a cloud where tangential stresses
are present. This is a spherically symmetric cluster of rotating particles where the
motion of the particles is sustained by an angular momentum which has an average
effect of creating a non-zero tangential stress within the cloud. Neighboring shell
particles are counter-rotating such that spherical symmetry is preserved.

We consider such a non-static cluster of gravitating particles in four dimensions.
For the non-static Einstein cluster models the equation of state is given by12)

pθ =
1

2

(

L2

R2 + L2

)

ρ, (12)

where L(r) is a function of the radial coordinate r only and is known as specific

angular momentum.Vanishing radial pressure implies that the Misner-Sharp mass is
time independent. Regularity of the initial density at the center requires

F (r) = r3M(r), (13)

where M(r) is a smooth function. It is clear that as v → 0, ρ → ∞. Thus the
density blows up at the singularity R = 0 which will be a curvature singularity as
expected. Let us now define a suitably differentiable function A(r, v) in the following
manner

ν ′(r, v) = A(r, v),v R′. (14)

Then from Eq. (6), we have the equation of state given as

pθ =
1

2
A,vR ρ. (15)

Now using Eq. (14), we can integrate (7) to get

G = b(r)e2rA. (16)

Here b(r) is another arbitrary function of the comoving coordinate r. Following a
comparison with dust collapse models we can write

b(r) = 1 + r2b0(r), (17)
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where b0(r) is the energy distribution function for the collapsing shells. Finally, using
Eqs. (14), (16) and (17) in (8), we have

RṘ2e−2ν = (1 + r2b0)Re2rA − R + r3M. (18)

A comparison of Eq. (12) with (15) gives

A,v =
L2

R(R2 + L2)
. (19)

We can integrate the above equation to get

e2rA =
R2

R2 + L2
. (20)

Considering initial density, pressure and energy profiles to be smooth would ensure
L(r) also to be smooth.

We write the initial profiles in the form

M(r) = m0 + m2r
2 + · · · , (21)

L2(r) = l4r
4 + l6r

6 + · · · , (22)

b0(r) = b00 + b02r
2 + · · · . (23)

The initial density profile, initial specific angular momentum profile and velocity
profile of the cloud are chosen fully in Eqs. (21), (22) and (23) respectively. Regular-
ity at the initial epoch requires leading order term of L2 to go as r4. Now we need
to evolve this initial data according to Eq. (18).

§4. Critical phenomena

Initially, at the onset of gravitational collapse all the shells have the scale factor
v(ti, r) value as unity and v̇(ti, r) < 0, which implies an initially collapsing cloud.
Bounce of a shell is indicated by the change in the sign of v̇. Evolution of a particular
shell may be deduced from equation (18). Rewriting (18) in terms of the scale factor
we have

V (r, v) = −e−2ν

(

v2 +
L2

r2

)

vv̇2. (24)

We call V (r, v) the effective potential for a shell. It can be expressed in terms of
initial profile functions of the system as follows:

V (r, v) = −

(

b0 v3 + M v2 −
L2

r4
v +

ML2

r2

)

. (25)

The allowed regions of motion correspond to V (r, v) ≤ 0, as vv̇2 is non-negative.
The first factor in Eq. (24) is always positive, because it is the g00 term of the metric
tensor and the quantity in parenthesis in the same equation is also always positive,
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hence location of the turning points (where v̇ changes its sign) is not decided by
these two terms. The main features of the evolution of a shell basically derive from
the cubic polynomial in Eq. (25).

The dynamics of the shells may be studied by finding the concerned turning
points. If we start from an initially collapsing state (v̇ < 0), we will have rebounce
for a shell if we get v̇ = 0, before the shell has become singular. This can happen
when V (r, v) = 0 (see for example Fig. 1). Hence, to study the various evolutions
for a particular shell we must analyze the roots of the equation V (r, v) = 0, keeping
the value r to be fixed. The method employed here is similar to another class of
tangential pressure collapse models where the metric function g00 is taken to be a
function of the physical radius R.10)

Out of three roots of the cubic polynomial only positive real roots correspond
to physical cases. We take b0 to be positive. The region between the unique positive
roots is forbidden since in those regions v̇2 < 0. For a particular shell to bounce, it
must therefore lie, during initial epoch (v = 1), in a region to the right of the second
positive root. We can see that three different types of evolution of a particular shell
are possible:

i) If the effective potential for a shell has two distinct positive roots in the range
[0, 1], then the shell bounces off.

ii) If V (r, v) < 0 in the whole range [0, 1], then the shell will reach the singularity
at v = 0.

iii) When the potential has a double root in [0, 1], then it indicates that the shell
is in critical collapse condition.

Let us assume that we are working in initial data space for which there are no
shell-crossings. We will discuss the issue of shell-crossings in the matter cloud in §6.
If a particular shell with comoving coordinate ra bounces then all the shells with
coordinate r > ra must also bounce. This implies that to investigate the situation
when the entire cloud is just about to disperse off, it is sufficient to study the dispersal
of the shells near the center. Therefore, to find the threshold of black hole formation
and to get the scaling relation for the mass of the black hole, we need to analyze the
model only near the center. We have neglected here higher order terms in r in the
expansion, since we want to consider only the evolution of the shells near r = 0.

To analyze the dynamics in this model in detail, we study one particular config-
uration of the initial data, in which m0, m2 are kept fixed, b00 is taken positive, l4 is
set to zero and l6 is allowed to vary. Non-zero value of l4 will make the central shell
and hence the cloud to always bounce and black hole will not be formed. Close to
the center, we neglect higher order terms in the expansion, in which case effective
potential can be written as

V ≈ −b0(r) v3 − (m0 + m2r
2) v2 + l6r

2 v − (m0 + m2r
2)l6r

4, (26)

where b0(r) = b00 + b02r
2. We use an arbitrary unit since there is no length scale

in the original system of equations. For a cubic equation ax3 + bx2 + cx + d = 0, a



Critical Collapse of Einstein Cluster 871

double root occurs when discriminant ∆ for the polynomial vanishes, where

∆ = 18abcd − 4b3d + b2c2 − 4ac3 − 27a2d2. (27)

For above cubic equation this takes the form

∆ = r4∆1(r, p
x
i ), (28)

where px
i are the initial parameters. Now we study collapse evolutions for three

different categories of the initial data ps
i , p

c
i and pb

i .

A) Supercritical evolution
Figure 1 shows the effective potential for the central shell (r = 0) and for three

outer shells (r = 0.10, 0.113, 0.15) for a small value of l6. Potential for the central
shell has always a double root (r = 0, ∆1(0, ps

i ) �= 0). If we go slightly away from the
center, potential for a shell goes negative for the entire range of v which allows the
shell to reach the singularity at v = 0.

If we increase r further, the potential maxima starts going up, and there is a
value of r at which the effective potential again has a double root. We call this radius
the critical radius rc of the collapsing cloud for the chosen set of the initial numbers.
At this value the discriminant of the cubic vanishes (∆1(rc, p

s
i ) = 0).

Apparent horizon is given by
F = R, (29)

which near the center in (v, r) plane can be written as vah(r) = r2m0, where at
v = vah a shell becomes trapped. It can be seen from the figure that if the potential
remains negative in the range [0,1], the value of v decreases and finally goes below
vah which indicates the trapping of the shell. Now as the shells below rc go inside
the apparent horizon, a black hole eventually forms. These shells finally reach the

Fig. 1. Figure represents effective potential for different comoving radius in supercritical
configuration. Here l6 = 3.5, b0 = 4.0, m0 = 1.15 and m2 = −20.
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Fig. 2. Figure represents effective potential for different comoving radius in critical configu-
ration. Here l6 = 5.3, b0 = 4.0, m0 = 1.15 and m2 = −20.

singularity and contribute for the mass of the black hole formed, but the shells with
comoving coordinate more than critical radius bounce off. As the black hole forms
for these values of l6, this represents supercritical region.

B) Critical evolution
As we increase l6 further, we reach a value at which the potential for the central

shell has double root (r = 0, ∆1(0, pc
i ) = 0) and all other shells have two distinct real

positive roots. We call this value as the critical value l6c of the initial parameter l6
for the other fixed parameters. This situation is shown in Fig. 2. The outer shells
have positive potential and forbidden region, therefore, all those shells will bounce
back. This configuration gives the critical solution of the system. The critical point
is the boundary point between the dispersal and the situation when the collapse to
form black hole just begins.

C) Subcritical evolution
If we increase l6 further to l6c potential goes even more positive. There is a

complete bounce of the collapsing shells. Hence this initial configuration generates
subcritical evolution. However it should be noted that only the central shell reaches
the singularity (∆1(0, pb

i) �= 0) and all other shells bounce. This massless central
singularity is a timelike naked singularity which can be seen as follows. For the
central shell eν(0,v)vv̇2 = b00v + m0, and as m0 and b00 are positive, central shell
reach singularity at v = 0 while all outer shells bounce off at value of v which
is larger than vah for those shells and are not trapped. Thus, central singularity
forms but trapped surfaces do not form in the cloud, making the singularity globally
visible.13)
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Fig. 3. Figure represents effective potential for different comoving radius in subcritical con-
figuration. It can be seen that outer shells bounce. Here l6 = 10, b0 = 4.0, m0 = 1.15
and m2 = −20.

§5. Mass scaling law

To derive the scaling law for black hole masses, it is the key to estimate the
critical shell radius, which separates the completely collapsing cloud from the sur-
rounding dispersive cloud. The expression for the critical radius in terms of the initial
parameters can be obtained in the supercritical region from the condition that at
critical radius, effective potential has two equal roots. The double root condition
for polynomial in (26) together with the consideration of shells only near the center
gives

r2
c ≈

4m4
0 − m2

0 l6
−16m3

0m2 − 18 b00m2
0l6 + 2m0m2l6 + 4 b00l26

. (30)

At l6 = l6c = 4m2
0, the critical radius vanishes. It can be seen in Fig. 4 that as

we increase l6 in the supercritical region, the critical radius monotonically decreases
from a positive value and becomes zero at l6c. If we increase l6 further all the
non-central shells in the cloud bounce. Therefore, we can write

r2
c ≈ k |l6 − l6c|, (31)

where k is a constant. In the tangential pressure model, the Misner-Sharp mass
depends only on r. Mass which collapsed to form singularity from the regular initial
profile is given by

F (rc)/2 ≈
1

2
r3
c (m0 + m2r

2
c ). (32)
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Fig. 4. Critical radius in the supercritical region. The curve is the locus of the point on
which ∆1 vanishes.

As we are analyzing the system near the center and also near the threshold of black
hole formation, critical radius rc → 0, therefore the mass of such black hole can be
written as

MBH ≈ cm|l6 − l6c|
3

2 , (33)

where cm is a constant near the threshold.
We can fix any of the parameters m0 and l6 and vary the other one to obtain

the expression for critical radius. Following the same procedure as depicted earlier,
it can be easily seen that for m0, the same scaling relation and critical exponent
exists near the threshold of the black hole formation. Therefore, in general for the
parameter η, we write

MBH ≈ cη|η − ηc|
3

2 . (34)

§6. Shell crossings

Above analysis is based on the condition that for the chosen initial data near
the critical values, there are no shell crossings during the evolution of the collapsing
cloud, which implies that if a shell bounces then all the shells with a larger value
of comoving radius will also bounce. It is important to check that there are indeed
no shell crossings taking place for a given initial data. We know that if R′(r, t) > 0
there are no shell crossings, therefore, we need to obtain R′ for a given set of initial
conditions. Equations (14) and (18) are two coupled equations for ν and R(r, t).
They cannot be solved explicitly analytically in the coordinate system used and
numerically also solving them is not easy.

However, there is a way out, Gair has given a coordinate transformation which
eliminates the function ν in the evolution equation, using which one can obtain R′ at
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constant time t in the following manner.19) He has used a time coordinate τ which
he calls proper time experienced by a dust particle

(

∂τ

∂t

)

r

=
eν

√

1 + L2

R2

. (35)

After changing the coordinates, we get from Eq. (18)

(

∂R

∂τ

)2

r

= r2b0 +
F

R

(

1 +
L2

R2

)

−
L2

R2
. (36)

We can choose a common origin of time for all shells, i.e. at some time, t = 0, we set
τ = 0 for all r (see section 3 in 19)). This gives us the initial conditions to integrate
above equation numerically. We note that

e−ν

√

1 +
L2

R2

(

∂

∂t

)

r

=

(

∂

∂τ

)

r

, (37)

(

∂R

∂r

)

t

=

(

∂R

∂r

)

τ

+

(

∂τ

∂r

)

t

(

∂R

∂τ

)

r

. (38)

Now, to get the desired quantity what remains is to know (∂τ/∂r)t. To obtain
it, we first differentiate Eq. (35) with respect to r, then change the order of partial
derivatives and use Eq. (37), obtaining a differential equation for (∂τ/∂r)t which is
as the following:

(

∂

∂τ

)

r

(

∂τ

∂r

)

t

=

[

ξ(r, τ)

(

∂R

∂τ

)

r

−

(

∂ψ

∂τ

)

r

](

∂τ

∂r

)

t

+

[

ξ(r, τ)

(

∂R

∂r

)

τ

−

(

∂ψ

∂r

)

τ

]

,

(39)

where ξ is L2

R(R2+L2)
and ψ is 1

2

(

1 + L2

R2

)

. The initial condition for the above equation

is provided by the fact that we have set τ = 0 at t = 0 for all the shells, which
implies (∂τ/∂r)t = 0 at τ = 0. We integrate (36) first and then substitute the
values of (∂R/∂r)τ and (∂R/∂τ)r in Eq. (39), after integrating which Eq. (38) gives
(∂R/∂r)t.

We find that for the chosen initial data in the vicinity of critical situation,
there are no shell crossings. Physical radius R and (∂R/∂r)t for the subcritical and
supercritical case are plotted in the following figures. We do not give here a general
criteria or condition on the initial parameter functions which will ensure no shell
crossings. However, one can choose the initial data which gives no shell crossings
and one can see that the critical solution lies in this allowed range of parameters.

§7. Conclusions

In this paper, we have presented a simple analytic model of gravitational dy-
namics which is physically motivated in the sense that it is a special realization of
the Einstein-Vlasov (collisionless particles) system. The system satisfies standard
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Fig. 5. Physical radius of different shells in supercritical evolution, where initial parameter
values are m0 = 1.15, b0 = 1.95, b2 = 50, m1 = 5.0 and L = 5.0. It can be seen that
shells with comoving radius less than the critical radius reach singularity while those
with larger than critical radius bounce.

Fig. 6. (∂R/∂r)t in supercritical evolution, where the initial parameter values are m0 = 1.15, b0 =

1.95, b2 = 50, m1 = 5.0 and L = 5.0. It can be seen that the value of R′ at constant time t

remains positive.

requirements of physical reasonableness, namely, it has an equation of state, and
satisfies energy and regularity conditions.

We have shown that both black hole and dispersal are possible outcomes in the
gravitational collapse of this model. The mass of the black hole near the threshold
of its formation shows power law behavior with critical exponent 3/2. Very small
mass black holes could be formed if the initial data is fine tuned. The model shows
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Fig. 7. Physical radius of different shells in subcritical evolution, where initial parameter
values are m0 = 1.15, b0 = 1.95, b2 = 50, m1 = 5.0 and L = 5.7. It can be seen that all
the shells bounce.

Fig. 8. (∂R/∂r)t in subcritical evolution, where the initial parameter values are m0 =
1.15, b0 = 1.95, b2 = 50, m1 = 5.0 and L = 5.7. It can be seen that the value of R′

at constant time t remains positive.

“universal” behavior with respect to the parameters which fix the initial density and
specific angular momentum of the cloud. As shown in the plots, for a generic class of
the regular initial data involving central singularity formation, shell crossing does not
occur. The effective potential method for calculating the critical exponent applies to
this case as well as to another class of tangential pressure models.10) This suggests
that the method applies at least for all mass-conserving systems. However, the
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system considered here has a limitation and bit different from the models considered
so far for critical behavior in one respect that it has no radial stress which enables
shells to interact directly with each other. However, the critical behavior seen in
general relativity appears to be a generic phenomenon and it is expected that only
the radial stress is not essential for the phenomena to occur. It will be very interesting
to explore whether the same method holds for studying critical behavior in the model
with radial pressure as well.
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