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Data driven safe vehicle routing analytics: A differential evolution 

algorithm to reduce CO2 emissions and hazardous risks 

Abstract: 

Contemporary vehicle routing requires ubiquitous computing and massive data in order to deal with 

the three aspects of transportation such as operations, planning and safety. Out of the three aspects, 

safety is the most vital and this study refers safety as the reduction of CO2 emissions and hazardous 

risks. Hence, this paper presents a data driven multi-objective differential evolution (MODE) 

algorithm to solve the safe capacitated vehicle routing problems (CVRP) by minimizing the 

greenhouse gas emissions and hazardous risk. The proposed data driven MODE is tested using 

benchmark instances associated with real time data which have predefined load for each of the vehicle 

travelling on a specific route and the total capacity summed up from the customers cannot exceed the 

stated load. Pareto fronts are generated as the solution to this multi-objective problem. Computational 

results proved the viability of the data driven MODE algorithm to solve the multi-objective safe 

CVRP with a certain trade-off to achieve an efficient solution. Overall the study suggests 5% 

increment in cost function is essential to reduce the risk factors. The major contributions of this paper 

are to develop a multi-objective model for a safe vehicle routing and propose a multi-objective 

differential evolution (MODE) algorithm that can handle structured and unstructured data to solve the 

safe capacitated vehicle routing problem.  

Keywords: Safe capacitated vehicle routing; Greenhouse gas emission; Hazardous risk; Multi-

objective Differential evolution 

1 Introduction 

Primary role of logistics in the digital world is to use real time data to generate a vehicle routing 

which reduces negative consequences such as congestion, safety and environment. If logistics is not 

managed well, it will cause congestion and enormous greenhouse gas (GHG) emissions (Savelsbergh 

and Van Woensel 2016; Hazen et al. 2016). Recently, logistics and distribution systems have been 

identified as one of the most expensive aspects for an organization to deal with the ecological impact 

which is one of the biggest challenges (Savelsbergh and Van Woensel 2016; Sinuany-Stern and 

Sherman 2014). Freight GHG emissions increased by 46% from 1990 to 2003 according to United 

States Environmental Protection Agency (EPA 2006) and therefore this is an emergent need to reduce 

the amount of emission from this sector.  

Transportation is a major cause for environment degradation in the modern world (Rodrigue et al. 

2001). Vehicles consume energy in the form of oil and emit pollutants such as carbon dioxide (CO2) 

which contributes to the greenhouse gasses (GHG) emissions. In the era of e-commerce, increased 

mobility due to personalised demands for customers residing in the urban area results in more 

congestion (Rodrigue 2013). In particular, transportation industry is subjected to cause severe 

environmental problems such as climate change and air pollution (Brandenburg and Rebs 2015). 

Other than transportation of regular materials, there is a need for cautious planning and scheduling to 

transport hazardous materials gasses, explosives and flammables from source to destination using big 

data. For instance, the oil and gas industry transports the oil extracted from the plants to their 

manufacturing sites and then distribute it to storage tanks across the country. During transportation, 

the possibility of an accident may pose a health threat to the nearby population and property.  



Therefore, the task of scheduling and planning for safe logistics management in the digital era is vital 

and this is achievable with the proper use of enormous amount of information that is available either 

structured or unstructured. It is quite obvious that big data can support supply chain managers to 

develop an optimal route that will not only reduce cost but also reduce CO2 emissions. Optimization 

of the routes will ensure that the vehicles are travelling on lower risk track which ultimately reduce 

public risk from the shipments of these materials. Hence safe route planning will involve deciding on 

the route to be taken and the timing which is suitable in order to reduce the time spent on road. 

Safe routing and planning becomes more complex in the case of hazardous materials to reduce 

ecological impact. Major hazardous material accidents have been reported and although they are not 

catastrophic, but the causality of the accident are severe that affected the neighbourhood. A recent 

hazardous material accident in Mexico which involves the ammonia truck resulted into 39 causalities 

(Verter 2011). Hence, various agencies came out with several regulations to reduce such incidents in 

which one among them is not to use roads which are highly populated for vehicles that carry 

dangerous materials. The transportation risk due to an accident will affect the residents living or 

working around the area. This gives rise to the emergency response plan that is put into use to reduce 

the effect of a hazardous material accident.  

The safe plan includes establishing a team with better coordination and also includes those who are 

specialized in handling the respective material. However, prevention and minimization of the accident 

risk is at higher priority. Given the availability of data, how to effectively use these various forms of 

real time structured and unstructured data to develop a safe vehicle routing analytics that minimises 

CO2 emissions and risk remains an open research question.  

The paper is organised as follows where section 2 reviews previous studies on safe transportation and 

the role of big data in logistics. Safe vehicle routing optimisation modelling that considers CO2 

emissions and risk are explained in section 3. Data driven multi objective algorithm is explained in 

section 4. Robustness of data driven MODE is evaluated in terms of parameter fine tuning and 

solution quality and finally the conclusion summarises the work with further research directions.  

2 Literature Review 

2.1 Big data and logistics management 

Digital universe throws unlimited access to different forms of data such as photographs, surveillance 

video feeds; and data produced through sensors challenges logistics industry on how to make use of 

these real time data to develop intelligent and safer transportation (OECD 2015). Intelligent transport 

refers to visualisation and analysis of real time usage of transport network and safer transport refers to 

processing of real time data with respect to vehicle operation and to protect the surrounding 

environment to avoid or minimise potential dangerous conflicts (OECD 2015).  There is a huge 

potential for researchers to come out with safe models and algorithms using the availability of data to 

support the policy makers to develop new regulations to reduce congestion and increase safety. For 

example, real time data collected through several gantry cranes erected on freeways to monitor the 

vehicle usages with eTags in Taiwan made automatic toll-collection that substantially reduced CO2 

emissions, travel time and congestion. Hence, big data can very well support logistics researchers to 

develop safer vehicle routing models and analytical methods. 

2.2 Vehicle routing models and methods to reduce CO2 emission 



CO2 emissions from transportation accounted for one of the highest percentage as compared to other 

sectors as shown in the US environmental report (EPA 2014). Davis et al. (2005) proposed a vehicle 

emissions model which estimates vehicle emissions in any area with given inputs. With information 

of the vehicle fleet, the model proposed can be used to predict total emissions. Changes in emission 

can also be detected if there is a change in fleet, fuel and congestion. This model is useful as it allow 

assessments and analyses of the air quality impacts in a specific city. 

In addition to that, an emission VRP is proposed by Figliozzi (2010) to incorporate minimization of 

both the economic costs and emissions. Time dependant VRP (TDVRP) is used in this research where 

the TDVRP uses links that have different constraints such as speed at peak hours. The author make 

use of a multi-objective function that includes distance travelled, route durations and emissions, 

together with a heuristic algorithm to solve several instances. Figliozzi (2010) proposed that it may be 

possible to reduce emissions with a minimal increase in routing costs. 

Several literatures also look into the issue of emissions through analysis of travel times and CO2 

emissions done with a vehicle routing problem (VRP) model. A model consists of travel time, fuel 

and emissions is created by Jabali et al. (2013) and is solved via tabu search procedures. One very 

important point mentioned by them is the correlation between fuel consumption and CO2 emissions, 

where reduction of emissions leads to cost reduction. Lower and upper bounds on the total emissions 

based on the VRP solutions are computed and quality of the numerical results is benchmarked against 

them. However, legal maximum working time of the driver is not considered in their research.  

Zhu et al. (2014) proposed a fuel consumption minimization routing problem to solve for an 

environment friendly and cost effective route. They formulated an integer linear programming model 

which uses arc-elimination procedure to identify the optimal route. The routes are selected based on 

different safety factors. The control of vehicle emissions in their study is through constraining the 

vehicle routing distances. On the other hand, Kumar et al. (2015), proposed a modelling technique to 

deal with pollution-routing problems and evaluated the trade-off model by formulating it as a multi-

objective multi-vehicle routing problem. Bi-objective model included objectives such as minimization 

of total cost and total emission of the routing problem. In addition, they proposed a hybrid self-

learning Particle Swarm algorithm to obtain near optimal solution.  

2.3 Vehicle routing models and methods to reduce risk of hazardous material transportation 

One of the earliest green logistics research done in routing of hazardous material is by Zografos and 

Davis (1989). The proposed model includes routing risk, cost and property damages. The nature of the 

problem is a multi-objective problem, where a route which is the shortest, may not have the lowest 

risk. Decision making models are needed to cope with the different objectives that come with the 

routing problem. Later on, Zografos and Androutsopoulos (2004) proposed a heuristic algorithm for 

solving the hazardous material distribution problem. The insertion algorithm proposed by them builds 

the routes by inserting customers, one at a time, at each iteration. The insertion of unrouted points is 

also allowed so that reinsertion to a better position is possible. 

Due to the risk involved, transportation of hazardous materials is a topic which attracted a number of 

researchers. Instead of solving the VRP for the shortest path, a trade-off between the risk and the 

distance should be considered. Tarantilis and Kiranoudis (2001) solved the VRP variant through the 

population exposure risk mitigation. The selection of routes is done in such a way that the route will 

not be close to aggregate population points to reduce the population exposure risk. Using this method, 

the number of people placed at risk in case of an accident is reduced. List Based Threshold Accepting 



(LBTA) is a single stochastic search method, hence it is easy to tune. The algorithm iteratively 

searched the solution space for better solutions. 

Leonelli et al. (2000) proposed a new methodology to select the best route for transporting hazardous 

material based on risk analysis. The analysis is based on node and arcs on a routing problem similar to 

VRP. Both the economic costs and risk related costs are taken into consideration in order to obtain the 

cheapest flow distribution. The optimization procedures based on linear risk sources and the costs are 

implemented on OptiPath, which is an optimization software.   

Meng et al. (2005) proposed a novel vehicle routing and scheduling problem to transport hazardous 

materials using multi-objective concept. The space time network approach which is able to fully 

characterize feasible time varying path is employed to develop the solution. On top of that, the time 

varying multi-objective algorithm proposed is based on dynamic programming method. The algorithm 

is tested on a hypothetical shipment of gas in Singapore. 

Sadjadi (2007) used the application of Efficient Frontier (EF) in solving the transportation of 

hazardous material problem. The method is able to provide sets of solutions which can be 

implemented by the decision-maker. The proposed method is modelled in convex quadratic 

optimization. However, this method may not be suitable for NP-hard problems.  

In one of the recent research, Desai and Lim (2013) proposed a stochastic dynamic programming 

(SDP) approach to solve the routing problems. Conventional SDP requires long computational time 

and therefore three different techniques were proposed to expedite the process. The approach is 

applied on hazardous materials transportation problem. In terms of including risk, Faghih-Roohi et al. 

(2015) proposed a dynamic model for conditional value-at-risk (CVaR) of hazardous material 

transportation in the supply chain network. CVaR is a commonly used risk measure and is used as the 

main objective of their optimization problem. The effects of road conditions, type of hazards and 

other factors that are probable to accidents were also considered in their study. Recent study by Du et 

al. (2016) addresses the hazardous material transportation risk using chance-constrained programming 

modelling approach and credibility theory. Solution techniques proposed by them to determine near 

optimal solution combined both genetic algorithm and fuzzy simulation.  

Overall the review reveals that few studies in the past modelled the two issues such as CO2 emissions 

and hazardous material transportation problem separately and not considered them as a combined 

issue. Hence, we tried to address this gap in this study. The review also reveals that the multi-

objective formulation is quite a feasible approach to deal with CO2 reduction when there is more than 

one objective function. To the best of our knowledge, there is no safe vehicle routing analytical 

models and methods that reduces CO2 and risk with a trade-off that will yield an efficient solution in 

the literature. 

The major contributions of this study are to develop a multi-objective model for a safe vehicle routing 

and to propose a multi-objective differential evolution (MODE) algorithm that can handle structured 

and unstructured data to solve the safe capacitated vehicle routing problem.  

3 Safe vehicle routing optimization considering CO2 emission and hazardous risk 

3.1 Multi-objective safe vehicle routing  

VRP has been widely used for scheduling and planning routes in logistics. VRP framework aid the 

planning of least-cost delivery routes from one or more depot to a set of customers situated at 

different locations. In real world scenarios, the safe scheduling and planning of routes is subject to 



several constraints and customer requirements. The solution of a VRP consists of a set of routes with 

all the requirements and operational constraints satisfied while minimizing the transportation cost 

(Toth and Vigo 2002). 

In order to incorporate environmental objectives into safe VRP, CO2 emissions and hazardous 

materials risk are taken into consideration during development of route plans.  

In general, VRP is represented by a graph  𝐺 = (𝑉, 𝐴) where 𝑉 = {1,2,… ,𝑁 + 1} is the vertex set 

and 𝐴 is a set of arcs. Vertex 1 denotes the depot and the rest of the vertex 𝑉, {2,3,… , 𝑁 + 1} is 

referred to as customers. In a VRP model, the customers are serviced by a fleet of 

vehicles {1,2,… , 𝐾}. There is a specific demand, 𝑞 for each customer. Safe CVRP, a classical VRP 

with additional constraint, which is used in this paper has a predefined capacity of 𝑄 for each vehicle. 

This is usually assumed to be the same for all vehicles in the set, unless otherwise stated. 

Notation and Parameters 

N total number of customers 

K total number of vehicles 

Q maximum capacity of each vehicle 𝐸𝑖𝑗 𝐶𝑂2 emission between customer i and j, 𝑑𝑖𝑗=𝑑𝑗𝑖, ∀𝑖, 𝑗 ∈ {1,2,… ,𝑁 + 1} 𝑟𝑖𝑗 risk between customer i and j, 𝑑𝑖𝑗=𝑑𝑗𝑖, ∀𝑖, 𝑗 ∈ {1,2,… , 𝑁 + 1} 𝑞𝑖 demand at node i, ,∀𝑖, ∈ {1,2,… ,𝑁 + 1}, 𝑞1 = 0 

 

Decision variables 𝑥𝑖𝑗𝑘   = {1, 𝑖𝑓 𝑎𝑟𝑐(𝑖, 𝑗) 𝑏𝑒𝑙𝑜𝑛𝑔 𝑡𝑜 𝑡ℎ𝑒 𝑟𝑜𝑢𝑡𝑒 𝑜𝑝𝑒𝑟𝑎𝑡𝑒𝑑 𝑏𝑦 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑘0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                                      𝑥𝑖𝑗𝑘  ∈ {0,1}, 𝑖 ≠ 𝑗, 𝑗 ∈ {1,2,… ,𝑁 + 1} 
 

Formulations 

The mathematical formulations of a multi-objective safe CVRP can be expressed as: 

Minimize {𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛 , 𝑅𝑖𝑠𝑘 } 
where 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛 and 𝑅𝑖𝑠𝑘 are defined in Section 3.2 and 3.3; and subject to 

∑∑𝑥𝑖𝑗𝑘𝑁+1
𝑗=2

𝐾
𝑘=1 ≤ 𝐾, 𝑓𝑜𝑟  𝑖 = 1 (1) 

∑𝑥𝑖𝑗𝑘𝑁+1
𝑗=2 = ∑ 𝑥𝑗𝑖𝑘𝑁+1

𝑗=2 , 𝑓𝑜𝑟 𝑖 = 1 𝑎𝑛𝑑 𝑘 ∈ {1,2,… , 𝐾} (2) 

∑∑𝑥𝑖𝑗𝑘𝑁+1
𝑗=1

𝐾
𝑘=1 = 1, 𝑓𝑜𝑟  𝑖 ∈ {2,3,… ,𝑁 + 1} (3) 

∑∑𝑥𝑖𝑗𝑘𝑁+1
𝑖=1

𝐾
𝑘=1 = 1, 𝑓𝑜𝑟  𝑗 ∈ {2,3,… ,𝑁 + 1} (4) 



∑𝑥𝑖𝑗𝑘𝑁+1
𝑖=1 − ∑ 𝑥𝑗𝑖𝑘𝑁+1

𝑖=1 = 0, 𝑓𝑜𝑟 𝑗 ∈ {1,2,… ,𝑁 + 1}𝑎𝑛𝑑 𝑓𝑜𝑟 𝑘 ∈ {1,2,… , 𝐾} (5) 

∑𝑞𝑖𝑁+1
𝑖=1 (∑ 𝑥𝑖𝑗𝑘𝑁+1

𝑗=1 ) ≤ 𝑄, 𝑓𝑜𝑟 𝑘 ∈ {1,2,… , 𝐾} (6) 

The objective functions of the multi-objective safe CVRP seek to minimize the total CO2 emission (9) 

and the total risk of the vehicles transporting hazardous materials (19). Constraint (1) restricts the total 

number of vehicles at service to not exceed the maximum number of vehicles stated. In addition, 

equation (2) ensures that every route starts and ends at depot. Constraints (3) and (4) ensure that each 

customer node is only visited once. On top of that, constraint (5) guarantees that the same vehicle 

arrives and departs from each customer it serves and (6) ensures that the each vehicle do not load 

more that the vehicle capacity, 𝑄. Equations (1) - (6) satisfy all the requirements of safe CVRP. 

3.2 Emission function  

An emission function in (7) is developed by the United Kingdom Transport Research Laboratory and 

reported in the MEET report (Hickman et al. 1999) and is also used in (Jabali et al. 2013; Demir et al. 

2014). The function 𝜀(𝑣) provides the rate of emission in 𝑔/𝑘𝑚 at travel speed 𝑣 :  
𝜀(𝑣) = 𝐿 + 𝑎𝑣 + 𝑏𝑣2 + 𝑐𝑣3 + 𝑑 1𝑣 + 𝑒 1𝑣2 + 𝑓 1𝑣3 (7) 

where 𝑣  is in km/h, and coefficients 𝐿  and 𝑎 𝑡𝑜 𝑓  vary per vehicle type and size. Equation (7) is 

derived for heavy goods vehicles (HGVs), urban buses and coaches (Hickman et al. 1999). 

Multiplication of rate of emissions (g/km) by the distances travelled (km) gives a total amount of CO2 

emission (in grams). Therefore, the CO2 emission of a vehicle travels from customer 𝑖 to customer 𝑗 
can be defined as: 𝐸𝑖𝑗 =  𝜀𝑑𝑖𝑗 (8) 

where 𝐸𝑖𝑗  is in grams and 𝑑𝑖𝑗  is in kilometre. The total amount of emission for a route can be 

calculated as: 

𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛 =  ∑∑ ∑𝐸𝑖𝑗𝑥𝑖𝑗𝑘𝑁+1
𝑗=1

𝑁+1
𝑖=1

𝐾
𝑘=1  (9) 

As shown in equation (7), a minimum CO2 emission is recorded when the vehicle is travelling at an 

optimal speed. However, in real life scenarios, this ideal condition may not be achieved particularly 

during the peak hours. Vehicles travelling on a path at that particular time will travel on a reduced 

speed. Since travel time is not a factor to be considered, the vehicle is assumed to travel in a constant 

average speed. Therefore, ε is constant in this paper. 

Since the CO2 emission in (8) is direct proportional to the distance between customer 𝑖 and 𝑗, hence, 

minimizing the total amount of emission for a route can be simplified as minimizing the total distance 

travelled: 



𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =  ∑∑ ∑𝑑𝑖𝑗𝑥𝑖𝑗𝑘𝑁+1
𝑗=1

𝑁+1
𝑖=1

𝐾
𝑘=1  (10) 

The optimal CO2 emission can be calculated from the optimal distance using the following equation: 

𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛 =  𝜀∑∑ ∑ 𝑑𝑖𝑗𝑥𝑖𝑗𝑘𝑁+1
𝑗=1 = 𝜀 × 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑁+1

𝑖=1
𝐾
𝑘=1  (11) 

3.3 Hazardous Materials and Risk 

Hazardous materials are defined as types of substances capable of causing harm or long term effects 

to the people, properties and the surrounding environment. However, various hazardous materials are 

used in today’s industrialized societies and it is not possible to abstain from utilizing these materials 

(Kang et al. 2014). The United Nation (UN) sorted hazardous materials into nine different classes 

according to into its physical, chemical and nuclear properties (Erkut et al. 2007). The transportation 

of hazardous materials from one point to other is necessary and due to the risk involved, proper 

scheduling to reduce the transportation risk is vital. The vehicle routing problem with hazardous 

materials is about selecting a route that takes into consideration of economic and risk issues (Faghih-

Roohi et al. 2015). In the process of planning the routes, the risk factors such as exposure and releases 

of dangerous material must be considered to achieve this objective. A route is considered to be safe if 

its risks are deemed to be acceptable (Alp 1995).  

Risk estimation is a measure of the probability of harm to the exposed public and an assessment of the 

consequences of the undesirable incident. Hence, a risk of an event to the public must be addressed 

with both frequency and consequences components as (Alp 1995): 𝐸𝑣𝑒𝑛𝑡 𝑅𝑖𝑠𝑘 = 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑜𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒 × 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑐𝑜𝑛𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠 (12) 

 

Figure 1: λ-neighbourhood of link (i,j) 

The 𝜆-neighbourhood concept shown in Figure 1 first developed by Batta and Chiu (1988). For travel 

on a link, the consequence is defined by assuming that the impact area is a danger circle with radius 𝜆. 

Within this distance, the accident spots are subjected to the same consequence while the consequences 

outside this distance have been ignored. They described that a vehicle on point 𝑐 of a link (𝑖, 𝑗), poses 

a threat to point 𝑠 if point 𝑐 is within the radius 𝜆 of point 𝑠. The risk at point 𝑠 due to hazardous 

materials transportation on link (𝑖, 𝑗) is defined by: 

𝑟𝑠,𝑖𝑗 = 𝑤𝑠∫ 𝛿(𝑠, 𝑐)𝑝𝑖𝑗(𝑐)d𝑐𝑑𝑖𝑗𝑐=0  (13) 

𝜆 

𝜆
(

𝜆 

𝜆 𝑖
(

𝑗 



where 𝑤𝑠 is the population density at point 𝑠, 𝑝𝑖𝑗(𝑐) is the probability of hazardous materials incident 

of vehicle at point 𝑐 on link (𝑖, 𝑗),  and  

𝛿(𝑠, 𝑐) =  {1, 𝑑𝑠𝑐 ≤ 𝜆      0, otherwise  (14) 

with 𝑑𝑠𝑐 is the Euclidean distance between point 𝑠 and 𝑐. Denoted the integral term in (13) as: 

𝐹𝑠,𝑖𝑗 = ∫ 𝛿(𝑠, 𝑐)𝑝𝑖𝑗(𝑐)d𝑐𝑑𝑖𝑗𝑐=0  (15) 

To simplify the equation, Batta and Chiu (1988) moved point 𝑖 to the origin, and rotated the axes so 

that link (𝑖, 𝑗) lies on x-axis. With point 𝑠 having the Cartesian coordinates (𝑥𝑠, 𝑦𝑠), 𝑥+ and 𝑥− are 

defined as the two intersections of link (𝑖, 𝑗) with the circle of radius 𝜆 centered at point 𝑠: 𝑥+ = 𝑥𝑠 +√𝜆2 − 𝑦𝑠2  and  𝑥− = 𝑥𝑠 −√𝜆2 − 𝑦𝑠2 , if 𝜆 > |𝑦𝑠| (16) 

They then identified the region within the 𝜆-neighbourhood which lead to different expressions to 

compute 𝐹𝑠,𝑖𝑗: 

𝐹𝑠,𝑖𝑗 =
{  
   
   
           when 𝑠 is              ∫ 𝑝𝑖𝑗(𝑐)d𝑐,𝑥+

0    in region I                                

∫ 𝑝𝑖𝑗(𝑐)d𝑐,𝑑𝑖𝑗0     in region II                               

∫ 𝑝𝑖𝑗(𝑐)d𝑐,𝑑𝑖𝑗𝑥−    in region III                             

∫ 𝑝𝑖𝑗(𝑐)d𝑐,𝑥+
𝑥−    in region IV                               0                         outside of 𝜆-neighbourhood

  (17) 

 

Figure 2: Regions inside the λ-neighbourhood of link (i,j) 

As shown in (16), it can be seen that 𝑥− = 𝑥+ when point 𝑠 is exactly located on the 𝜆-boundary (𝜆 =|𝑦𝑠|), i.e. link (𝑖, 𝑗) is tangent to the 𝜆 circle centred at point 𝑠. This intersect point is normally called 

the tangent point and can be seen in Figure 2. In this case, point 𝑐 only poses a threat to point 𝑠 if it is 

on the tangent point. When this occurs, it is shown that 𝐹𝑠,𝑖𝑗 = 0 despite of the region point 𝑠 is in. 

This can be proved using equation (17). If point 𝑠 is in region I or III, the tangent point will be on 

point 𝑖 and 𝑗 relatively, therefore, 𝐹𝑠,𝑖𝑗 = 0. If point 𝑠 is in region IV and since 𝑥− = 𝑥+, the integral 
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will be zero, hence 𝐹𝑠,𝑖𝑗 = 0. Region II will not be considered as point 𝑠 will never fall in region II in 

this case. 

The total risk of a vehicle transporting hazardous materials and travels on link (𝑖, 𝑗) is calculated by 

defining: 

𝑟𝑖𝑗 = ∑ 𝑟𝑠,𝑖𝑗𝑁+1
𝑠=1  (18) 

And the total risk of vehicles transporting hazardous materials on a specific route is defined as: 

𝑅𝑖𝑠𝑘 =  ∑∑ ∑ 𝑟𝑖𝑗𝑥𝑖𝑗𝑘𝑁+1
𝑗=1

𝑁+1
𝑖=1

𝐾
𝑘=1  (19) 

 

4 Data Driven Multi-Objective Differential Evolution Algorithm 

Data driven multi-objective problems take into consideration several criteria for decision making and 

optimal decisions are made between a certain trade-off based on real time data (Pérez et al. 2015).In 

literature, there are two ways to solve multi-objective optimization: by using weighted sum and to 

determine a set of Pareto optimal solutions. The weighted sum method is more straight-forward but 

the drawback lies on selecting the precise weight for the problem (Konak et al. 2006). In most real life 

engineering problems, a single solution does not exist and the trade-off between several objectives 

requires thorough analysis to make a certain compromise in order to obtain a better solution.  

In this paper, the data driven multi-objective differential evolution (MODE) algorithm proposed 

involves a combination of Pareto ranking and crowding distance which is based on the improved 

differential evolution with local search (DELS) algorithm proposed by Teoh et al. (2015). The 

methods used are explained in the following sections. 

4.1 Pareto Ranking 

The concept of Pareto ranking is widely used in multi-objective algorithm to evaluate the fitness of a 

solution. The population is ranked according to a dominance rule, and each solution is assigned a 

fitness rank in the population (Goldberg 1989). Pareto ranking can be easily applied into the fitness 

evaluation process within an algorithm by replacing the fitness score with Pareto ranks (Ombuki et al. 

2006), for which the lower ranks are always preferable. 

Coello et al. (2002) discussed in their research about the idea of Pareto dominance and Pareto 

optimality which are part of Pareto ranking. The following definitions explain Pareto dominance, 

Pareto optimality and Pareto front. 

Definition.  Given a problem defined by a vector of objectives 𝑓(𝑠) = (𝑓1(𝑠), … , 𝑓𝑚(𝑠)) subject to 

appropriate problem constraints, where 𝑠 is a feasible solution. Then solution 𝑠1 is said to dominate 𝑠2 

(denoted as 𝑠1 ≺ 𝑠2) iff ∀𝑖 ∈ (1,… ,𝑚): 𝑓𝑖(𝑠1) ≤ 𝑓𝑖(𝑠2) and ∃𝑖 ∈ (1,… ,𝑚): 𝑓𝑖(𝑠1) < 𝑓𝑖(𝑠2). 
Definition.  A solution 𝑠2  is Pareto Optimal if there does not exist another solution 𝑠1  that 

dominates 𝑠2. 



Definition.  The Pareto Optimal Set, 𝒫 is the set of all Pareto Optimal solutions defined by: 𝒫 ={𝑠|𝑠 is Pareto Optimal}. 
Definition.  The Pareto Front 𝒫ℱ is defined by 𝒫ℱ = {𝑠|𝑠 ∈ 𝒫}. 
The pseudo code of the Pareto ranking technique is shown in Algorithm 1. Pareto ranking, {ℱ1, ℱ2, … } are called non-dominated fronts and ℱ1 is the Pareto front of the generation. 

Algorithm 1 Pareto Ranking 

1: procedure PARETO_RANKING(𝑈, 𝑓) 

2:  𝑖 ← 1; 𝒮 ← 𝑈 

3:  repeat 
4:   ℱ[𝑖] ← ∅ 

5:   for 𝑝 ← 1,𝑁𝑃 do 
6:    if 𝒮[𝑝] is non-dominated then 

7:     ℱ[𝑖] ← ℱ[𝑖] ∪  𝒮[𝑝] 
8:     𝑃𝑅[𝑝] ← 𝑖 
9:    end if 

10:   end for 
11:   𝒮[𝒮 ∈ ℱ[𝑖]] ← ∅ 

12:   𝑖 ← 𝑖 + 1 
13:  until 𝒮 = ∅ 
14:  return ℱ and 𝑃𝑅 

15: end procedure 

 

4.2 Crowding Distance 

In the proposed data driven MODE, crowding distance is used as a tiebreaker in the selection phase. 

Crowding distance is an estimate of the density of the solutions surrounding a particular solution in a 

population (Deb et al. 2002). It is represented by the average distance of two points on either side of 

the particular solution along each objective function. Crowding distance method is chosen because it 

can be calculated without a user-defined parameter (Konak et al. 2006). 

During selection, two solutions are selected for tournament. The solution with the lowest Pareto rank 

is the winner. However, if the solutions are in the same non-dominated front, the solution with a 

higher crowding distance is selected.  

Algorithm 2 outlines the calculation procedure for the crowding distance for one non-dominated front, ℱ of 𝑙 solutions. 

Algorithm 2 Crowding Distance 

1: procedure CROWDING_DISTANCE(ℱ, 𝑓) 

2:  𝐶𝑑 ← 0 
3:  for 𝑖 ← 1,2 do 
4:   [𝑠𝑓, 𝐼] ← 𝑠𝑜𝑟𝑡(𝑓[𝑓 ∈ ℱ], 𝑖) 
5:   𝐶𝑑[𝐼[1]] = 𝐶𝑑[𝐼[𝑙]] ← ∞ 

6:   for 𝑗 ← 2, 𝑙 − 1 do 
7:    𝐶𝑑[𝐼[𝑗]] ← 𝐶𝑑[𝐼[𝑗]] + (𝑠𝑓[𝑗 + 1] − 𝑠𝑓[𝑗 − 1])/(max (𝑓[𝑖]) − min (𝑓[𝑖])) 
8:   end for 
9:  end for 

10:  return 𝐶𝑑 
11: end procedure 

 



5 Computational Results 

The proposed data driven MODE algorithm is coded and executed in MATLAB 7.11.0. In this section, 

the data driven MODE algorithm is tested with safe CVRP instances of Augerat et al. (1995) with the 

parameters and characteristics discussed in the following sections.  

In the Augerat dataset, there are 74 instances and are categorised into three different sets, i.e. set A, B 

and P. The customer locations are randomized in both set A and P while clustered in set B. The 

capacity of the vehicle is constant in set A and B, whereas in set P, the capacity of the vehicle varies 

for each instance.  

These instances are widely used and are publicly available at (Dorronsoro 2005). However to the best 

of our knowledge, these instances have not been used to minimize risk and emission.  

5.1 Parameter Setup 

The parameters used in data driven MODE are summarised in Table 1 below. 

Table 1: Parameters used in data driven MODE 

Parameters Notation Values Unit Reference 

Radius of danger circle 𝜆 0.8  𝑘𝑚 
(DoT 

1996) 

Population density 𝑤𝑠 1000 People - 

Release probability 𝑝𝑖𝑗 4.8 × 10−7 per 𝑘𝑚 

(Harwood 

et al. 

1993) 

Vehicle type - 16 – 32 tonnes - - 

Coefficients for vehicle 

type 
𝐿, 𝑎 −  𝑓 

{765, -7.04, 0, 0.006320, 8334, 0, 

0} 
- 

(Hickman 

et al. 

1999) 

Travel speed 𝑣 60 𝑘𝑚/ℎ - 

 

The impact radius, 𝜆 for Class 3 and Class 4 hazardous materials, which include flammable gasses, 

flammable or combustible liquids, flammable solids and spontaneously combustible materials have a 

potential impact area of 0.8𝑘𝑚 radius in all directions. This is chosen from Table 2 which is adopted 

from the 1996 Hazardous Materials Routing Guidelines (DoT 1996). 

Table 2: Radius λ of impact area by hazardous materials class 

Class Hazardous Materials Code Radius 𝝀 

Class 1 Explosives EXP 1.0 mi. (1.6 km) all directions 

Class 2 
Flammable Gas FG 0.5 mi. (0.8 km) all directions 

Poison Gas PG 5.0 mi. (8.0 km) all directions 

Class 3 Flammable/Combustible Liquid FCL 0.5 mi. (0.8 km) all directions 

Class 4 
Flammable Solid; Spontaneously 

Combustible, Dangerous when Wet 
FS 0.5 mi. (0.8 km) all directions 

Class 5 Oxidizer/Organic Peroxide OXI 0.5 mi. (0.8 km) all directions 

Class 6 Poisonous, not gas POI 5.0 mi. (8.0 km) all directions 

Class 8 Corrosive Material COR 0.5 mi. (0.8 km) all directions 

 

The estimation for the population density is a challenging task due to the fact that population in a 

location varies depends on the time of the day (Erkut and Verter 1998). The distribution in an area is 



usually not uniform. However, due to the lack of information, the variation in population is ignored. It 

is assumed that the population density at each customer node is 1000 people. Since the datasets are 

scaled to simulate an urban area, and all links are assumed to be multilane, the release probability, 𝑝𝑖𝑗 
is assumed to be a constant of 4.8 × 10−7 per 𝑘𝑚 (Harwood et al. 1993). The vehicle type selected 

for this research is the heavy goods vehicles with 16 – 32 tonnes of gross vehicle weight. The 

coefficients of 𝐶𝑂2 emission for different vehicle types are available at (Hickman et al. 1999). With 

consideration that the vehicle is transporting hazardous material and roads in an urban area are likely 

congested, it is assumed that the vehicle travels in an average speed of 60𝑘𝑚/ℎ. 

The proposed MODE is based on the DELS algorithm, and therefore the parameters for DELS are 

taken from (Teoh et al. 2015) and presented in Table 3. 

Table 3: Parameters and constants for MODE 

Parameters Value 

Number of population, 𝑁𝑃 3𝑁 

Crossover rate, 𝐶𝑟 0.4 

Mutation scale factor, 𝐹 Randomized(0.5,1) 

5.2 Analysis of Results 

In this section, the results of the computational experiments of the proposed data driven MODE 

algorithm on CVRP instances are presented and analysed. The selection of the suitable optimal 

solution from the Pareto Front, 𝒫ℱ, is also explained in this section. 

Theoretically, the Pareto Front contains the optimal solution set. A suitable solution based on the 

specific application has to be chosen. In this paper, a solution in the Pareto Front has to be chosen 

such that it has a lower risk and at the same time having a relatively low cost.  

The pareto front generated by data driven MODE for three example instances are shown in Figure 3. 

The trade-off allowed in this paper is set to a 5% increase of emission cost as shown by the horizontal 

line in Figure 3. The circle marker is used for DELS solution and asterisk markers are the Pareto Front 

solutions. The optimal solution will be chosen from the set of solution in the Pareto Front which falls 

under 5% increment of emission cost as compared to the optimal solution found in DELS (Teoh et al. 

2015). The solution with the lowest risk within that allowable range is chosen as the solution and is 

plotted using the square marker. 

The percentage decrease in risk of this optimal solution is compared to the optimal solution found 

using DELS algorithm. All the results are tabulated in Table 4 to Table 6. 



 

Figure 3: Pareto Front for (a) A-n36-k5 (b) B-n36-k5 (c) P-n22-k8 
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Table 4: Optimal Solution for Set A instances 

Dataset 𝓟𝓕 

DELS Data driven MODE 
Under 

5% 

Cost 

Increase 

Change 

in Risk 
Ratio 
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A-n32-k5 15 78.4 144.78 0.0366 82.2 151.79 0.0334 4.84% -8.90% 1.84 

A-n33-k5 12 66.1 122.06 0.0377 68.8 127.05 0.0341 4.09% -9.55% 2.34 

A-n33-k6 9 74.2 137.02 0.0437 76.9 142.01 0.0415 3.64% -5.17% 1.42 

A-n34-k5 12 77.8 143.67 0.0359 81.1 149.76 0.0341 4.24% -4.93% 1.16 

A-n36-k5 25 79.9 147.54 0.0434 83.7 154.56 0.0392 4.76% -9.83% 2.07 

A-n37-k5 22 66.9 123.54 0.0431 70.0 129.26 0.0393 4.63% -8.71% 1.88 

A-n37-k6 14 94.9 175.24 0.0482 99.4 183.55 0.0435 4.74% -9.65% 2.03 

A-n38-k5 10 73.0 134.80 0.0439 75.1 138.68 0.0393 2.88% -10.61% 3.69 

A-n39-k5 16 82.2 151.79 0.0511 85.4 157.70 0.0473 3.89% -7.41% 1.90 

A-n39-k6 19 83.1 153.45 0.0469 86.5 159.73 0.0423 4.09% -9.83% 2.40 

A-n44-k6 22 93.7 173.03 0.0545 98.0 180.97 0.0498 4.59% -8.63% 1.88 

A-n45-k6 10 94.4 174.32 0.0566 97.9 180.78 0.0506 3.71% -10.51% 2.84 

A-n45-k7 7 114.6 211.62 0.0684 117.4 216.79 0.0617 2.44% -9.76% 3.99 

A-n46-k7 14 91.4 168.78 0.0621 94.6 174.69 0.0529 3.50% -14.84% 4.24 

A-n48-k7 17 107.3 198.14 0.0599 111.9 206.64 0.0557 4.29% -6.90% 1.61 

A-n53-k7 19 101.0 186.51 0.0669 104.0 192.05 0.0603 2.97% -9.75% 3.28 

A-n54-k7 13 116.7 215.50 0.0807 122.4 226.03 0.0754 4.89% -6.54% 1.34 

A-n55-k9 18 107.3 198.14 0.0809 112.2 207.19 0.0771 4.57% -4.68% 1.03 

A-n60-k9 11 135.4 250.03 0.0985 141.9 262.04 0.0947 4.80% -3.90% 0.81 

A-n61-k9 10 103.5 191.13 0.1001 108.5 200.36 0.0931 4.83% -6.95% 1.44 

A-n62-k8 14 128.8 237.84 0.0980 135.1 249.48 0.0917 4.89% -6.42% 1.31 

A-n63-k9 4 162.4 299.89 0.1049 165.0 304.69 0.0933 1.60% -11.12% 6.95 

A-n63-k10 13 131.6 243.02 0.1061 137.4 253.73 0.0946 4.41% -10.90% 2.47 

A-n64-k9 11 141.6 261.48 0.1158 148.6 274.41 0.1000 4.94% -13.65% 2.76 

A-n65-k9 8 118.1 218.09 0.0789 122.5 226.21 0.0739 3.72% -6.32% 1.70 

A-n69-k9 11 116.5 215.13 0.0973 122.0 225.29 0.0891 4.72% -8.39% 1.78 

A-n80-k10 4 177.9 328.51 0.1244 185.5 342.55 0.1163 4.27% -6.49% 1.52 

Average 104.4 192.78 0.0698 108.7 200.67 0.0639 4.11% -8.53% - 

 

 

 

 

 

 

 



 

Table 5: Optimal Solution for Set B instances 

Dataset 𝓟𝓕 

DELS Data driven MODE 

Under 

5% Cost 

Increase 

Change 

in Risk 
Ratio 
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B-n31-k5 5 67.2 124.09 0.0603 67.9 125.39 0.0570 1.05% -5.42% 5.18 

B-n34-k5 3 78.8 145.51 0.0510 82.6 152.53 0.0492 4.82% -3.67% 0.76 

B-n35-k5 12 95.5 176.35 0.0497 96.5 178.20 0.0458 1.05% -7.73% 7.37 

B-n38-k6 13 80.5 148.65 0.0578 84.2 155.49 0.0555 4.60% -3.98% 0.86 

B-n39-k5 14 54.9 101.38 0.0712 56.7 104.70 0.0663 3.27% -6.94% 2.12 

B-n41-k6 20 82.9 153.08 0.0711 84.6 156.22 0.0666 2.05% -6.41% 3.12 

B-n43-k6 17 74.2 137.02 0.0816 77.8 143.67 0.0658 4.85% -19.41% 4.00 

B-n44-k7 17 90.9 167.86 0.1060 95.3 175.98 0.0943 4.84% -11.04% 2.28 

B-n45-k5 13 75.1 138.68 0.0698 78.5 144.96 0.0644 4.53% -7.76% 1.71 

B-n45-k6 14 67.8 125.20 0.0937 71.0 131.11 0.0869 4.72% -7.26% 1.54 

B-n50-k7 19 74.1 136.83 0.0840 75.0 138.50 0.0778 1.22% -7.37% 6.04 

B-n50-k8 18 131.3 242.46 0.1431 135.8 250.77 0.1172 3.43% -18.11% 5.29 

B-n51-k7 11 103.3 190.76 0.0864 106.7 197.03 0.0801 3.29% -7.28% 2.21 

B-n52-k7 16 74.7 137.94 0.0877 78.1 144.22 0.0825 4.55% -5.92% 1.30 

B-n56-k7 4 70.7 130.56 0.1105 71.5 132.03 0.1063 1.13% -3.82% 3.39 

B-n57-k7 2 116.6 215.32 0.1188 117.1 216.24 0.1116 0.43% -6.02% 14.09 

B-n57-k9 17 159.9 295.27 0.1205 167.5 309.31 0.1069 4.75% -11.28% 2.37 

B-n63-k10 13 150.4 277.73 0.1161 157.8 291.40 0.1095 4.92% -5.66% 1.15 

B-n64-k9 9 86.1 158.99 0.1311 89.7 165.64 0.1255 4.18% -4.32% 1.03 

B-n66-k9 11 132.2 244.12 0.1570 135.9 250.96 0.1384 2.80% -11.84% 4.22 

B-n67-k10 15 103.2 190.57 0.1318 108.2 199.80 0.1239 4.84% -5.97% 1.23 

B-n68-k9 19 128.1 236.55 0.1502 133.5 246.52 0.1366 4.21% -9.08% 2.15 

B-n78-k10 10 123.0 227.13 0.1667 128.9 238.03 0.1534 4.80% -7.95% 1.66 

Average 96.6 178.35 0.1007 100.0 184.73 0.0922 3.49% -8.01% - 

 

 

 

 

 

 

 

 

 



Table 6: Optimal Solution for Set P instances 

Dataset 𝓟𝓕 

DELS Data driven MODE 

Under 

5% Cost 

Increase 

Change 

in Risk 
Ratio 
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P-n16-k8 1 45.0 83.10 0.0347 45.0 83.10 0.0347 0.00% 0.00% - 

P-n19-k2 1 21.2 39.15 0.0198 21.2 39.15 0.0198 0.00% 0.00% - 

P-n20-k2 3 21.6 39.89 0.0212 21.8 40.26 0.0204 0.93% -3.87% 4.18 

P-n21-k2 2 21.1 38.96 0.0220 21.6 39.89 0.0219 2.39% -0.41% 0.17 

P-n22-k2 1 21.6 39.89 0.0251 21.6 39.89 0.0251 0.00% 0.00% - 

P-n22-k8 5 60.3 111.35 0.0386 62.5 115.41 0.0372 3.65% -3.86% 1.06 

P-n23-k8 2 53.3 98.42 0.0671 53.6 98.98 0.0660 0.57% -1.58% 2.78 

P-n40-k5 2 45.8 84.58 0.0465 45.9 84.76 0.0463 0.21% -0.52% 2.42 

P-n45-k5 1 51.0 94.18 0.0525 51.0 94.18 0.0525 0.00% 0.00% - 

P-n50-k7 4 55.4 102.30 0.0753 55.7 102.86 0.0721 0.55% -4.21% 7.69 

P-n50-k8 1 64.1 118.37 0.0863 64.1 118.37 0.0863 0.00% 0.00% - 

P-n50-k10 7 69.6 128.52 0.0967 71.1 131.29 0.0945 2.16% -2.29% 1.06 

P-n51-k10 2 74.2 137.02 0.0993 74.8 138.13 0.0977 0.81% -1.59% 1.96 

P-n55-k7 6 56.8 104.89 0.0859 58.2 107.47 0.0785 2.46% -8.66% 3.52 

P-n55-k8 5 58.9 108.77 0.0840 59.9 110.61 0.0829 1.69% -1.31% 0.77 

P-n55-k10 8 69.4 128.16 0.1051 70.7 130.56 0.1011 1.87% -3.79% 2.02 

P-n55-k15 1 98.9 182.63 0.1529 98.9 182.63 0.1529 0.00% 0.00% - 

P-n60-k10 7 74.4 137.39 0.1117 77.4 142.93 0.1087 4.03% -2.67% 0.66 

P-n60-k15 3 96.8 178.75 0.1485 98.1 181.15 0.1458 1.34% -1.78% 1.32 

P-n65-k10 3 79.2 146.25 0.1175 80.4 148.47 0.1140 1.52% -3.02% 1.99 

P-n70-k10 3 82.7 152.72 0.1382 85.6 158.07 0.1326 3.50% -4.09% 1.17 

P-n76-k4 1 59.3 109.50 0.0961 59.3 109.50 0.0961 0.00% 0.00% - 

P-n76-k5 1 62.9 116.15 0.1059 62.7 115.78 0.1020 -0.32% -3.67% N/A 

P-n101-k4 1 68.5 126.49 0.1400 68.4 126.31 0.1380 -0.14% -1.48% N/A 

Average 58.8 108.64 0.0821 59.6 109.99 0.0803 1.13% -2.03% - 

 

The first column in each table signifies the set instance’s name and the second column represents the 

number of solution in Pareto Front. The next 2 columns, each with 3 sub-columns, represent the 

results (distance, emission and risk) of optimal solutions from DELS algorithm and the chosen 

solution from the Pareto Front of the proposed data driven MODE algorithm. The last three columns 

respectively show the percentage of increase in cost, percentage of decrease in risk and the ratio of 

these two percentages. The positive values signify an increase whereas negative values indicate a 

decrease. These values are computed using Equations (20) and (21). 

%𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒 or %𝐷𝑒𝑐𝑟𝑒𝑎𝑠𝑒 = (𝐶𝑜𝑠𝑡𝑀𝑂𝐷𝐸 − 𝐶𝑜𝑠𝑡𝐷𝐸𝐿𝑆)𝐶𝑜𝑠𝑡𝐷𝐸𝐿𝑆 × 100% (20)  

Ratio = |%𝐷𝑒𝑐𝑟𝑒𝑎𝑠𝑒%𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒 | (21) 

 



From the percentage decrease in risk shown in the tables, the proposed data driven MODE algorithm 

provides a good range of Pareto solution for the multi-objective problem. The chosen optimal solution 

from the Pareto Front is more efficient compared to the optimal solutions found in (Teoh et al. 2015). 

The optimal solution will be chosen from the Pareto Front if it has lesser than 5% increment of 

emission cost from the DELS solutions. A comparison is done for the percentage of risk increment 

between the DELS solutions and the solutions from data driven MODE.  

For set A instances, it can be seen from Table 4 that the chosen solutions have an average of 8.53% 

decrease in risk while the cost increased by 4.11% in average. The maximum decrease in risk is 14.84% 

and the minimum percentage of decrement is 3.90%. The particular instance with a decrement of 

14.84% in risk has a low increment of cost by 3.50%. This result shows that it is possible to achieve a 

huge risk reduction with minimal increase in cost. The highest ratio of decrement of risk to increment 

of cost for set A is at 6.95 while the minimum is at 0.81. 

The chosen solutions of set B instances managed to achieve an average of 8.01% decrease in risk and 

3.49% increase in cost. From Table 5, B-n43-k6 has the highest percentage of decrement in risk at 

19.41%. With a little increase in cost (4.85%), a relatively high ratio of decrement to increment is 

achieved. The highest ratio for the B instances is at 14.09. This shows that the proposed algorithm 

performed well in clustered datasets. 

As shown in Table 6, the proposed algorithm successfully provided a range of solutions for the 15 

instances, whereas the remaining 9 instances have only one solution in the Pareto Front. No trade-offs 

are required for the 9 instances which have only a single solution as the lowest cost route possesses 

the lowest risk. The set P instances achieved an average of 2.03% decrease in risk and 1.13% increase 

in cost. The highest decrement in risk is at 8.66% and this particular instance has 2.46% increment in 

cost.  

Benchmarking for the results found using data driven MODE is done with the Non-dominated 

Sorting-based Genetic Algorithm II (NSGA-II). NSGA-II is a well-known multi-objective 

optimization algorithm. The comparison is done based on the NSGA-II source code which is publicly 

available online (Deb 2008). The existing source code is modified to adopt the multi-objective 

optimization problems used in this paper. The results are tabulated in Table 7 to Table 9. The data 

MODE algorithm is found to be competitive to NSGA-II and for certain data sets, the data driven 

MODE results are found to be better than the NSGA-II. For set-P instances, the proposed algorithm 

obtained solutions with lower risks as compared to NSGA-II.  

Table 7: Benchmark for set A instances 

Dataset 

Data driven MODE NSGA-II 

Under 5% 

Cost 

Increase 

Change in 

Risk 
Ratio 

Under 5% 

Cost 

Increase 

Change in 

Risk 
Ratio 

A-n32-k5 4.84% -8.90% 1.84 2.80% -7.97% 2.84 

A-n33-k5 4.09% -9.55% 2.34 2.12% -9.18% 4.33 

A-n33-k6 3.64% -5.17% 1.42 3.64% -5.17% 1.42 

A-n34-k5 4.24% -4.93% 1.16 4.24% -4.93% 1.16 

A-n36-k5 4.76% -9.83% 2.07 4.26% -8.06% 1.89 

A-n37-k5 4.63% -8.71% 1.88 3.44% -7.25% 2.11 

A-n37-k6 4.74% -9.65% 2.03 4.74% -9.65% 2.03 



A-n38-k5 2.88% -10.61% 3.69 4.38% -10.61% 2.42 

A-n39-k5 3.89% -7.41% 1.90 3.89% -7.41% 1.90 

A-n39-k6 4.09% -9.83% 2.40 4.09% -9.83% 2.40 

A-n44-k6 4.59% -8.63% 1.88 0.21% 1.32% 6.18 

A-n45-k6 3.71% -10.51% 2.84 4.98% -10.27% 2.06 

A-n45-k7 2.44% -9.76% 3.99 4.80% -10.81% 2.25 

A-n46-k7 3.50% -14.84% 4.24 3.94% -15.39% 3.91 

A-n48-k7 4.29% -6.90% 1.61 4.29% -6.90% 1.61 

A-n53-k7 2.97% -9.75% 3.28 3.96% -10.19% 2.57 

A-n54-k7 4.89% -6.54% 1.34 4.71% -8.45% 1.79 

A-n55-k9 4.57% -4.68% 1.03 4.85% -3.74% 0.77 

A-n60-k9 4.80% -3.90% 0.81 4.21% -5.51% 1.31 

A-n61-k9 4.83% -6.95% 1.44 4.92% -8.58% 1.74 

A-n62-k8 4.89% -6.42% 1.31 4.97% -8.28% 1.67 

A-n63-k9 1.60% -11.12% 6.95 2.83% -11.58% 4.09 

A-n63-k10 4.41% -10.90% 2.47 4.86% -11.35% 2.34 

A-n64-k9 4.94% -13.65% 2.76 4.87% -15.93% 3.27 

A-n65-k9 3.72% -6.32% 1.70 0.76% -5.04% 6.63 

A-n69-k9 4.72% -8.39% 1.78 4.89% -8.74% 1.78 

A-n80-k10 4.27% -6.49% 1.52 4.10% -8.84% 2.15 

Average 4.11% -8.53% 2.28 3.92% -8.46% 2.54 

Min 1.60% -14.84% 0.81 0.21% -15.93% 0.77 

Max 4.94% -3.90% 6.95 4.98% 1.32% 6.63 

 

Table 8: Benchmark for set B instances 

Dataset 

Data driven MODE NSGA-II 

Under 5% 

Cost 

Increase 

Decrease in 

Risk 
Ratio 

Under 5% 

Cost 

Increase 

Decrease in 

Risk 
Ratio 

B-n31-k5 1.05% -5.42% 5.18 0.60% -3.90% 6.54 

B-n34-k5 4.82% -3.67% 0.76 0.00% 0.00% - 

B-n35-k5 1.05% -7.73% 7.37 1.05% -7.73% 7.37 

B-n38-k6 4.60% -3.98% 0.86 4.60% -3.98% 0.86 

B-n39-k5 3.27% -6.94% 2.12 3.27% -6.94% 2.12 

B-n41-k6 2.05% -6.41% 3.12 1.81% -5.06% 2.80 

B-n43-k6 4.85% -19.41% 4.00 2.83% -18.47% 6.52 

B-n44-k7 4.84% -11.04% 2.28 4.73% -10.91% 2.31 

B-n45-k5 4.53% -7.76% 1.71 3.99% -8.73% 2.19 

B-n45-k6 4.72% -7.26% 1.54 3.10% -6.09% 1.97 

B-n50-k7 1.22% -7.37% 6.04 1.49% -6.97% 4.67 

B-n50-k8 3.43% -18.11% 5.29 4.95% -18.18% 3.67 

B-n51-k7 3.29% -7.28% 2.21 0.00% 0.00% - 

B-n52-k7 4.55% -5.92% 1.30 4.55% -5.92% 1.30 

B-n56-k7 1.13% -3.82% 3.39 1.13% -1.21% 1.08 

B-n57-k7 0.43% -6.02% 14.09 4.37% -9.05% 2.07 



B-n57-k9 4.75% -11.28% 2.37 4.57% -12.23% 2.68 

B-n63-k10 4.92% -5.66% 1.15 4.32% -5.87% 1.36 

B-n64-k9 4.18% -4.32% 1.03 4.99% -5.02% 1.00 

B-n66-k9 2.80% -11.84% 4.22 4.47% -14.40% 3.23 

B-n67-k10 4.84% -5.97% 1.23 0.00% 0.00% - 

B-n68-k9 4.21% -9.08% 2.15 4.21% -9.17% 2.18 

B-n78-k10 4.80% -7.95% 1.66 0.00% 0.00% - 

Average 3.49% -8.01% 3.26 2.96% -7.26% 2.94 

Min 0.43% -19.41% 0.76 0.00% -18.47% 0.86 

Max 4.92% -3.67% 14.09 4.99% 0.00% 7.37 

 

Table 9: Benchmark for set P instances 

Dataset 

Data driven MODE NSGA-II 

Under 5% 

Cost 

Increase 

Decrease in 

Risk 
Ratio 

Under 5% 

Cost 

Increase 

Decrease in 

Risk 
Ratio 

P-n16-k8 0.00% 0.00% - 0.00% 0.00% - 

P-n19-k2 0.00% 0.00% - 0.00% 0.00% - 

P-n20-k2 0.93% -3.87% 4.18 0.00% 0.00% - 

P-n21-k2 2.39% -0.41% 0.17 2.39% -0.41% 0.17 

P-n22-k2 0.00% 0.00% - 0.00% 0.00% - 

P-n22-k8 3.65% -3.86% 1.06 3.65% -3.86% 1.06 

P-n23-k8 0.57% -1.58% 2.78 0.00% 0.00% - 

P-n40-k5 0.21% -0.52% 2.42 0.00% 0.00% - 

P-n45-k5 0.00% 0.00% - 0.00% 0.00% - 

P-n50-k7 0.55% -4.21% 7.69 0.55% -4.21% 7.69 

P-n50-k8 0.00% 0.00% - 0.00% 0.00% - 

P-n50-k10 2.16% -2.29% 1.06 0.00% 0.00% - 

P-n51-k10 0.81% -1.59% 1.96 3.23% -0.78% 0.24 

P-n55-k7 2.46% -8.66% 3.52 2.11% -5.87% 2.78 

P-n55-k8 1.69% -1.31% 0.77 0.00% 0.00% - 

P-n55-k10 1.87% -3.79% 2.02 1.72% -3.88% 2.25 

P-n55-k15 0.00% 0.00% - 0.00% 0.00% - 

P-n60-k10 4.03% -2.67% 0.66 2.69% -0.95% 0.35 

P-n60-k15 1.34% -1.78% 1.32 0.00% 0.00% - 

P-n65-k10 1.52% -3.02% 1.99 1.89% -2.16% 1.14 

P-n70-k10 3.50% -4.09% 1.17 3.63% -2.88% 0.79 

P-n76-k4 0.00% 0.00% - 0.00% 0.00% - 

P-n76-k5 -0.32% -3.67% -11.53 0.00% 0.00% - 

P-n101-k4 -0.14% -1.48% -10.39 0.00% 0.00% - 

Average 1.13% -2.03% 0.64 0.99% -1.14% 1.83 

Min -0.32% -8.66% -11.53 0.00% -5.87% 0.17 

Max 4.03% 0.00% 7.69 3.65% 0.00% 7.69 



 

6 Conclusion 

The issues of safe and intelligent transportation system has been an on-going challenge to logistic 

companies, local governments, business owners, consumers and the population who will be directly or 

indirectly affected by the risks of the shipments. With the current developing industries, frequent 

logistics are required and to make matters worse, some of these shipments involve hazardous 

materials. Accident probabilities for a path may be low, but the undesirable effects of an accident will 

impose a great risk to the populations nearby. Thorough and proper planning of routes have been 

given priorities in order to reduce the risk to the nearby population and to achieve safety. 

In this paper, a data driven multi-objective DE algorithm is introduced to optimize the two objectives 

defined for the safe CVRP problem. The classical CVRP problem is expanded to consider safer 

objectives. The optimization is done to reduce the hazardous material risk, CO2 emission and at the 

same time to minimize the cost function. The data driven MODE algorithm incorporates DE 

algorithm with Pareto ranking and crowding distance techniques. The decision-maker then considers 

the trade-off to choose a solution from the set of optimal solutions in the Pareto Front. Computational 

results found proved the viability of the data driven MODE algorithm to solve the multi-objective 

problem with a certain trade-off to achieve an efficient and feasible route. 

In this study we didn’t consider travel time and assumed vehicle to travel in a constant average speed. 

In addition, we didn’t consider traffic congestion issues. There is a potential avenue for future 

researchers to include real time issues using social media and other textual data. Moreover, variable 

speed profile and travel time information can be easily included in our data-driven multi-objective 

optimization problem. In terms of solution slighter modification of our MODE algorithm will suffice 

to include the total travel time. The quick convergence and adaptation of the DE approach will be an 

added advantage for real-time dynamic problems. A more comprehensive investigation of a wider 

range of real time challenges will make MODE as a rigorous tool to solve several variants of VRP.   
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