
Differential evolution algorithm for solving RALB problem using cost and

time based models

J Mukund Nilakantan1*, Izabela Nielsen1, S.G. Ponnambalam2, S. Venkataramanaiah3
1Department of Mechanical and Manufacturing Engineering, Aalborg University, Denmark

Email: {mnj, izabela}@m-tech.aau.dk

2Advanced Engineering Platform and School of Engineering,
Monash University Malaysia, 46150 Bandar Sunway, Malaysia

Email:sgponnambalam@monash.edu

3Indian Institute of Management Lucknow, Noida Campus, India

Email: svenkat@iiml.ac.in

Abstract

Assembly process is one of the important aspects in manufacturing industries. Industries are extensively

using advanced technologies in assembly lines recently such as robots instead of human labor. Cost

associated with human labor such as wages, training, safety and employee management are eliminated

with the help of robots. Investments on assembly lines are cost intensive and industries continuously need

to maximize their utilization. In this paper, a cost based robotic assembly line balancing problem (RALB)

with an objective of minimizing assembly line cost and cycle time is addressed. Moreover, there is no

research reported on concurrently optimizing cycle time and assembly line cost for a robotic assembly

line system to date. The objective of this paper is to propose models with dual focus on time and cost to

minimize the cycle time and total assembly line cost simultaneously. Time based model with the primary

focus to optimize cycle time and the cost based model with the primary focus to optimize total

assembly line cost is developed. Due to NP-hard nature, differential evolution (DE) is the algorithm used

to solve the RALB problem. Straight and U-shaped robotic assembly line problems are solved using

the proposed algorithm and the detailed comparison of results obtained are presented. While comparing

straight and U-shaped RALB problems, assembly line cost and cycle time obtained by U-shaped RALB

problems are better than the straight RALB problems. Proposed models have significant managerial

implications and these have been discussed in detail.

Keywords: Robotic Assembly Line Balancing, Assembly Line Cost, Cycle Time, Differential Evolution.

1. Introduction

In a manufacturing sector, assembly process is considered to be one of the most critical tasks.

Assembly lines are developed for cost-efficient mass production to make full use of labor and

resources available [1]. Stiff competitive environment requires the industries using assembly

lines to produce products at a very low cost without comprising on the quality of the product in a

reasonable time. To remain competitive, the manufacturers need to speed up the time to market

Manuscript Click here to download Manuscript Revised Manuscript.docx

Click here to view linked References
 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

mailto:%7d@m-tech.aau.dk
mailto:sgponnambalam@monash.edu

and at the same time to minimize the manufacturing cost [2]. Different set of tasks are to be

executed in a set of predefined workstations in a time efficient manner in an assembly line.

Assembly lines are to be designed in such a way that tasks are grouped to workstations in an

orderly manner so that line efficiency is maximized and this problem of dividing the tasks to the

workstation in a balanced manner is classified as assembly line balancing (ALB) problem [3].

Cost-oriented assembly line balancing is a generalized form of time-based assembly line

balancing [4].The major objective in a cost-oriented assembly line balancing problem is to assign

all tasks to the workstations in such a way that precedence relationship are met and the

production cost is minimized [5]. Both short and longer term operating costs are incorporated for

solving the cost based line balancing problems. Labor costs, setup cost, equipment cost and

inventory cost have been considered to solve this type of problems [6].

Different researchers have applied exact methods, heuristics and metaheuristics to solve

cost based assembly line balancing problems. Two new heuristics Wage Rate Method (WR)

and the Wage Rate Smoothing-Method (WRS) developed by Rosenberg and Ziegler [5]

focused on solving the cost based assembly line balancing problem with an objective of

minimizing the total production cost. The experimental results obtained are compared with the

well-known heuristics: Positional Weight Method (PW) [7] and the Positional Weight Wage

Rate Difference Method (PWWD) [8]. From the results reported it is concluded that PWWD and

WRS are superior to PW and WR. Amen [4] proposed a cost based assembly line balancing

model for a single model assembly line with the objective of minimizing the total cost per unit.

For solving the problem, an exact backtracking technique is used. The experimental results show

that the proposed method finds optimal solution for small (50 tasks) and medium sized (75 and

100 tasks) problems in reasonable computational time. Amen [9] considered scenarios where

production is very labor-intensive and wage rates are based on the requirements and capabilities

of the workforce. Two new heuristics were developed to solve this problem. Comparison on the

quality of the solution and computational time of the developed algorithm are reported in

[10]. Amen’s study is used as the basis of the research work of Scholl and Becker [11] and it is

shown in their work that one of the rules developed by Amen is incorrect and presented a

corrected and simplified version of this rule. Padrón et al. [2] presented a line balancing

methodology which combines a heuristic model and exact algorithm with an objective of

minimizing cost in a feasible computational time. Cost function considered includes short term

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

operating costs, task and work station capital investment costs. Erel et al. [12] proposed a beam

search algorithm which is similar to Tabu Search (TS) to solve an assembly line balancing

problem in U-shaped assembly line with an objective of minimizing total labor cost and total

expected incompletion cost. The performance of the proposed algorithm is compared with the

other algorithms reported in the literature and it is analyzed that the proposed algorithm performs

better. Roshani et al. [13] developed a simulated annealing algorithm for a cost based two-sided

assembly line balancing problem. Proposed algorithm is tested on different problems to test the

effectiveness of the algorithm. The literature review reveals that the literatures on cost based

assembly line balancing problems are relatively scarce. However, Hazır et al. [14] presented a

survey paper in which problems, approaches and analytical models on cost based assembly

line balancing are analyzed in detail.

Robotic assembly line balancing (RALB) problems is an extension of simple assembly

line balancing (SALB) problems [15]. Robotic assembly line balancing (RALB) problem aims at

assigning tasks to the workstation and selecting the robot to perform the allocated tasks for each

workstation in an efficient manner such that the productivity is improved. Technological

advancements help in replacing the human labor with robots which can perform all types of tasks

in an assembly line. Robots help in improving the productivity, flexibility and provide a safe

environment for the labor. Different types of robots are available in the market and are

extensively used in assembly lines recently. An example of a typical robotic assembly line in a

shop floor is presented in Figure 1. Workstations in this assembly line are arranged in a straight

line and different types of robots are allocated to these workstations to perform the tasks in the

workstations. Robotic assembly line works in a collaborative manner with other resources (e.g.,

automated guided vehicle and human labor) in the shop floor such for a smooth assembly

operation. In a robotic assembly line, selection of the best performing robot to complete the tasks

in a workstation is a very critical issue [16].Quality of the assembly line depends on the robot

assignment. Researchers have so far focused on objectives such as minimizing cycle time [17],

minimizing number of workstations, maximizing line efficiency [18] and minimizing energy

consumption of the robots [19].

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

Figure 1 Robotic Assembly Line System

Researchers have classified simple assembly line balancing (SALB) problems in the category

of NP-hard and the proposed problem in this paper is an extension of SALB problems and falls

in this category. Detailed literature on different optimization techniques (exact methods,

heuristics and metaheuristics) to solve assembly line balancing problems are reported in [20].

Table 1 presents a summary of relevant literature review of different works related to cost and

time based assembly line balancing problems in both traditional and robotic assembly lines

where different optimization techniques have been used.

From the table it could be seen that researchers have focused on assembly line balancing

problems with focus on the objective of minimizing time and cost. It could also be analyzed that

researchers focused on the objective of minimizing cycle time in the robotic assembly lines and

no work has been reported on the objective of minimizing production cost in a robotic assembly

line. There is a need to propose models for robotic assembly line balancing problems with the

objective of minimizing production cost and cycle time as these types of assembly lines are

widely used in a number of industries and optimizing this objective is a very critical.

The main contributions of this paper are: 1) Two models for robotic assembly line balancing

problem are proposed. First model focuses on minimizing the total production cost of a robotic

assembly line and cycle time is evaluated. Second model focuses on minimizing the cycle time

of a robotic assembly line and the total production cost incurred is calculated. Proposed models

are evaluated for two types of robotic assembly line (Straight and U-shaped). 2) A mathematical

model for the proposed problem is presented. 3) Differential evolution is a metaheuristic

developed to solve the proposed problem due to its NP-hard nature. Remainder of the paper is

structured as follows. Section 2 explains the problem in detail and presents the mathematical

.

█

Workstation Workstation Workstation Workstation

Robot 1 Robot 2 Robot 3

Robot 4

Robotic Assembly Line Manual Reworking Workstations

Workstation Workstation Workstation

Automated

Guided

Vehicle

Automated

Guided

Vehicle

Automated

Guided

Vehicle

Human Labor

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

model. Section 3 presents the details of differential evolution, metaheuristic algorithm used to

solve the proposed RALB problem. Section 4 reports the detailed experimental results

conducted. Section 5 concludes the findings of this work and the managerial implications of the

proposed work.

Table 1 Summary of literature on assembly line balancing problems

Reference
Assembly line

configuration

Type of Objective

Objective

Methodology

used to solve

the problem

Remarks

including real

life problem or

hypothetical Cost based
Time

based

Rosenberg and
Ziegler [5]

Traditional
straight

assembly line
√ --

Minimizing the
total production

cost
Heuristics

Randomly
generated
problems

Amen [2]
Traditional

straight
assembly line

√ --
Minimizing the

total cost per unit

Exact
backtracking

technique

Randomly
generated
problems

Amen [5]
Traditional

straight
assembly line

√ --
Minimizing the

total cost per unit
Heuristics

Randomly
generated
problems

Padrón et al. [2]
Traditional

straight
assembly line

√ --

Minimizing short
term operating and

work station
investment costs

Heuristic and
Exact

algorithm

Benchmark
ALB problems

Erel et al. [8]
Traditional U-

shaped assembly
line

√ --

Minimizing total
labor cost and total

expected
incompletion cost

Beam search
algorithm

Benchmark
ALB problems

Roshani et al. [9]
Two sided

assembly line
√ --

Minimizes the total
cost per product

unit

Simulated
annealing
algorithm

Benchmark
ALB problems

Levitin et al. [15]
Straight robotic
assembly line

-- √
Minimize the cycle

time
Genetic

algorithm

Randomly
generated
problems

Gao et al. [16]
Straight robotic
assembly line

-- √
Minimize the cycle

time
Hybrid
Genetic

algorithm

Benchmark
problems

Nilakantan et al.
[17]

Straight robotic
assembly line

-- √
Minimize the cycle

time
Particle
swarm

optimization

Benchmark
problems

Yoosefelahi et al.
[18]

Straight robotic
assembly line

√ √

Minimize the cycle
time, robot costs
and setup cost

Multi
objective
evolution
strategies

Benchmark
problems

Nilakantan et al.
[19]

Straight robotic
assembly line

-- √

Minimize cycle
time and energy

consumption

Particle
swarm

optimization

Benchmark and
Randomly
generated
problems

Mukund
Nilakantan and
Ponnambalam

[21]

U-shaped
robotic

assembly line
-- √

Minimize the cycle
time

Particle
swarm

optimization

Benchmark
problems

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

2. Problem definition and Mathematical Model

In a robotic assembly line, at each workstation different assembly tasks are performed to

assemble a product. Precedence constraints of the tasks are predefined and it determines the

order in which tasks should be executed. In a robotic assembly line there will be a set of

workstations and robots. In a balanced assembly line, tasks are allocated to the workstations and

best available robot to perform the allocated tasks is to be chosen. The main objectives

considered in this paper are to assign tasks to the workstations and assign the robots which will

perform the tasks with minimum cost (cost based model) and minimum cycle time (time based

model) when the number of workstations is fixed. The following assumptions considered in the

model formulation are similar to those mentioned in [15] and [16].

The assumptions considered for the RALB problem are the following.

1. Robot initial cost includes installation, maintenance and service cost for the entire service

life. The service life is restricted to five years. The robot initial costs are assumed based

on the literature.

2. Robots are assumed to work for 20 hours a day and 300 days in a year.

3. Using annual fixed interest rate of 10%, equivalent uniform annual costs of all the robots

are calculated.

4. There is no limitation in the availability of the robots. In this paper, number of robots is

considered to be the same as the number of workstations.

5. Problem is designed for a straight and U-shaped assembly line system where a unique

model of a single product is to be assembled.

6. Tasks cannot be subdivided and it should meet precedence constraints.

7. All robots are available without any limitations (i.e., number of robots of same

capability is unrestricted).

8. Time taken to perform a task depends on the robot assigned. Material handling, loading

and unloading times of the components in the assembly line, as well as set-up and tool

changing times are negligible, or are included in the activity times. This assumption is

realistic for a single model assembly line, where a single product is assembled. In such

robotic lines, tooling is designed such that tool changes are minimized. The performance

time of the robots utilized in this paper are adopted from the datasets reported by Gao et

al. [16].

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

A zero-one integer programming (IP) model for this problem when the objective is to

minimize the total production cost is formulated in this section. The cost based model for straight

robotic assembly line is presented. The following notations are used in this paper:

Indices and Parameters

i, j: Index of assembly tasks

s: index of work stations, s= 1, 2... Nw

h: index of robots, h= 1, 2... Nr

Nw: Number of workstations

Na: Number of tasks

Nr: Number of robots

C: Cycle time

cih: cost of performing the task i by robot h

thi: processing time of task i by robot h

pre(i): set of immediate predecessors of task i

Decision Variables

Model Formulation:

1 1 1

Min . .
w a wN N N

ih is sh

i i i

Cost c x y

 (1)

Subject to:

1 1

. . ,0 ();
Nw Nw

is js

s s

s x s x i pre j j

 (2)

 1
 0, { if task i is assigned to workstation s

is otherwisex

1 is
0, { if robot h allocated to workstation s

sh otherwisey

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

 (3)

 (4)

 (5)

 (6)

The objective of the cost based model (Equation 1) is to minimize the total assembly line cost.

Equation 2 defines the precedence relationship among the tasks. It ensures that for a pair of tasks

with precedence relation, the precedent task cannot be assigned to a workstation after the one to

which its successor is assigned. Equation 3 ensures that each task has to be assigned to one

workstation and Equation 4 ensures that each workstation is equipped with one robot. It is

notable that objective function is non-linear. Hence, it is hard for traditional exact optimization

techniques to solve the problem.

Mathematical model for U-shaped cost based robotic assembly line is presented below.

For a given set of tasks F= {g | g = 1, 2, .. .,n}, a set of precedence constraints P = { (i, j) | task i

must be completed before task j }, a set of task times T = { t(g) | g = 1, 2,, n }, and a cycle

time C, find a collection of subsets of F, (L1, L2, . . . , LN) where La = {g| task g is done at

workstation a } and the workstations and tasks are arranged in a U-shape. In case of U-shaped

robotic assembly line precedence relationship equation changes and hence Equation 2 is replaced

by Equation 7.

For each task j:

 (7)

The mathematical model for robotic assembly line balancing problem with the objective of

minimizing cycle time in straight and U-shaped robotic assembly line are presented in [17] and

[21].

1

1
Nw

is

s

x i

1

1
Nw

sh

s

y s

0 1isx { , } s,i

0 1 ,shy { , } h s

if (,) , , , then , for all ;or

if (,) , , , then , for all ;
a b

b c

i j P i L j L a b i

j k P y L k L c b k

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

3. Metaheuristic algorithm to solve RALB problem

Assembly line balancing problems falls under the category of NP-hard and many researchers

have proposed metaheuristic algorithms to solve different types of these problems [22]. Detailed

literature on different metaheuristic algorithms used to solve assembly line balancing problems

are presented in [23]. The problem addressed in this paper is also NP-hard and to solve the

problem, differential evolution algorithm is proposed. Detailed description on how the

metaheuristic algorithm is implemented is presented in this section.

3.1 Differential Evolution

Differential evolution (DE) is an metaheuristic algorithm proposed by Storn and Price [24] for

solving optimization and engineering problems. Due to its simplicity in implementation, DE has

been applied to solve real-world problems like job shop scheduling and engineering design

optimization [25]. DE has three parameters which controls the search process. Process of

selecting the parameters is explained later in the paper. DE is very similar to genetic algorithm;

however main differences are in the mechanism of mutation and crossover operation [26]. DE

has been chosen for solving this problem mainly due to the following advantages [27]: a) able to

find the true global minimum regardless of the initial parameter values, b) fast convergence, and

c) few control parameters to fine tune. A random set of initial population composed of target

vectors are generated initially. This population undergoes the evolution process in a form of

natural selection. Mutation, crossover and selection operators are applied for generating new

population with higher quality. Each target vector undergoes the mutation operation to generate a

set of donor vectors for all iterations. A set of trial vectors is created by undergoing a crossover

operation on target and donor vector. The selection operation is performed by comparing the

fitness values of each target vectors and trial vectors. If the fitness value of trial vector is better

than the fitness value of the target vector, then trial vector will be selected into the population

otherwise target vector will be selected. The above mentioned three processes are repeated until

the termination condition is satisfied.

3.2 Research Design (selection of DE algorithm parameters)

DE algorithm utilizes different parameters and in this paper different inputs and parameter values

are selected based on literature. Based on the preliminary experiments conducted for the problem

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

under study, different parameters selected are shown in Table 2. This section also provides the

details of different components of DE.

Table 2 DE Algorithm parameters

Parameter Value Reference(s)

Initial Population 25 [28]

Mutation factor 0.5 [29]

Crossover Ordered Crossover; Crossover rate: 0.9 [30]

Selection
Based on the objective function

(minimizing assembly line cost and cycle time)
--

A) Population Initialization

The main step in the functioning of the DE is the generation of the initial population. Each

member (vectors) of this population encodes a potential solution for the problem. Vector

represents a sequence of numbers (tasks) arranged in such a way that it meets the precedence

relationship. Instead of starting the algorithm with a random population, a set of priority

dispatching rules reported in the literature are used to generate the set of initial population. Six

rules reported in the literature[28] are selected to create the initial population and remaining

vectors are randomly generated. Detailed explanation on how the vectors are generated for

robotic assembly line balancing problems are presented in [19].Each vector in the population is

evaluated for the objective function (fitness value). Section 3.3 presents the detail of the

procedure followed to evaluate the objective function.

B) Mutation

In DE, mutation is one of the prime operations. Mutation process is performed for all the vectors

in the population. Mutation process at each generation is performed by picking three target

vectors from the population. Using the target vectors, a population of donor vectors is created.

Perturbation is performed by adding the difference between the two randomly picked target

vectors to a third target vector. This is done based on the Equation 8.

1, 2, 3,(), 1,...5ig r g r G r Gy x M x x where i (8)

M is known as the mutation scaling factor.

To show the process of mutation in RALB problem an example is illustrated below.

Let the three vectors be:

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

xr1,G={1,2,6,3,4,5,7,8,10,9,11} xr2,G={1,2,3,4,5,6,7,8,9,10,11}and

xr3,G={1,2,3,6,5,4,7,8,10,9,11}, M=0.5

yig={1,2,6,3,4,5,7,8,10,19,11}+0.5*{1,2,3,4,5,6,7,8,9,10,11}-{1,2,3,6,5,4,7,8,10,9,11}

The pairs of transpositions to get xr3,G from xr2,Gare identified. Mutation factor is applied to select

the number of pairs and these selected pairs is used to transposition the values in xr1,g.

yig={1,2,6,3,4,5,7,8,10,19,11}+0.5*(3,5)(8,9)={1,2,6,3,4,5,7,8,10,19,11}+(8,9)={1,2,6,3,4,5,7,8,

9,10,11}

C) Crossover

Crossover operations are performed after the mutation operation is completed. By choosing a

donor vector and target vector a set of trial vectors are generated. Crossover operation is

performed only for a selected set of vectors in the population. Using a crossover rate CR, number

of vectors for crossover is selected. OX operator (order crossover) proposed by Davis [30] is

adopted in this research to generate trial vectors.

The detailed description of the OX operation is explained below.

 A subsection of the task sequence from the target vector is picked randomly.

 A proto-trial vector is created by copying the substring of the task sequence into the

corresponding positions.

 Remove redundant tasks in the substring from the donor vector. Formed sequence of

tasks contains the tasks that the proto-trial vector needs.

 Place the tasks into the unfixed positions of the proto-trial vector from left to right

according to the order of the sequence in the donor vector.

To explain this method an example is shown in Figure 2.

Figure 2 Illustration of the OX operator

A reordering procedure used by (Levitin et al., 2006) is also incorporated to make the vectors

feasible if the created vector does not meet the precedence constraints

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

D) Selection

Selection procedure is different from other metaheuristic algorithms. Population of the next

generation is selected from the individual in the current population and its corresponding trial

vector. The vector with the better fitness value is copied to the next generation. Based on the

objective of minimizing the total production cost and cycle time, the selection operation picks

the vectors for the next iteration. Rule of selection is based on the following rule.

, , ,

,

 y () ()
,G 1 , { i G i G i G

i G

if f y f x

i x otherwise
x

 (9)

The differential evolution algorithm is terminated if the iteration approaches a predefined

criteria, usually a sufficiently good fitness or in this case, a predefined maximum number of

iterations (generations) is used.

3.3 Fitness value evaluation

The fitness value to be evaluated in this research is to minimize the total production cost (cost

based model) as well as minimize the cycle time (time based model) of the robotic assembly line.

In the cost based model, the allocation of tasks and robots are performed by minimizing the total

production cost. The subsequent cycle time of that allocation is also evaluated. In case of time

based model, the allocation of tasks and robots are performed with an objective of minimizing

cycle time. The subsequent production cost of the allocation is also evaluated. In this paper, both

straight and U-shaped robotic assembly lines are presented.

3.3.1 Cost and time based model- straight robotic assembly line

Consecutive allocation procedure is adopted for task and robot allocation with an objective of

minimizing the total assembly line cost (cost based model). This allocation procedure aims at

assigning tasks to the workstation and allocates the best robot which performs these tasks with a

minimum performance cost. An initial assembly line cost is to be calculated to start the

procedure. The initial assembly line cost is determined using Equation 10. The procedure tries to

allocate the maximum tasks to each workstation for the initial assembly line cost. If the

procedure cannot find the optimal allocation within the initial value, the initial value is

incremented by one and the procedure is repeated until all the tasks get assigned to the given

number of workstations.

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

Initial assembly line cost 𝑃0 = ⌈ ⌉ (10)

An example is used to explain the procedure involved in consecutive allocation procedure.

 Example task sequence (Generated based on priority rules as explained in Section 3.2):

(1-4-5-3-7-9-2-6-8-10-11)

 Total number of robots and workstation is 4.

Step 1. Minimum cost to perform each task by any robot among the given set of robot is used to

calculate the initial assembly line cost P0. In the given example below initial P0 is found out to be

98 (refer Table 3).

P0= [33+40+35+36+24+57+37+31+31+36+33]/4=98.

Step 2. Procedure tries to allocate the first task to the first workstation and check if any of the

robots can perform the tasks within the initial assembly line cost.

Step 3. If yes, next immediate task in the sequence is checked if it can be allotted to the same

workstation within the initial assembly line cost.

Step 4.The procedure is repeated until the workstation is able to handle the tasks allotted within

the initial P0 value.

Step 5.If the first workstation cannot accommodate further tasks, the next workstation is opened

and tasks are allotted.

Step 6. Repeat this procedure until all the tasks are allotted and robots are assigned.

Step 7. For the initial P0, if there are tasks still left unassigned, P0 is incremented by 1 and the

procedure is repeated until all tasks gets allotted.

Step 8. Best robot which can perform the allotted tasks is selected based on the minimum

performance cost.

Step 9. The overall assembly line cost is calculated by summing up the cost of performing the

allotted task in each workstation by the allocated robots.

Using the performance cost and precedence relations data presented in Table 3, the given

sample sequence is evaluated. Cost data is generated randomly and details of the method

followed for dataset generation is presented in Section 4. Time of performing tasks by different

robots are available in [16].Allocation of tasks when P0 is 98 is shown in Figure 3 and it is

observed that tasks 9, 10, and 11 are left unassigned. To allocate all the tasks P0 is incremented

till 137 for the complete allocation as shown in Figure 4. Cost of each workstation is calculated

w

N

j

ji
Ni

Nc
a

r

/min
1

,
1

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

and total assembly line cost is calculated by summing the cost to perform the tasks at each

workstation. For the given sequence of tasks, the total assembly line cost is calculated as 429.For

a sample sequence (1-2-3-4-5-6-7-8-9-10-11),the allocation of tasks are done based on the cost

based model for a straight robotic assembly line with the objective of minimizing the total

assembly line cost. The cycle time of the allocated tasks of the straight robotic assembly is

evaluated using the time data for the problem. The time to perform the tasks in each workstation

allocated based on the cost model is calculated based on the task performance data. Table 4

shows the task and robot allocation for the sample sequence for cost based model. Figure 5a)

shows the workstation times and assembly line cost of each workstation calculated based on cost

based model. The workstation time is calculated using the time data available in Table 3. Time

at Workstation 1 (Robot 4) =49+42+52=143, Time at Workstation 2 (Robot 2) = 41+36+65=142,

Time at Workstation 3 (Robot3) =40+34+41=115 and Time at Workstation 4 (Robot 2) =

46+38=84. The cycle time (C.T.) is 143 and the total assembly line cost is 441

Figure 3 Allocation done for initial assembly line cost

Figure 4 Final allocation of tasks and robots using cost based model for a straight RAL

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

To illustrate the time based model, the following tasks sequence (1-3-2-4-5-6-7-9-8-10-

11) is used. The objective of the time based model is to allocate the tasks to the workstations

with an objective of minimizing the cycle time. In this research, time based model is similar to

the one presented in [19] and cycle time is evaluated. The total assembly line cost of the

allocation done based on this model is also evaluated. Based on this allocation, using cost of the

performing the tasks presented in Table 3, the cost of the assembly at each workstation is

calculated. And the overall assembly line cost is calculated by taking the sum of the cost to

perform the tasks at each workstation. Cost for Workstation 1 (Robot 4) =47+40+50= 137, Cost

for Workstation 2 (Robot 4) = 38+24+68= 130, Cost for Workstation 3 (Robot 3) =37+31+38=

106 and Cost for Workstation 4 (Robot 2) = 40+33=73. Table 5 shows the allocation of tasks and

robots allotted using the time based model and their subsequent costs and workstations times.

Figure 5b) shows the robot and task allocation with the workstation cost and workstation time in

a straight robotic assembly line calculated based on time based model. The cycle time is 143 and

the total assembly line cost is 446.

When comparing Figure 5a) and Figure 5b), one can find that the allocation of tasks in

both the models are same; however there is a difference in allocation of robots to the

workstations which results in different cycle time and workstation cost for the models. This is

due to the difference in the objective functions of each model.

Table 3 Input data for 11 task and 4 robot problem

Task Precedence

Relations

Cost for performing the tasks Time for performing the tasks

R1 R2 R3 R4 R1 R2 R3 R4

1 - 65 33 47 47 81 37 51 49

2 1 88 89 82 40 109 101 90 42

3 1 52 70 35 50 65 80 38 52

4 1 41 36 83 38 51 41 91 40

5 1 74 32 30 24 92 36 33 25

6 2 62 57 76 68 77 65 83 71

7 3,4,5 41 45 37 47 51 51 40 49

8 6 40 37 31 42 50 42 34 44

9 7 35 67 38 31 43 76 41 33

10 8 36 40 38 73 45 46 41 77

11 9,10 65 33 47 47 76 38 83 87

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

Table 4 Task and robot allocation using cost based model

Workstation Tasks Robot Allotted Workstation

Cost

Workstation

Time

Workstation 1 1, 2, 3 Robot 4 137 143

Workstation 2 4, 5, 6 Robot 2 125 142
Workstation 3 7, 8, 9 Robot 3 106 115
Workstation 4 10, 11 Robot 2 73 84

Total Assembly Line Cost 441 C.T.-143

Table 5 Task and robot allocation using time based model

Workstation Tasks Robot Allotted Workstation

Cost

Workstation

Time

Workstation 1 1, 3, 2 Robot 4 137 143

Workstation 2 4, 5, 6 Robot 4 130 136
Workstation 3 7, 9, 8 Robot 3 106 115
Workstation 4 10, 11 Robot 2 73 84

Total Assembly Line Cost 446 C.T.-143

a) Cost based model allocation

b) Time based model allocation

Figure 5 Workstation cost and cycle time for straight RAL

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

3.3.2 Cost and time based model- U-shaped robotic assembly line

This section presents the detailed procedure implemented to calculate the total assembly line cost

of a U-shaped robotic assembly line. U-shaped robotic assembly line allows more possibilities of

task allocation when compared with straight robotic assembly line. Allocation of tasks to the

workstation are done by moving forward and backward based on the precedence relation in

contrast to the typical forward move in a straight robotic assembly line. An initial assembly line

cost (P0) is calculated to start the procedure. The procedure tries to allocate the maximum

number of tasks to the workstations without violating the precedence constraints. If the initial P0

cannot accommodate all the tasks, P0is incremented by one and the procedure is repeated to

accommodate all the tasks. Based on the allocation done, cost of performing the tasks allotted to

the workstation by a robot which can perform the allocated task with minimum cost is calculated.

The total assembly line cost is calculated by taking the sum of cost incurred at each workstation.

An illustration is provided in this section which explains the task and robot allocation and

calculation of total assembly line cost in a U-shaped robotic assembly line. Sequence of tasks

which meets the precedence constraints is considered for illustration. Let the sequence of tasks

be, (1-2-3-4-5-6-7-8-10-9-11): 11 task and 4 workstation problem is considered for the

illustration. Performance cost data details of each tasks and robots are presented in Table 3.

Step 1. Using Equation 10, P0 is calculated and it is found to be 98.

Step 2. For the initial P0, the procedure tries to allocate the tasks to the workstations starting

from the first workstation. Procedure checks the both sides of the sequence if any of the robots

could perform the tasks within P0. Due to the characteristic of U-shaped assembly line, different

possible task combinations are available. This procedure chooses the task combination which

minimizes the cost at each workstation.

Step 3.If the initial assembly line cost cannot accommodate all the tasks, next workstation is

open and remaining tasks from the sequence are allocated.

Step 4. The initial value of assembly line cost is incremented by one if tasks are still left

unassigned for the initial value and Step 2 and 3 are repeated until all tasks get assigned to the

workstation.

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

Step 5.Based on the allocated tasks, the robots which can perform these allocated tasks are

chosen based on the minimum cost.

Step 6. The sum of cost of each workstation gives the total assembly line cost of the given task

sequence.

In the given example, when the allocation is attempted with initial P0 it is found that tasks

5, 6, 7 and 10 are left unassigned. Hence, P0 is incremented till 125 to accommodate all the tasks

to the four workstations. The total assembly line cost of the given sequence is calculated as 416

cost units. Figure 6 shows the allocation based on the cost based model in a U-shaped RAL.

Based on the allocation done using cost based model, the cycle time of the allocation is

calculated using the task performance times shown in Table 3. Time at Workstation 1 (Robot 2)

=37+46+38=121, Time at Workstation 2 (Robot 4) = 22+33+44=119, Time at Workstation 3

(Robot 3) =38+40=78 and Time at Workstation 4 (Robot 2) = 41+36+65=142. The cycle time of

the U-shaped robotic assembly line is 142 and the total assembly line cost is 416 as shown in

Figure 7a).

Figure 6 Final task and robot allocation in a U-shaped RAL for cost based model

Using the time based model for U-shaped robotic assembly as shown in [21], where the

objective is to minimize the cycle time is adopted in this research. Based on the allocation done

based on the time based model, the subsequent the total assembly line cost of the U-shaped

robotic assembly line is evaluated. Figure 7b) shows the final allocation of tasks and robots

based on the objective of minimizing the cycle time (time based model) and using Table3, the

overall assembly line cost is calculated by taking the sum of the cost to perform the tasks at each

workstation. Cost for Workstation 1(Robot 2) =33+36+33=102, Cost for Workstation 2(Robot 3)

= 30+31+38=99, Cost for Workstation 3(Robot 3) =35+76=111 and Cost for Workstation

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

4(Robot 4) = 40+47+31=118. The cycle time is 124 and the total assembly line cost is 430 when

the allocation is done based on the objective of minimizing the cycle time (time based model) in

a U-shaped robotic assembly line.

When comparing Figure 7a) and Figure 7b), one can find the difference in the total

assembly line cost and the cycle time when allocation are done based on the two models. It can

be seen that cost based model is able to find a possible allocation with lower assembly line cost

and lower cycle time when compared to time based model.

a) Cost based model allocation

b) Time based model allocation

Figure 7 Workstation cost and cycle time for U-shaped RAL

3.3.3 Evaluation of the models and configurations

This section presents a comparison of solutions obtained using two models for straight RALB

and U-shaped RALB. When comparing the cost obtained for straight RALB and U-shaped,

solutions obtained using the cost based model is better than the solutions obtained using the time

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

based model and while comparing the cycle time, solutions obtained by time based model is

better than the solutions obtained using cost based model.

While comparing the cycle time and cost of U-shaped RALB with strraight RALB, it can

be seen that U-shaped RALB is having lower cycle time and cost. This is due to the different

possible (forward and backward) allocations allowed in U-shaped RALB, whereas straight

RALB allows only one way of allocating (forward) the tasks. Table 6 presents the comparison of

the solutions obtained for 11 tasks - 4 robot problem for both straight and U-shaped RALB using

cost and time based model. Percentage improvement of using U-shaped configuration over

straight line is also presented and for the problem illustrated it can be concluded that U-shaped is

performing better than the straight line interms of assembly line cost and cycle time.

Table 6 Comparison of models and layout of RALB

Straight RALB U Shaped RALB

% Improvement (of U-

shaped over straight line)

Cost based

model

Assembly Line Cost 441 Assembly Line Cost 416 6.01
Cycle Time 143 Cycle Time 142 0.70
Cost Improvement % 1.12 Cost Improvement % 3.26 --

Time based

model

Assembly Line Cost 446 Assembly Line Cost 430 3.72
Cycle Time 143 Cycle Time 124 15.32
Cost Improvement % 0.00 Cost Improvement % 14.52 --

4. Experimentation and Discussion of Results

To demonstrate the effectiveness of the proposed algorithms for straight and U-shaped robotic

assembly line, computational experiments are conducted. The following section describes the

experiments conducted.

4.1 Dataset for computational experiments

There are no cost data available to optimize the assembly line cost for a robotic assembly line.

This section presents the procedure followed to generate the cost data for the RALB problem.

Eight representative precedence graphs and from http://www.assembly-line-balancing.de/, which

are widely used in the SALB-I literature [31]and processing times of robots available in [16]are

used to generate the datasets. The hourly rate of the robots is calculated from the standard

procedure of finding annual cost of a capital intensive resource.

 (11)),,/(* niPAICUAC

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

http://www.assembly-line-balancing.de/

 Here, UAC = Equivalent uniform annual cost ($/yr); i = annual interest rate and n= number of

years, (A/P, i, n) = capital recovery factor that converts initial cost at year 0 into a series of

equivalent uniform annual yea-end values.For given values of i and n, (A/ P, i, n) can be

computed as follows:

 (12)

Value of (A/ P, i, n) can also be found in interest tables that are widely available.

 Hourly cost of robot is calculated by dividing the annual cost with total annual hours per

year. Cost of robot for a specific time can be calculated with hourly cost of robot.

 The annual interest rate i is assumed as 10% and n is assumed as 5 years.

 Number of annual hours per year is calculated as total working hours multiplied by total

number of working days. Number of annual hours is taken as 6000hr/yr

(20hr/day*300days/yr).

 After calculating the cost per hour of a robot, cost of performing a set of task by a robot is

calculated by using the performance time.

An example is shown for a better understanding on how the cost data is generated. The steps

shows how the cost of a robot for a specific time. Initial robot cost is $1,100,000.

Step 1: Calculate UAC for robot

 UAC = IC (A/P, i, n)

 = 1,100,000* 0.2638), Uniform Annual Cost = $ 29, 0180

 *A/P Value is calculated for 5 years with interest rate 10%

Step 2: Calculate Hourly Rate of the robot

Total number of hours per year = (20 hr/day) (300 day/yr) = 6000 hr/yr.

 Cost Per Hour = 290180/6000

 = $ 48.36333/hr

*Assembly line is considered to work for 20 hours a day for 300 days in a year.

Step 3: Cost of the robot for a specific time

Time taken to perform a task 1 by robot 1 is 81minutes.

Cost of robot per time = 48.3633*81 /60 = $ 65.2905

1)1(
)1(*

),,/(

n

n

i

ii
niPA

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

32 problems are generated using the above mentioned rules. It is assumed that costs such as

robot cost, setup cost, transportation cost are included in the initial cost of the robot. Table 3 is

developed based on the UAC cost and subsequent tasks times of robots available. Appendix B

shows the random robot cost generated for developing datasets for small size datasets (up to 70

tasks problems) and Appendix Cfor large size datasets (above 89 tasks problems).

4.2 Parameter Selection for DE

Performance of DE mainly relies on the parameters selected. Parameters are selected based on

the tests conducted in order to get a satisfactory solution quality in an acceptable time span.

Influence of each parameter on the solution quality is tested. Three datasets of different task size

are chosen to find the best combination of parameters. Following are the parameters tested and

used in DE to solve the proposed RALB problem:

Stopping Conditions: The proposed DE algorithm is terminated if the maximum number of

generation reaches a predefined criteria, usually a sufficiently good fitness or in this case, a

predefined maximum number of iterations (generations) is used. Different stopping conditions

are tested such as 5, 10, 15, 25 and 30 and best solution could be obtained when number of

generation is 30 for DE.

Crossover rate: Crossover rate (CR) reflects the probability with which the trial vector inherits

the actual vectors properties [32]. It is reported in the literature that if the CR value is high,

population diversity and convergence speed is improved[33]. Different levels of crossover rate

(0.3, 0.5, 0.7, and 0.9) are tested. Best solution could be obtained when the CR value is 0.9.

Mutation Factor: M is a mutation scaling factor of the difference vector (Equation 8). This

parameter helps to control the evolving rate of the population. In the original DE algorithm it is

reported that M value is chosen to be a value between 0 and 2. However, in the literature it is

reported that small value of M leads to premature convergence and large value tends to slow

down the search process. Hence in this research, mutation factor 0.5 is used for solving all 32

problems. A summary of the parameters chosen in this paper is presented in Appendix A.

4.3 Experimental Results

Thirty two test problems generated are solved for the proposed allocation procedure using

differential evolution algorithm. The performances of the model are evaluated to find total

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

assembly line cost in a straight and U-shaped robotic assembly line. The proposed models are

coded in C++ and the performances of DE are tested on Intel core i5 processor (2.3 GHz). The

datasets evaluated are divided into two groups: small (problems with task size ranging between

25 and 70) and large size datasets (problems with task size ranging between 89 and 297) with

different robot combinations. Table 7 shows the results obtained for the proposed DE algorithm

using cost based and time based for straight robotic assembly line. Table 8 reports the results

obtained using the two models for U-shaped robotic assembly line cost.

4.3.1 Experimental Results- straight robotic assembly line

Results of thirty two problems generated are compared for both the objectives in a straight

robotic assembly line. The complete details of the results obtained by using the time based and

cost based model for small size datasets (Problem No: 1 to 16) and for large size datasets

(Problem No: 17 to 32) are presented in Table 7. Number of tasks and number of robots in the

problem is presented in column 2. (For e.g. 25-3, read it as 25 tasks and 3 robot problem)The

results reported are the best solution found using DE. From the table it is evident that cost based

model is better in terms of minimizing the total assembly line cost when compared with time

based model for both the groups of datasets and cycle time is better for time based data model

when compared with the cost based data model. Assembly line cost evaluated using cost based

model is lower when compared to assembly line cost obtained for time based model in a straight

robotic assembly line. Percentage of cost saving obtained by using cost based model over the

time based model is presented in the table along with percentage saving in cycle time using time

based model is also presented. For straight line configuration, average cost saving by cost based

model is 12.04% in case of small size problems and in case of large size problems the average

cost saving is 11.57%. Average saving of cycle time by time based model is nearly 22% in case

of small size problems and in case of large size problems cycle time improvement is more than

32%. From the above results, we can conclude that time based model is more appropriate as

problem size increases. Figure 8 represents the saving potential in terms of percentage of

assembly line cost for cost based model when compared with time based model in straight RAL.

Two sets of the problem datasets are presented. For reader’s clarity, authors have presented small

datasets and large datasets in the same axis. In Figure 9, saving potential in terms of percentage

of cycle time for time based model when compared with cost based model in straight RAL.

Depending upon the priority of the management, the primary focus between time and cost could

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

vary at different time horizon. The appropriate model could be selected based on the priority of

the management.

Figure 8 Cost saving percentage for straight RAL using cost based model

Figure 9 Cycle time saving percentage for straight RAL using time based model

4.3.2 Experimental Results- U-shaped robotic assembly line

Results of thirty two problems are compared for both the objectives (time and cost model) in a

U-shaped robotic assembly line. The complete details of the results obtained by using the time

based and cost based model for small size datasets (Problem No: 1 to 16) and for large size

datasets (Problem No: 17 to 32) are presented in Table 8.Small size dataset problems contain

problems with task sizes ranging from 25 to 70 tasks with different combination of robots and

large size datasets contains problems with tasks sizes ranging from 89 to 297 tasks with different

combination of robots. The results reported are the best solution found using DE. From the table

it is evident that cost based model is better in terms of minimizing the total assembly line cost

when compared with time based model for both the groups of datasets and cycle time is better

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

for time based data model when compared with the cost based data model for U-shaped robotic

assembly line except for two datasets (53-7 and 148-14).

Assembly line cost evaluated using cost based model is lower when compared to

assembly line cost obtained for time based model in a U-shaped robotic assembly line.

Percentage of cost saving obtained by using cost based model over the time based model is

presented in the table along with percentage saving in cycle time using time based model is also

presented. In case of U-shaped RAL configuration average cost saving by cost based model

when compared with time based model is 15.75% in case of small size problems and in case of

large size problems the average cost saving is 10.72%. Average saving of cycle time by time

based model when compared with cost based model is nearly 18.14% in case of small size

problems and in case of large size problems cycle time improvement is more than 24.73%. From

the above results, we can conclude that time based model is more appropriate as problem size

increases. Figure 10 represents the saving potential in terms of percentage of assembly line cost

for cost based model when compared with time based model in straight RAL. Two sets of the

problem datasets are presented. In Figure 11, saving potential in terms of percentage of cycle

time for time based model when compared with cost based model in straight RAL.

Figure 10 Cost saving percentage for U-shaped RAL by using cost based model

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

Figure 11 Cycle Time saving percentage for U-shaped RAL by using time based model

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

Table 7 Comparison of assembly line cost and cycle time for two models in straight RAL

P
ro

b
le

m
 N

o
:

P
ro

b
le

m

D
a

ta
se

t

Assembly Line Cost Cycle Time

P
ro

b
le

m
 N

o
:

P
ro

b
le

m

D
a

ta
se

t

Assembly Line Cost Cycle Time

B
y

 C
o

st

M
o

d
el

B
y

 T
im

e

M
o

d
el

C
o

st

S
a

v
in

g

(%
)

B
y

 C
o

st

M
o

d
el

B
y

 T
im

e

M
o

d
el

C
.T

.

S
a

v
in

g

(%
)

B
y

 C
o

st

M
o

d
el

B
y

 T
im

e

M
o

d
el

C
o

st

S
a

v
in

g

(%
)

B
y

 C
o

st

M
o

d
el

B
y

 T
im

e

M
o

d
el

C
.T

.

S
a

v
in

g

(%
)

1 25-3 1218 1331 9.28 706 503 40.36

17 89-8 3124 3264 4.48 516 461 11.93

2 25-4 984 984 0.00 299 293 2.05

18 89-12 2863 2904 1.43 383 320 19.69

3 25-6 803 815 1.49 221 200 10.50

19 89-16 2472 2641 6.84 292 219 33.33

4 25-9 723 750 3.73 124 114 8.77

20 89-21 2288 2716 18.71 244 170 43.53

5 35-4 945 947 0.21 374 342 9.36

21 111-9 4231 4284 1.25 698 521 33.97

6 35-5 1317 1551 17.77 464 333 39.34

22 111-13 3335 3375 1.20 438 321 36.45

7 35-7 1273 1507 18.38 279 211 32.23

23 111-17 3299 4088 23.92 349 243 43.62

8 35-12 845 918 8.64 130 104 25.00

24 111-22 2794 3179 13.78 293 184 59.24

9 53-5 2230 3371 51.17 561 449 24.94

25 148-10 5613 5832 3.90 881 586 50.34

10 53-7 1768 1832 3.62 362 295 22.71

26 148-14 4220 4431 5.00 561 419 33.89

11 53-10 1666 1877 12.67 252 224 12.50

27 148-21 3722 4528 21.66 321 273 17.58

12 53-14 1299 1398 7.62 168 142 18.31

28 148-29 3744 4374 16.83 236 190 24.21

13 70-7 2319 2348 1.25 504 430 17.21

29 297-19 8311 10301 23.94 675 594 13.64

14 70-10 2173 2360 8.61 351 262 33.97

30 297-29 7570 8876 17.25 503 394 27.66

15 70-14 1966 2118 7.73 247 194 27.32

31 297-38 7598 8771 15.44 365 305 19.67

16 70-19 1718 2413 40.45 176 139 26.62

32 297-50 8320 9112 9.52 331 221 49.77

Total 23247 26520 14.08 5218 4235 23.21

Total 73504 82676 12.48 7086 5421 30.71

Min. 723 750 0.00 124 104 2.05 Min. 2288 2641 1.20 236 170 11.93

Max. 2319 3371 51.17 706 503 40.36 Max. 8320 10301 23.94 881 594 59.24

Avg. 1452.94 1657.50 12.04 326.13 264.69 21.95 Avg. 4594.00 5167.25 11.57 442.88 338.81 32.41

*C.T. - Cycle Time

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

Table 8 Comparison of assembly line cost and cycle time for two models in U-shaped RAL

P
ro

b
le

m
 N

o
:

P
ro

b
le

m

D
a

ta
se

t

Assembly Line Cost Cycle Time

P
ro

b
le

m
 N

o
:

P
ro

b
le

m

D
a

ta
se

t

Assembly Line

Cost
Cycle Time

B
y

 C
o

st

M
o

d
el

B
y

 T
im

e

M
o

d
el

C
o

st

S
a

v
in

g

(%
)

B
y

 C
o

st

M
o

d
el

B
y

 T
im

e

M
o

d
el

C
.T

.

S
a

v
in

g

(%
)

B
y

 C
o

st

M
o

d
el

B
y

 T
im

e

M
o

d
el

C
o

st

S
a

v
in

g

(%
)

B
y

 C
o

st

M
o

d
el

B
y

 T
im

e

M
o

d
el

C
.T

.

S
a

v
in

g

(%
)

1 25-3 1206 1451 20.32 583 500 16.60

17 89-8 3121 3174 1.70 598 481 24.32
2 25-4 965 989 2.49 303 318 -4.72

18 89-12 2850 2921 2.49 425 319 33.23

3 25-6 778 1101 41.52 189 183 3.28

19 89-16 2448 2513 2.66 252 219 15.07
4 25-9 704 740 5.11 114 110 3.64

20 89-21 2254 2561 13.62 216 170 27.06

5 35-4 945 947 0.21 355 343 3.50

21 111-9 4135 4343 5.03 690 522 32.18
6 35-5 1299 1582 21.79 473 336 40.77

22 111-13 3294 3300 0.18 366 319 14.73

7 35-7 1306 1439 10.18 268 212 26.42

23 111-17 3209 3809 18.70 311 242 28.51
8 35-12 795 907 14.09 128 103 24.27

24 111-22 2730 3049 11.68 238 181 31.49

9 53-5 2195 3512 60.00 660 447 47.65

25 148-10 5596 5697 1.80 818 619 32.15
10 53-7 1739 1725 -0.81 359 283 26.86

26 148-14 4164 4161 -0.07 446 411 8.52

11 53-10 1649 1921 16.49 253 220 15.00

27 148-21 3664 4438 21.12 321 270 18.89
12 53-14 1266 1295 2.29 162 144 12.50

28 148-29 3574 5003 39.98 230 188 22.34

13 70-7 2339 2439 4.28 483 427 13.11

29 297-19 8253 8913 8.00 686 591 16.07
14 70-10 2152 2263 5.16 339 264 28.41

30 297-29 7460 8702 16.65 513 390 31.54

15 70-14 1918 2089 8.92 217 195 11.28

31 297-38 7514 8579 14.17 357 292 22.26
16 70-19 1659 2322 39.96 168 138 21.74

32 297-50 8234 9373 13.83 305 222 37.39

Total 22915 26722 16.61 5054 4233 290.31

Total 72500 80536 11.08 6772 5436 24.58

Min. 704 740 -0.81 114 103 -4.72 Max. 2254 2513 -0.07 216 170 8.52

Max. 2339 3512 60.00 660 500 47.65 Min. 8253 9373 39.98 818 619 37.39

Avg. 1432.19 1670.13 15.75 315.88 263.94 18.14 Avg. 4531.25 5033.50 10.72 423.25 339.75 24.73

*C.T.-cycle time

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

4.4 Evaluation (comparison) of straight and U-shaped RAL

The assembly line cost and cycle time obtained using cost based model and time based model for

straight and U-shaped robotic assembly line are compared. Table 9 is formed by extracting the

results from Table 7 and Table 8 obtained for minimizing total assembly line cost from straight

and U-shaped robotic assembly line using cost based model results. The results indicate that total

assembly line cost is very low for U-shaped robotic assembly line when compared to the total

assembly line cost in straight robotic assembly line. Thirty out of thirty two datasets yielded

lower assembly line cost for U-shaped robotic assembly line. Cost savings in terms of percentage

by using U-shaped layout over straight line layout is presented in the table for both small and

large size problems. U shaped layouts are better than straight line layout in both small size and

large size problems and average cost savings by U shaped layout is around 1.6% when compared

with straight line layout. Figure 12 presents the saving in cost by using U-shaped layout over

straight layout for small size and large size problems. Assembly line cost is lower for U-shaped

assembly line layout when compared with straight line layout due to the maximum resource

utilization and more possibilities of task assignment in U-shaped layout.

Figure 12 Cost saving percentage achieved using U-shaped RAL over straight RAL

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

Cycle time of both straight and U-shaped robotic assembly line obtained using time based

model are extracted from Table 7 and Table 8 and the results are presented in Table 10. From

Table 10, it is observed that cycle time of U-shaped robotic assembly line obtained using the

time based model is lower than the cycle time for straight robotic assembly line problems for 21

out of 32 problems. The average percentage reduction in cycle time by U-shaped layout for the

over straight layout is computed as 0.34%. It is concluded from this study that U-shaped robotic

assembly line performs better than straight robotic assembly line for the objective of minimizing

cycle time as well as minimizing total assembly line cost. Figure 13 presents the reduction in

cycle time by using U-shaped layout over straight layout is presented for small size and large

size problems.

Table 9 Comparison of assembly line cost - straight and U-shaped RAL

P
ro

b
le

m
 N

o
:

P
ro

b
le

m

D
a

ta
se

t

Assembly Line Cost

P
ro

b
le

m
 N

o
:

P
ro

b
le

m

D
a

ta
se

t

Assembly Line Cost

S
tr

a
ig

h
t

R
A

L

U
-S

h
a

p
ed

R
A

L

C
o

st

S
a

v
in

g
 %

S
tr

a
ig

h
t

R
A

L

U
-S

h
a

p
ed

R
A

L

C
o

st

S
a

v
in

g
 %

1 25-3 1218 1206 1.00 17 89-8 3124 3121 0.10

2 25-4 984 965 1.97

18 89-12 2863 2850 0.46

3 25-6 803 778 3.21

19 89-16 2472 2448 0.98

4 25-9 723 704 2.70

20 89-21 2288 2254 1.51

5 35-4 945 945 0.00

21 111-9 4231 4135 2.32

6 35-5 1317 1299 1.39

22 111-13 3335 3294 1.24

7 35-7 1273 1306 -2.53 23 111-17 3299 3209 2.80

8 35-12 845 795 6.29

24 111-22 2794 2730 2.34

9 53-5 2230 2195 1.59

25 148-10 5613 5596 0.30

10 53-7 1768 1739 1.67

26 148-14 4220 4164 1.34

11 53-10 1666 1649 1.03

27 148-21 3722 3664 1.58

12 53-14 1299 1266 2.61

28 148-29 3744 3574 4.76

13 70-7 2319 2339 -0.86 29 297-19 8311 8253 0.70

14 70-10 2173 2152 0.98

30 297-29 7570 7460 1.47

15 70-14 1966 1918 2.50

31 297-38 7598 7514 1.12

16 70-19 1718 1659 3.43

32 297-50 8320 8234 1.04

Total 23247 22915 -1.43

Total 73504 72500 -1,37

Min. 723 704 -2.53 Min. 2288 2254 0.10

Max. 2319 2339 6.29 Max. 8320 8253 4.76

Avg. 1452.94 1432.19 1.69 Avg. 4594.44 4531.25 1.51

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

Figure 13 Cycle Time reduction percentage achieved using U-shaped RAL over straight RAL

Table 10 Comparison of cycle time - straight and U-shaped RAL

P
ro

b
le

m
 N

o
:

P
ro

b
le

m

D
a

ta
se

t

Cycle Time

P
ro

b
le

m
 N

o
:

P
ro

b
le

m

D
a

ta
se

t

Cycle Time

S
tr

a
ig

h
t

R
A

L

U
-S

h
a

p
ed

R
A

L

C
y

cl
e

T
im

e

R
ed

u
ct

io
n

%

S
tr

a
ig

h
t

R
A

L

U
-S

h
a

p
ed

R
A

L

C
y

cl
e

T
im

e

R
ed

u
ct

io
n

%

1 25-3 503 500 0.60

17 89-8 461 481 -4.34

2 25-4 293 318 -8.53

18 89-12 320 319 0.31

3 25-6 200 183 8.50

19 89-16 219 219 0.00

4 25-9 114 110 3.51

20 89-21 170 170 0.00

5 35-4 342 343 -0.29

21 111-9 521 521 0.00

6 35-5 333 336 -0.90

22 111-13 321 319 0.62

7 35-7 211 212 -0.47

23 111-17 243 242 0.41

8 35-12 104 103 0.96

24 111-22 184 181 1.63

9 53-5 449 447 0.45

25 148-10 586 619 -5.63

10 53-7 295 283 4.07

26 148-14 419 411 1.91

11 53-10 224 220 1.79

27 148-21 273 270 1.10

12 53-14 142 144 -1.41

28 148-29 190 188 1.05

13 70-7 430 427 0.70

29 297-19 594 591 0.51

14 70-10 262 264 -0.76

30 297-29 394 390 1.02

15 70-14 194 195 -0.52

31 297-38 305 292 4.26

16 70-19 139 138 0.72

32 297-50 221 222 -0.45

Total 4235 4223 -0.28

Total 5421 5435 0.26

Min. 104 103 -8.53 Min. 170 170 -5.63

Max. 503 503 8.50 Max. 594 619 4.26

Avg. 264.69 264.69 0.52 Avg. 338.81 339.69 0.15

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

For U-shaped robot assembly line, each task and any of its successor and/or predecessor

can be allocated to the same workstation (tasks are allocated in U-shaped layout by repeatedly

searching forward and backward through the precedence diagram) which gives more possible

allocations and helps to reduce the workstation times and assembly line cost. Due to this, tasks

from the both sides of the precedence diagram can be assigned to the same work station. In case

of U-shaped layout, balancing the work load based on the demand by relocating the robots is

easier. This provides more flexibility and adaptability for U-shaped layout and makes it an

attractive layout when compared with straight line layout. Hence, by employing U-shaped

robotic assembly line layout results in lower production cost and lower cycle time when

compared with straight robotic assembly line layout.

For reader’s clarity, Table 11 is presented to compare the average cycle time, average

cost and average improvement in the cycle time and cost obtained using the proposed models for

both straight line layout (SL) and U-shaped RAL problems. From the table it can be concluded

that U-shaped layout performs better than the straight line layout. And in terms of average

percentage comparison between models for both the layouts, it could be seen that time based

model is capable of obtaining better solutions.

Table 11 Comparison of problem size, proposed models and RAL Configuration

Model

Problem Size

Small-SL Large-SL Small-U Large-U

Time based
Avg. Cost 1657.50 5167.25 1670.13 5033.50

Avg. C.T. 264.69 338.81 263.94 339.75

Avg. CT Improvement (%) 23.21 30.71 19.68 24.58

Cost based
Avg. Cost 1452.94 4594.00 1432.19 4531.25

Avg. C.T. 326.13 442.88 315.88 423.25

Avg. Cost Improvement (%) 12.34 11.09 14.25 9.98

 Straight line RAL U-Shaped RAL

4.5 Computation time

Table 12 presents the average computation time for cost and time based model for both layouts

considered in this paper. The quality of solution is given importance compared to the

computation time. Average computation time is calculated and reported for each set of tasks.

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

When comparing the average computation time for cost based model, it can be seen that U-

shaped layout needs more computation time than straight line layout for obtaining near optimal

solutions. This is due to large search space in U-shaped layout and different possible

combination of task allocation. Similarly for time based model, computation time is higher for

U-shaped layout when compared with straight line layout. Further fine tuning of parameters can

help to improve the robustness and computational efficiency of the proposed models.

Table 12 Comparison of average computation time
P

ro
b

le
m

D
a

ta
se

t

N
o

:
o

f

P
ro

b
le

m
s

Cost based

model

Time based

model

S
tr

a
ig

h
t

R
A

L

U
-s

h
a

p
ed

R
A

L

S
tr

a
ig

h
t

R
A

L

U
-s

h
a

p
ed

R
A

L

25 4 7 10 7 11

35 4 15 25 14 23

53 4 23 35 25 32

70 4 57 73 59 68

89 4 82 95 84 90

111 4 104 185 110 178

148 4 243 456 250 445

297 4 1235 1710 1240 1685

5. Managerial Insights and Conclusion

In this paper, the robotic assembly line balancing (RALB) problem with two different objectives

viz., time and cost under two different configurations (straight line layout and U-shaped line

layout) has been addressed. The work presented in this paper is an important addition to the

literature where majority of the work so far focused only on robotic assembly line with the

objective of minimizing cycle time. Two models (cost based model and time based model) are

proposed to solve the robotic assembly line problem with an objective of minimizing cycle time

and production cost. This problem falls under the category of NP-hard and hence solved using

differential evolution (DE) algorithm. More than 30 data sets have been considered for

evaluation under straight line and U-shaped configuration with objective of minimization of time

and cost. Parametric study is conducted on selected problems to choose the efficient set of

parameters for DE algorithm. From the experiments conducted, the following important

managerial insights have been drawn.

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

 It is very important and critical to select suitable configuration (straight line or U-shaped) for

assembly operations. This study can help managers or decision makers to choose suitable

solution based on time and/or cost of performing the assembly operations using robots.

 From the experimental evaluation of performance of 32 problem sets, it can be observed that

U-shaped assembly lines are more efficient (in 22 cases) both in terms of cost and time.

However, in few cases, straight RALB is better than U shaped RALB. This clearly shows

that decision makers/ managers need to evaluate the possible options clearly. This would help

managers to choose appropriate configuration based on the floor space available etc.

 Managers can estimate the resources required under each configuration and corresponding

performance. This study will also help in balancing the resources required and performance

of the RALB

 It can also help in better planning and control of activities under different scenarios.

From the results presented in Table 7 and Table 8, it is noted that assembly line cost by cost

based model is lowest compared to time based model for most of the problems considered in the

evaluation under straight line and U-shaped configuration. Similar trend is observed in the case

of time based model for cycle time. From the results given in Table 9 and 10, it is noted that

assembly line cost and cycle time is better for U-shaped robotic assembly line when compared

with straight robotic assembly line for most of the problems considered. These models can be

strongly recommended to solve problem instances that occur in practice, regardless of the

characteristics of the actual real-world problem.

In the future, different other efficient metaheuristics available in the literature can also be

applied for solving the presently developed RALB problems and the performance of the

proposed models from this paper can be used for the benchmark study. The models proposed in

paper are for a single model, robotic assembly lines could be designed for assembly of mixed

and multi models. Most of the literature published focused only on single objective optimization

of RALB problems; there is a need to focus on multi-objective optimization of RALB problems.

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

References

1. Zhong RY, Dai Q, Qu T, Hu G, Huang GQ (2013) RFID-enabled real-time manufacturing execution
system for mass-customization production. Robotics and Computer-Integrated Manufacturing 29 (2):283-
292
2. Padrón M, de los A. Irizarry M, Resto P, Mejía HP (2009) A methodology for cost-oriented assembly
line balancing problems. Journal of Manufacturing Technology Management 20 (8):1147-1165
3. Chica M, Bautista J, Cordón Ó, Damas S (2016) A multiobjective model and evolutionary algorithms
for robust time and space assembly line balancing under uncertain demand. Omega 58:55-68
4. Amen M (2000) An exact method for cost-oriented assembly line balancing. International Journal of
Production Economics 64 (1):187-195
5. Rosenberg O, Ziegler H (1992) A comparison of heuristic algorithms for cost-oriented assembly line
balancing. Zeitschrift für Operations Research 36 (6):477-495
6. Hazir O, Delorme X, Dolgui A A Survey on Cost and Profit Oriented Assembly Line Balancing. In:
19th World Congress of The International Federation of Automatic Control, Cape Town, South Africa,
2014. vol 1. pp 6159-6167
7. Hahn R (1972) Produktionsplanung bei Linienfertigung. de Gruyter,
8. Steffen R (1977) Produktionsplanung bei Fließbandfertigung. Gabler, Wiesbaden,
9. Amen M (2000) Heuristic methods for cost-oriented assembly line balancing: A survey. International
Journal of Production Economics 68 (1):1-14
10. Amen M (2001) Heuristic methods for cost-oriented assembly line balancing: A comparison on
solution quality and computing time. International Journal of Production Economics 69 (3):255-264
11. Scholl A, Becker C (2005) A note on “An exact method for cost-oriented assembly line balancing”.
International Journal of Production Economics 97 (3):343-352
12. Erel E, Sabuncuoglu I, Sekerci H (2005) Stochastic assembly line balancing using beam search.
International Journal of Production Research 43 (7):1411-1426
13. Roshani A, Fattahi P, Roshani A, Salehi M, Roshani A (2012) Cost-oriented two-sided assembly line
balancing problem: A simulated annealing approach. International Journal of Computer Integrated
Manufacturing 25 (8):689-715
14. Hazır Ö, Delorme X, Dolgui A (2015) A review of cost and profit oriented line design and balancing
problems and solution approaches. Annual Reviews in Control
15. Levitin G, Rubinovitz J, Shnits B (2006) A genetic algorithm for robotic assembly line balancing.
European Journal of Operational Research 168 (3):811-825
16. Gao J, Sun L, Wang L, Gen M (2009) An efficient approach for type II robotic assembly line
balancing problems. Computers & Industrial Engineering 56 (3):1065-1080
17. Nilakantan JM, Ponnambalam S, Jawahar N, Kanagaraj G (2015) Bio-inspired search algorithms to
solve robotic assembly line balancing problems. Neural Computing and Applications 26 (6):1379-1393
18. Yoosefelahi A, Aminnayeri M, Mosadegh H, Ardakani HD (2012) Type II robotic assembly line
balancing problem: An evolution strategies algorithm for a multi-objective model. Journal of
Manufacturing Systems 31 (2):139-151
19. Nilakantan JM, Huang GQ, Ponnambalam S (2015) An investigation on minimizing cycle time and
total energy consumption in robotic assembly line systems. Journal of Cleaner Production 90:311-325
20. Sivasankaran P, Shahabudeen P (2014) Literature review of assembly line balancing problems. The
International Journal of Advanced Manufacturing Technology 73 (9-12):1665-1694
21. Mukund Nilakantan J, Ponnambalam S (2015) Robotic U-shaped assembly line balancing using
particle swarm optimization. Engineering Optimization 48 (2):231-252
22. Scholl A, Becker C (2006) State-of-the-art exact and heuristic solution procedures for simple
assembly line balancing. European Journal of Operational Research 168 (3):666-693
23. Rashid MFF, Hutabarat W, Tiwari A (2012) A review on assembly sequence planning and assembly
line balancing optimisation using soft computing approaches. The International Journal of Advanced
Manufacturing Technology 59 (1-4):335-349

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

24. Storn R, Price K (1997) Differential evolution–a simple and efficient heuristic for global optimization
over continuous spaces. Journal of global optimization 11 (4):341-359
25. Wang G-G, Hossein Gandomi A, Yang X-S, Hossein Alavi A (2014) A novel improved accelerated
particle swarm optimization algorithm for global numerical optimization. Engineering Computations 31
(7):1198-1220
26. Nearchou AC (2008) Multi-objective balancing of assembly lines by population heuristics.
International Journal of Production Research 46 (8):2275-2297
27. Karaboga N, Cetinkaya B (2004) Performance comparison of genetic and differential evolution
algorithms for digital FIR filter design. In: Advances in information systems. Springer, pp 482-488
28. Ponnambalam S, Aravindan P, Naidu GM (2000) A multi-objective genetic algorithm for solving
assembly line balancing problem. The International Journal of Advanced Manufacturing Technology 16
(5):341-352
29. Das S, Abraham A, Chakraborty UK, Konar A (2009) Differential evolution using a neighborhood-
based mutation operator. Evolutionary Computation, IEEE Transactions on 13 (3):526-553
30. Davis L Applying adaptive algorithms to epistatic domains. In: IJCAI, 1985. pp 162-164
31. Scholl A (ed) (1995) Data of assembly line balancing problems. Darmstadt Technical University,
Department of Business Administration, Economics and Law, Institute for Business Studies (BWL),
32. Feoktistov V (2006) Differential evolution. Springer,
33. Mohamed AW, Sabry HZ, Khorshid M (2012) An alternative differential evolution algorithm for
global optimization. Journal of Advanced Research 3 (2):149-165

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

Appendix A- Parameters used in DE

Parameters

Population size: 25
Number of iterations: 30
Mutation factor: 0.5
Crossover rate: 0.9

Appendix B-Robot Cost data for small size datasets

P
ro

bl
em

R
1

R
2

R
3

R
4

R
5

R
6

R
7

R
8

R
9

R
10

R
11

R
12

R
13

R
14

R
15

R
16

R
17

R
18

R
19

11
-4

1.1
1.2

1.2
5

1.3
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

25
-3

1
1.5

1.2
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
25

-4
1

1.2
5

1.1
5

1.2
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

25
-6

1.0
5

0.9
5

1
1.2

1.5
1.3

--
--

--
--

--
--

--
--

--
--

--
--

--
25

-9
1.3

1.5
1

1.2
0.9

5
1

1.1
1.2

5
1.1

--
--

--
--

--
--

--
--

--
--

35
-4

1.0
5

0.9
5

1
1.2

--
--

--
--

--
--

--
--

--
--

--
--

--
--

35
-5

1
1.5

0.8
1.2

0.8
7

--
--

--
--

--
--

--
--

--
--

--
--

--
--

35
-7

1.3
5

0.9
5

1.1
1.2

5
1

1.5
1.1

5
--

--
--

--
--

--
--

--
--

--
--

--
35

-1
2

1.1
5

1.2
5

0.8
25

0.9
5

1
1.5

1.3
5

1.1
1.2

0.8
75

1.1
5

0.9
75

--
--

--
--

--
--

53
-5

1
1.2

5
0.9

5
1.2

1.1
5

--
--

--
--

--
--

--
--

--
--

--
--

--
--

53
-7

1.2
1.2

5
1.0

25
0.9

5
1.1

1.3
1.1

5
--

--
--

--
--

--
--

53
-1

0
1.3

1.0
5

1.1
1.3

5
1.1

5
1.2

5
1.2

1.2
25

1.4
0.9

5
--

--
--

--
--

--
--

53
-1

4
1.2

1.2
5

1.0
25

0.9
5

1.1
1.3

1.2
1.3

5
1.4

0.9
25

0.9
1.0

5
1.1

5
1

--
--

--
--

--
70

-7
1

1.3
1.1

5
1.0

5
1.1

1.2
5

1.2
--

--
--

--
--

--
--

--
70

-1
0

1.3
1.0

5
1.1

1.3
5

1.1
5

1.2
5

1.2
1.2

25
1.4

0.9
5

--
--

--
--

--
--

--
--

--
70

-1
4

1.2
1.2

5
1.0

25
0.9

5
1.1

1.3
1.2

1.3
5

1.4
0.9

25
0.9

1.0
5

1.1
5

1
70

-1
9

1
0.8

2
0.9

1.0
5

1.3
1.4

1
1.1

0.9
5

1.2
25

0.9
5

1.2
1.3

5
1.2

5
1.3

25
1.1

5
1.2

5
1.3

0.8

data

*A
ll

th
e

va
lu

es
 a

re
 to

 b
e

m
ul

tip
lie

d
by

 1
06 to

 g
et

 th
e

ac
tu

al
 d

at
a

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

Appendix C-Robot Cost data for large size datasets

P
ro

bl
em

R
1

R
2

R
3

R
4

R
5

R
6

R
7

R
8

R
9

R
1

0
R

1
1

R
1

2
R

1
3

R
1

4
R

1
5

R
1

6
R

1
7

R
1

8
R

1
9

R
2

0
R

2
1

R
2

2
R

2
3

R
2

4
R

2
5

89
-8

1
1

.3
1

.1
5

1
.0

5
0

.8
5

1
.2

5
1

.2
1

.1
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

89
-1

2
1

.1
5

1
.2

5
0

.8
2

5
0

.9
5

1
1

.5
1

.3
5

1
.1

1
.2

0
.8

7
5

1
.1

5
0

.9
7

5
--

--
--

--
--

--
--

--
--

--
--

--
--

89
-1

6
1

.2
2

5
1

.3
2

5
1

.3
0

.9
1

.1
1

.2
5

1
.1

1
.1

5
1

1
.0

5
1

.3
0

.9
5

1
.0

5
1

.4
1

.3
2

5
1

.2
2

5
--

--
--

--
--

--
--

--
--

89
-2

1
1

.2
2

5
1

.3
2

5
1

.3
0

.8
0

.9
5

1
.2

5
1

.1
1

.1
5

1
1

.0
5

1
.3

0
.9

5
1

.0
5

0
.8

5
1

.3
2

5
1

.2
2

5
0

.9
5

0
.9

1
.4

1
.2

1
.1

--
--

--
--

11
1-

9
1

.3
5

1
.2

1
.3

1
.0

5
0

.9
5

1
.2

5
1

.1
1

.1
5

1
.2

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

11
1-

13
1

.0
5

1
.3

2
5

1
.3

1
.1

5
1

.2
2

5
1

.2
5

1
.1

1
.1

5
1

1
.2

2
5

1
.2

0
.9

5
1

.3
5

--
--

--
--

--
--

--
--

--
--

--
--

11
1-

17
1

.0
5

1
.3

2
5

1
.3

1
.1

5
1

.2
2

5
1

.2
5

1
.1

1
.1

5
1

1
.2

2
5

1
.2

0
.9

5
0

.9
1

.3
5

1
1

.2
2

5
1

.0
5

--
--

--
--

--
--

--
--

11
1-

22
1

1
.4

1
.3

0
.8

0
.9

5
1

.2
5

1
1

.1
1

1
1

.3
0

.9
5

1
0

.8
1

.3
1

.2
0

.9
5

1
.2

1
.3

1
.1

1
.2

0
.9

--
--

--

14
8-

10
1

.3
1

.3
2

5
0

.9
5

1
.2

1
.4

1
.2

5
1

.2
2

5
1

.1
5

1
1

.0
5

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--

14
8-

14
1

.2
1

.2
5

1
0

.9
5

1
1

.3
1

.2
1

.3
1

.4
0

.9
0

.9
1

1
.1

5
1

--
--

--
--

--
--

--
--

--
--

--

14
8-

21
1

.2
2

5
1

.3
2

5
1

.3
0

.8
0

.9
5

1
.2

5
1

.1
1

.1
5

1
1

.0
5

1
.3

0
.9

5
1

.0
5

0
.8

5
1

.3
2

1
.2

2
5

0
.9

5
0

.9
1

.4
1

.2
1

.1
--

--
--

--

14
8-

29
:

1
.2

2
5

1
.3

2
5

1
.3

0
.8

0
.9

5
1

.2
5

1
.2

5
1

.1
1

.1
5

1
1

.0
5

1
.3

0
.9

5
1

.0
5

0
.8

5
1

.3
2

5
1

.2
2

5
0

.9
5

1
.4

1
.2

1
.1

1
.2

2
5

1
.3

2
5

1
.3

0
.8

29
7-

19
1

.2
2

5
1

.3
2

5
1

.3
0

.8
0

.9
5

1
.2

5
1

.1
1

.1
5

1
1

.0
5

1
.3

0
.9

5
1

.0
5

0
.8

5
1

.3
2

5
1

.2
2

5
0

.9
5

0
.9

1
.4

--
--

--
--

--
--

29
7-

29
:

1
.2

1
.3

1
.3

0
.8

0
.9

5
1

.2
5

1
1

.1
5

1
1

1
.3

0
.9

5
1

0
.8

5
1

.3
1

.2
0

.9
5

0
.9

1
.4

1
.2

1
.1

1
.2

1
.3

1
.3

0
.8

29
7-

38
:

1
.2

1
.3

1
.3

1
.0

5
1

.3
1

.2
5

1
1

.1
1

.1
1

1
.3

1
1

0
.9

1
.3

1
.2

0
.9

1
1

.4
1

.2
1

.1
1

.2
1

.3
1

.3
0

.8

29
7-

50
:

1
.2

2
5

1
.2

2
5

1
.3

2
5

1
.3

1
.1

5
0

.9
5

1
.2

5
1

.1
1

.1
5

1
1

.0
5

1
.3

0
.9

5
1

.0
5

0
.8

5
1

.3
2

5
1

.3
2

5
1

.2
5

5
0

.9
5

0
.9

1
.3

2
1

.3
1

.0
5

1
.3

5
1

.2
5

P
ro

bl
em

R
2

6
R

2
7

R
2

8
R

2
9

R
3

0
R

3
1

R
3

2
R

3
3

R
3

4
R

3
5

R
3

6
R

3
7

R
3

8
R

3
9

R
4

0
R

4
1

R
4

2
R

4
3

R
4

4
R

4
5

R
4

6
R

4
7

R
4

8
R

4
9

R
5

0

89
-8

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--

89
-1

2
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

89
-1

6
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

89
-2

1
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

11
1-

9
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

11
1-

13
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

11
1-

17
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

11
1-

22
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

14
8-

10
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

14
8-

14
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

14
8-

21
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

14
8-

29
:

0
.9

5
1

.2
5

1
.1

1
.1

5
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

29
7-

19
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

29
7-

29
:

0
.9

5
1

.2
5

1
1

.1
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

29
7-

38
:

0
.9

5
1

.2
5

1
.1

1
.1

5
1

.2
1

.3
1

.3
1

.1
5

0
.9

5
1

.2
5

1
1

.1
5

1
--

--
--

--
--

--
--

--
--

--
--

--

29
7-

50
:

1
.1

1
.1

5
1

.1
5

1
.0

5
1

.3
0

.9
7

5
1

.0
5

0
.9

2
5

1
.3

2
5

1
.2

2
5

0
.9

5
1

.0
5

1
.4

1
.2

1
.1

1
.2

2
5

1
.3

2
5

1
.3

0
.8

0
.9

5
1

.2
5

1
.1

1
.1

5
1

.4
1

.2
5

*A
ll

th
e

va
lu

es
 a

re
 to

 b
e

m
ul

tip
lie

d
by

 1
06 to

 g
et

 th
e

ac
tu

al
 d

at
a

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

