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1. Introduction
Let H(U) denote the class of analytic functions in the open unit discU = {z : z € C : |z|] < 1} and let H[a, p] denote the
subclass of the functions f € H(U) of the form:
f@=a+az’ +a1z2"7'+--- (@eC;peN=1{1,2,...}).
Also, let A(p) be the subclass of the functions f € H(U) of the form:

f@=2+ ) a (peN), (1.1)

k=p+1

and set A = A(1). For functions f (z) € A(p), given by (1.1), and g(z) given by

g@)=2"+ ) bz (peN), (12)
k=p+1

the Hadamard product (or convolution) of f (z) and g(z) is defined by

F*@ =2+ Y abz*=@g*)@ @eUipeN). (1.3)
k=p+1

For f,g € H(U), we say that the function f is subordinate to g, if there exists a Schwarz function w, i.e.,w € H(U) with
w(0) = 0and |w(z)] < 1,z € U, such that f(z) = g(w(z)) for all z € U. This subordination is usually denoted by
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f(z) < g(2). It is well known that, if the function g is univalent in U, then f(z) < g(z) is equivalent to f(0) = g(0) and

f) C g.
Supposing that h and k are two analytic functions in U, let

o(r,s, t;z): C2 x U — C.

If hand ¢(h(z), zh (2), 220" (2); z) are univalent functions in U and if h satisfies the second-order superordination

kz) < o(h(2), zh (), 22h" (2); 2), (1.4)

then h is called to be a solution of the differential superordination (1.4). A function ¢ € H(U) is called a subordinant of
(1.4),if q(z) < h(z) for all the functions h satisfying (1.4). A univalent subordinant q that satisfies q(z) < q(z) for all of the
subordinants q of (1.4), is said to be the best subordinant.

Recently, Miller and Mocanu [1] obtained sufficient conditions on the functions k, g and ¢ for which the following
implication holds:

k(z) < o(h(2), zh' (), 22h" (2); 2) = q(z) < h(z).

Using these results, Bulboaca [2] considered certain classes of first-order differential superordinations, as well as
superordination-preserving integral operators [3]. Ali et al. [4], using the results from [2], obtained sufficient conditions
for certain normalized analytic functions to satisfy

7 @)
71(2) < ——— < @2(2),
f@)
where g; and g are given univalent normalized functions in U.
Very recently, Shanmugam et al. [5-8] obtained the sandwich results for certain classes of analytic functions. Further
subordination results can be found in [9-14].

For complex parameters o1, ..., oqand B1,..., Bs (B & Zo =1{0,—-1,-2,...}; j=1,2,...,5), we now define the
generalized hypergeometric function qFS(ocl, ..., 0g; Bi, ..., Bs; 2) by (see, for example, [15, p.19])
9] k
(@1)ks - -5 (@K 2
Far, .. Br. . paz) =y IR D (g <5415 € Ng =N U{0}:z € U), (15)

= (B)ks -+ Bk k!

where (), is the Pochhammer symbol defined, in terms of the Gamma function I'", by

©), = % = {;(9 FD G- GeNdco (16)
Let
hpqsa, B1;2) = 2P qu(ozl, oo By, B 2)
=2' 4+ ; %z”", (1.7)

and using the Hadamard product, we define the following operator I;?;fs’l(al, B)f : U — Uby

e si@r. BOf(2) = f(@) % hy g5, B3 2):

Lass(en, BOF@) = (1= V(@) * hy g, pr;2) + W(z‘f(z) sy g5, fr:2))':
and

L (o, BOf @) = 1g o, (I 2 (o, Bf (2)). (1.8)
Iff € A(p), then from (1.1) and (1.8), we can easily see that

e e

k=p+1

wherem € N =NU{0},£>0,2>0andp € N.

We note that when p = 1 and ¢ = 0, the operator ITQ?S.K(%, B1)f (z) = D (a1, B1)f (z) was studied by Selvaraj and
Karthikeyan [16].

We also note that:
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()1 p q suf @) = Hp q5(@1, B1)f (z) (see Dziok and Srivastava [17,18]);

(ii) Forg=s+ 1, =1(G=1,...,s+1),8=1(G=1,...,s), we get the operator I,(m, A, £) (see Catas [19]);

(i) Forg=s+ Loy =1(G{=1,...,s+ 1), =1(G=1,...,5),£ =0and A = 1, we get the operator D' (see Kamali
and Orhan [20] and Aouf and Mostafa [21]);

(iv) Forg=s+ 1,0 =1(@(=1,...,s+1),8=1(G=1,...,5),and A = 1, we get the operator I,(m, £) (see Kumar
etal. [22]);

(V) Forg=s+1,0,=1(@{=1,...,s+1),8=1(G=1,...,5),p=A = 1and £ = 0, we obtain the Salagean operator
D™ (see Salagean [23]);

(vi)yForq=s+1,0,=1(@(=1,...,s+ 1), =1(G=1,...,5),p = A = 1, we get the operator I;" (see Cho and
Srivastava [24] and Cho and Kim [25]).

(vii)Forg=s+1,a=13G=1,...,54+1),=1(G=1,...,s),p = 1and £ = 0, we obtain the operator D" (see
Al-Oboudi [26]).

By specializing the parameters m, A, £,p,q,s,a; (i=1,...,q) and B; (j = 1, ..., s), we obtain various new operators,
e.g.,

(i) [, +p, D@ =22 + 32,4 [pﬂ;kr(ll(ip)] <p(T)nk)k Laiz‘ (n > —p;p,n € N);
i Imsz 1: — 5P o ptL{+A(k—p) m @k—p R R 7 .
(ll) p,z’],)\(a! ) C)f(z) =2z"+ Zk=p+1 [ ©k—p akZ (a € ce \ 0)v

(i) 150+ 1, i+ P ) = 2 + 3%, [P " Erazt (n e Zip € Nim > —p);

. P+ Dk
(iv) 121521 P+, Lp+1-0)f(@) =2"+ Z;ipﬂ [pﬂm(ék p)] (pi1 5k)kp a4z (p € N;0 <8 < 1);

_ ++A (k—p) (p+8)k—p (k- K 7. . .
W) L@ +8, ¢ of@) =22+ 3, [p pre ] @ipiiiy W2 (@€ €RNZo38 > —pip €N);

L\ m, (P+)_
i) s, (48, 5o+ + Df@ =27 + 302, [Wm{ p)] (p+5+1’)/:p 0z (6 > —p:p € N).

It can be easily verified from the definition (1.9) that:

2™ (e BOF@) = aal™ (o + 1, BOf @) — (o — DI, (1, B @) (1.10)

and

a2 (o, BOF (@) = (0 + O (e, Bf @) — [p(1 = 1) + ALY, (e, Bf @) (> 0). (1.11)

2. Preliminaries

In order to prove our subordination and superordination results, we make use of the following known definition and
results.

Definition ([1]). Denote by Q the set of all functions f (z) that are analytic and injective on U \ E(f), where
E(f) = {;:g‘eaand limf(z):oo} (2.1)
z—>¢

and are such thatf/(g“) # 0for¢ € oU \ E(f).

Lemma 1 ([27]). Let the function q(z) be univalent in the unit disc U and let 6 and ¢ be analytic in a domain D containing q(U)
with p(w) # 0 when w € q(U). Set Q(z) = zq/ (2)p(q(2)) and h(z) = 0(q(z)) + Q(z). Suppose that

(i) Q(2) is starlike univalent in U,
(ii) Re(L2) ~ 0 for z € U.

Q@)
If p is analytic with p(0) = q(0), p(U) € D and
0(p(2)) +2p' (2)p(p(2)) < 0(q9(2)) + 29 (2)p(q(2)), (2.2)
then
p(2) < q@@)

and q(z) is the best dominant.
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Lemma 2 ([7]). Let q be a convex univalent functionin U and let € C,y € C* = C \ {0} with

Re {1 + 24°@) } > max {O, —Re <W)} .
q(2) Y

If p(z) is analytic in U with p(0) = q(0) and

Up@) + yzp'(2) < ¥q@2) + yzq'(2), (2.3)
then
p(2) <q(z) (z€U)

and q is the best dominant.

Lemma 3 ([28]). Let q(z) be convex univalent in the unit disc U and let 6 and ¢ be analytic in a domain D containing q(U).
Suppose that

(i) Re[% > 0 forz € U;

(ii) zq' (2)p(q(2)) is starlike univalent in U.
If p(z) € H[q(0), 11N Q, with p(U) C D, and 6 (p(z)) + zp'(z)¢(p(2)) is univalent in U, and

0(q(2)) +2q9'(2)¢(q(2)) < 6(p(2)) + 20" (D) 9(p(2)), (2.4)
then
qz) < p@z) (zel)

and q(z) is the best subordinant.

Lemma 4 ([1]). Let q be convex univalent in U and y € C. Further assume that Re(y) > 0. If p(z) € H[q(0), 1] N Q and
p(z) + yzp'(2) is univalent in U, then

9(@) + vzq'(2) < p(2) + yzp'(2), (2.5)
implies

q(z) <p(2) (z€U)
and q is the best subordinant.

The last lemma gives us a necessary and sufficient condition for the univalence of a special function which will be used
in some particular case.

Lemma 5 ([29]). The function q(z) = (1 — z) 2% is univalent in the unit disc U if and only if |2ab — 1| < 1or |2ab+ 1] < 1.
3. Subordination results

Theorem 1. Let q be univalent in U, with q(0) = 1, and suppose that

Re (1 + zq”(z)) > max {0; _p(p;—() Re <1>} , zeU, (3.1)

q'(2) o
where{ > 0,A > 0, € C*and p € N.If f € A(p) satisfies the subordination

o (Lgss (@, BOf @) P I (o, BOF(2) g 4 0@ 52)

D Iz p zp pp+0)’ '
then

Im,(f ,

pasa (e PF@ (33)

zb
and q is the best dominant of (3.2).
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Proof. If we consider the analytic function

zP

h(z) = (z e U), (3.4)

by differentiating (3.4) logarithmically with respect to z, we deduce that

M@ _ 2y A (3.5)

h(z) I (o, BOF(2)

From (3.5), by using the identity (1.11), a simple computation shows that

(L”Lf(al,ﬂnf(z)) p—a(I;’T;,i,na],ﬂ])f(z))_h()+ La
p zP p zP p(p+6)

hence the subordination (3.2) is equivalent to

h) + —2 (@) < q@) + —2—2d(2) (36)
P+ 0) T e+ 0 '

An application of Lemma 2, with ¢ = land y = leadsto (3.3). O

P(P+€) !

Taking q(z) = }i’gﬁ in Theorem 1, where —1 < B < A < 1, the condition (3.1) becomes
1—Bz £ 1
Re > max 3 0; —p(pi—'_)Re - , ze€Ul. (3.7)
1+ Bz A o
It is easy to check that the function ¢(¢) = 1+;’ |¢| < |B],is convex in U, and since ¢(¢) = go(;) forall |¢| < |B|, it follows

that the image ¢ (U) is a convex domain symmetric with respect to the real axis, hence
. 1—Bz _ 1—1B|
inf{fRe——;z €U > 0. (3.8)
1+Bz ~ 1+ Bl
Then, the inequality (3.7) is equivalent to
p(p+0) 13) Re IBI —1
A |B| +1

hence we obtain the following result:

Corollary 1. Let m € Ng, £ > 0,L > 0,0 € C*, —1 <B <A < 1andp € N with

max 0;—MRe l < 1_|B|.
A o 1+ |B|

If f € A(p), and

a (lgsi(@ BUf @) p—a (i@ Bf@ _ltAz e (A-Be 39)

p zP p zP 1+Bz pp+4L) (1+B2)?’ ’
then

Iy e, BOf (2) PRERC

zP 1+Bz’
1+Az ; ;
and 1+B§ is the best dominant of (3.9).
Takingp = A = 1and B = —1 in Corollary 1, we obtain the following corollary.

Corollary 2. Let m € Ng, £ > 0, A > 0and « € C* with

A o
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If f €A and
17 (e, BOf (2) @ Bf@  1+z 200z
ol ———— |+ (1 -0 .

z z “ 12 + €+ (1 —z)?’ (3.10)

then

I??&l,s,x(ah Bf (2) . 142
z 1—2z
and 1“ is the best dominant of (3.10).

Theorem 2. Let q(z) be univalent in U, with q(0) = 1and q(z) # Oforallz € U.Let y, u € C*and v, n € Cwithv +n # 0.
Let f € A(p) and suppose that f and q satisfy the next conditions:

VI e, BOS @) + il (e BOF (2)

Oz #0 (zel), (3.11)
and
Re (1 L@ = (Z)> >0 (zeU). (3.12)
q'() q(2)
If
L vzu’”;{ns+ {(al, BUF@) +melyys, e pof@) 1 a@ 13)
VI (o, BOf @) + Lt 5 (e, B (2) q()
then
I (e, BOF@) + il (o, BF )]
|: D.q,S, A qs,k :| <q(z)
v+ n)zP
and q is the best dominant of (3.13). (The power is the principal one).
Proof. Let denotes
m+l 4 "
h(z) = |: Irgsi (@1 BOF @) + nla o, ﬂof(Z)] (z € U). (3.14)
(v +n)zP

According to (3.11) the function h(z) is analytic in U, and differentiating (3.14) logarithmically with respect to z, we obtain
W@ [ valygs e BOf@) + 0zl e BOF @)
h(z) VI (o, BOf (@) + I s (e, B1f (2)

In order to prove our result we will use Lemma 1. In this lemma consider

O(w) =1 and ¢(w)= —

then 6 is analytic in C and ¢(w) # 0 is analytic in C*. Also, if we let

0@ = 24 (@) = y L2
q(z)
and
4@
£ = 6q@) +0@) =142,
q2)

From (3.12), we see that Q (z) is starlike function in U. From (3.12), we also have
7 /

ReZ @ Re(1+zq/ @ 29

Q@) q'(z) q()

and then, by using Lemma 1 we deduce that the subordination (3.13) implies h(z) < q(z), and the function q is the best
dominant of (3.13). O
1+Az

Takingv =0,n =1,y = landq(z) = i in Theorem 2, it is easy to check that the assumption (3.12) holds whenever
—1 < A < B < 1, hence we obtain the next result.

>>0 (z el
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Corollary 3. Let —1 <A < B < 1and u € C*. Let f € A(p) and Suppose that

p #0 (zeU)(meNyp;£>0;A>0;peN).

If

(3.15)

1+u Z(Ié?&fs,x(al’ BOf @) s &,
I q.5.0.(@1, BOf (2) (1+A2)(1+B2)

then

Bisa Af@]" 1442
zP 1+ Bz’

and }]:gi is the best dominant of (3.15). (The power is the principal one).

Puttingv =0,n=p=1,m=0,g=s+1,o=1(=1,...,5+1),8=1(G=1,....9,y = x@beC), n=aq
and q(z) = (1 — z)~2% in Theorem 2, then combining this to gather with Lemma 5 we obtain the next result due to Obradovic
etal [9, Theorem 1].

Corollary 4 ([9]). Let a, b € C* such that |2ab — 1] < 1or |2ab+ 1| < 1. Let f € A and suppose that @ # 0forallz € U.If
1/2f'(z 14z
L1 ( f'(2) 1) 1

b\ f(@ 1-2’
then
<J?> <1z (3.16)

and (1 — z)~% is the best dominant of (3.17). (The power is the principal one).

Remark 1. For a = 1, Corollary 4 reduces to the recent result of Srivastava and Lashin [13].
L(A—B
Puttingv =0, n=p=y=1,q=s+1,a=1(>G0=1,...,s+1),5=1(G=1,...,5)and q2) :(1+Bz)'(8 : in
Theorem 2, and using Lemma 2 we obtain the next result.

Corollary 5. Let —1 < A < B < 1 with B # 0, and suppose that ‘@ — 1‘ < 1lor ’@—{—1’ < 1. Let f € Asuch that
f(z—z);éOforallzeU,andletpLeC*.If

1+ (zf’(z) B ]> - 1+[B+/L(A—B)]Z'

f@2) 1+ Bz
then
f@O\" WA=B)
— ) <(Q+Bz) 7, (3.17)
z
and (14 Bz) e is the best dominant of (3.17). (The power is the principal one).

Puttingv =0,n=p=1,q=s+1Lo=1>0=1,...,s+1),8=1(G=1,...,8),y = abeci%(a,bec*; 7] < %)
and q(z) = (1 — z)~2ab<oste™ iy Theorem 2, we obtain the following result due to Aouf et al. [30, Theorem 1].
Corollary 6 ([30]). Leta,b € C*and |t| < % and suppose that |2ab cos te T — l| <1lor |2ab coste T 4+ l| <1llLletfeA
and suppose that f(z—z) # 0forallz e U.If

el” (zf’(z) ) 14z
—1]) <
bcost \ f(2) 1-z

then
(fiz)> <(1- 2)72abcosre’if (3.18)

and (1 —z)~2® coste™" i the best dominant of (3.18). (The power is the principal one).
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Theorem 3. Let q be univalent in U, with q(0) = 1,let u, y € C*andlet §, 2, v,n € C. withv 4+ n # 0. Let f (z) € A(p) and
suppose that f and q satisfy the next two conditions:

vl (L BOS @) + 0l (a1, BOF(2)

O E 0z #0 (zeU), (meNy;£>0;1>0;peN), (3.19)
and
Re (1 + zq”(z)) > max {O, —Re (5)} (z e U). (3.20)
q'(2) 4
If
v = | b S, BOf@ + I (e, BOF @) ]
v+ n)z?P
Im+1,1£ ’ m.l ’
. [8 o (vz(pm(fel, BIf (@) + nznsem(al, B1f () _p)} Lo (321)
Lyqsi (@1, BOS @) +nly 5 (ar, B1)f (2)
and
Y(2) < 8q2) + yzq (2) + £2, (3.22)
then
[ I (@, BOF(2) + 0D (o, ﬂl)f(Z)T B
v+ n)zP
and q is the best dominant of (3.22). (All the powers are the principal ones).
Proof. Let define the function h by
by — [ I i (o, BOF @) + 0l 5 (o, /31)f(2)] (323)
(v +n)zP

According to (3.16), the function h is analytic in U, and differentiating (3.20) logarithmically with respect to z, we obtain
e [vzu;”;; (o, BOf @) + 12y, (@1 BOF @) }

h(z) " o, BOF @) + L (e, BF(2)

and hence

@ — uh) {vz(lyzﬁ’f(al, BUf @) +nz(lyys (e, BOF @) } .
I (o, BOF @) + 0l (@, BOS @)
Let consider the next functions
O(w) =dw + £2, o(w)=y, weC,
Q@) =24 (@p@) = yzq'@), zeU,
and
g@2) =0q@)+ Q@) =689z +yzqd @)+ 2, zel.
From the assumption (3.20) we see that Q is starlike in U and, that
28'@) _ Re (ﬁ t14 2q"(z)
Q@) Y q@)
thus, by applying Lemma 1, the proof is completed. O

Re )>0 (z €U,

1+Az
1+Bz

o ()} = 57
max {0; —Re | — < .
14 1+ |B|

Hence, for the special case v = y = 1and 5 = 0, we obtain the following result.

Taking q(z) =

in Theorem 3, where —1 < B < A < 1 and according to (3.5), the condition (3.20) becomes
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Corollary 7. Let —1 <A <B < 1landlet § € C with
— |B]

+ Bl

Let f € A(p) and suppose that

max {0; —Re(8)} <

[Ey =

#0 (zeU)(meNyp;£>0;A>0;peN),

zb
and let u € C*. If
m+1 l m.lZ ’
(o1, B1)f (@) z(l, 45.5.(00, B1f (2)) 1+A A—B
Iy q.si (@1, BOF S+ pa.s. (@1 BOf o) l+2<s +Z+Q+( )Zz’ (3.24)
z L (e, BOS @) 1+ Bz (1+Bz)
then
I o, pOf @) ' PRER:
zP 14+ Bz’
and }fgﬁ is the best dominant of (3.24). (All the powers are the principal ones).
Takingp=n=y =1Lv=m=0q=s+1,a=1@G0=1,....,s+ 1), =1G=1,...,9andq(z) = }%ﬁin
Theorem 3, we obtain the following result.
Corollary 8. Let f € Asuch that @ # O0forallz € U,and let u € C*. If
f@\" 7f'(z) 1+z 2z
— S+ p 1) |+ <6——+2+ ——, 3.25
(Z f@ ~2 (1—2)? (3:25)
then
[@Y 14z
z 1 -z’
and % is the best dominant of (3.25). (All the powers are the principal ones).

4. Superordination and sandwich results

Theorem 4. Let q be convex in U with q(0) = 1,let m € Ng, £ > 0,1 > 0, € C*and p € N with (p(pig))Re(o:) > 0. Let
f € A(p) and suppose that M € H[q(0); 1] N Q. If the function
a (s BUf @) P Ll (e, BOS @)
p zP p zP
is univalent in the unit disc U, and
Py (a1, B)f @) —a (I (e, BOf (2)
@) + o zq/(z)< pqsh 1 BOf P (hasa(en Bf , @1)
pp+ 6 p zp p zP
then
m, €
o) < Basaon AV @
zP
and q is the best subordinant of (4.1).
Proof. We define the function g by
Iyt e, Bf ()
g(z) = M (z € U). (4.2)

zb
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From the assumption of Theorem 4, the function g is analytic in U. Differentiating (4.2) logarithmically with respect to z, we
obtain

(@) _ 2Upge(en BOF@) N (43)
£@2) qs,\(al»ﬂl)f(l)

After some computations, and using the identity (1.11) from (4.3), we get

gD+ —2 =2 ( ) (Z>) p—a (157’{% /31)f(z)>

pp+90 p zP p zP
and now, by using Lemma 4 we get the desired result. O
Taking q(z) = }r;j (=1 < B < A < 1) in Theorem 4, we obtain the following corollary.

Corollary 9. Let q be convex in U with q(0) = 1, let m € Ng,£ > 0,1 > 0, € C* and p € N with (

f € A(p) and suppose that M

@ ( ;1;35<a1,ﬁ1>f(z>> p—a (,,qsk(al,ﬁof(z))
p

zP p zP

A
20D JRe(ar) > 0. Let

€ H[q(0), 1] N Q. If the function

is univalent in U, and

1+ Az )A-Bz I (o, B)f @) L p-a Iyt (e, BOf (2) 44
148z  pp+6O(1+B22  p zr p zP ’ '
then
1Az Iy (a1, BOf (2)
1+ Bz zP ’
and }f;j (—1 < B < A < 1) is the best subordinant of (4.4).

Using arguments similar to those of the proof of Theorem 3, and then by applying Lemma 3, we obtain the following result.

Theorem 5. Let q be convex in U with q(0) = 1, let u,y € C*, and let §, 2,v,n € C withv + n # 0and Re(%) > 0. Let
f € A(p) and suppose that f satisfies the next conditions:
VI (o, BOf () + I (e, B1f (2)
w+n)z?P

#0 (zeU;meNy;£>0;1>0;peN),

and

m+ll m,¢ M
aq, Z) + nl aq, z
Vpgsi e BOF@) gy, o B @ )"
(v +n)zP
If the function v given by (3.21) is univalent in U, and

8q(2) + vzq' (2) + 2 < Y (2), (4.5)
then

)

@ < I L BOF @) + L (e, BOF@) ]
d (v +n)z?P
and q is the best subordinant of (4.5). (All the powers are the principal ones).

Combining Theorem 2 with Theorem 4 and Theorem 3 with Theorem 5, we obtain, respectively, the following two
sandwich results:

Theorem 6. Let q; and q, be two convex functions in U with q;(0) = q;(0) = 1,let m € Ng, £ > 0, A > 0,0 € C*andp € N

with p(p+z) Re(a) > 0. Let f € A(p) and suppose that M € H[q(0), 1] N Q. If the function

@ ( T (e, ﬂof(z)) p—a (1,;’7;,_5,A<a1,;81>f<z>)
p p

zP zP
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is univalent in the unit disc U, and

razg)@ o (L@ Bf@Y  p—a (Ll BOf@ ozl (2)
q1(2) + o+l 7 " + p " < q2(2) + 2010 (4.6)
then
Im,l
01(2) < M < q2(2),

and g1 and q, are, respectively, the best subordinant and the best dominant of (4.6).

Theorem 7. Let g and g, be two convex functions in U with q1(0) = q2(0) = 1, let u,y € C* and let §, 2, v, n € C with
v+n#0and Re(%) > 0. Let f € A(p) suppose that f satisfies the next conditions:

VI (s BOF @) + il (o, BOF @)
(v +nz?

#0 (zeU;meNyp;£>0;A>0;peN),

and
n

;;;f(a], ﬂ])f(z) + T]I;nqls )L(als ﬂ])f(z) c H[q(O), 1] N Q

v +n)zP

If the function i given by (3.18) is univalent in U, and
8q1(2) + v2q1(2) + 2 < ¥ (2) < 82q2(2) + yzq, + £2, (4.7)
then

VI (o, B (@) + nljys s (e, B (2)

vtz < q2(2),

qi1(z) <

and q, and q, are, respectively, the best subordinant and the best dominant of (4.7). (All the powers are the principal ones).
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