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Abstract 

 

DNA-dependent protein kinase (DNA-PK), a member of phosphatidylinositol-kinase family, is a 

key protein in mammalian DNA double-strand break (DSB) repair that helps to maintain 

genomic integrity. DNA-PK also plays a central role in the immune cell development and 

protects telomerase during cellular aging. Epigenetic alterations due to endogenous and 

exogenous factors may affect the normal function of DNA-PK, which in turn can impair DNA 

and contribute to genomic instability. Recent studies implicate a role for epigenetics in the 

regulation of DNA-PK expression in normal and cancer cells, which may impact cancer 

progression and metastasis as well as provide opportunities for treatment and use of DNA-PK 

levels as a novel cancer biomarker. In addition, several small molecules and biological agents 

have been identified recently that can inhibit DNA-PK function or expression, and thus hold 

promise for cancer treatments. This review discusses the impact of epigenetic alterations and the 

expression of DNA-PK in relation to the DNA repair mechanisms with a focus on its differential 

levels in normal and cancer cells. 

 

Abbreviations 

53BP1; P53-Binding Protein 1 

Ac; Acetylation 
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ALC1; Amplified in Liver Cancer 1 

ATM; Ataxia Telangiectasia Mutated 

ATR; Ataxia Telangiectasia and Rad3-Related  

CK2; Casein Kinase II 

CTD; C-Terminal Domain 

DNA-PK; DNA-Dependent Protein Kinase 

DRF; Dose Reduction Factor 

Dsbs; Double Strand Breaks 

FA; Fanconi Anemia 

FAT; FKBP12-Rampamycin-Associated Protein 

FATC; C Terminal of FAT Domain 

HIF-1; Hypoxia Inducible Factor 

HR; Homologous Recombination 

LRR; Leucine Rich Region 

Me; Methylation;  

MMEJ; Microhomology-Mediated End Joining 

Mmps; Matrix Metalloproteinase 

Mtor; Mammalian Target of Rapamycin 

NHEJ; Non-Homologous End Joining 

NLS; Nuclear Localization Signal 

NSCLC; Non-Small Cell Lung Cancers 

 P; Phosphorylation 

PARP; Poly (ADP-Ribose) Protein   
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SCID; Severe Combined Immunodeficiency 

TRRAP; Transactivation/Transformation-Domain-Associated Protein 

 Ub; Ubiquitylation 

Vwa; Von Willebrand-Like Domain 

 

Keywords: DNA-PK, Genomic stability, DNA repair, DNA damage, Epigenetic alternations, 

Cancer  

 

1. Introduction 

 

 DNA replication and cell division are biological processes inherent in all prokaryotic and 

eukaryotic cells. In metazoans, errors in DNA replication caused by endogenous and exogenous 

factors, are common and result in thousands of DNA lesions each day [1]. In addition, normal 

cellular metabolism generates metabolic intermediates and by-products such as reactive oxygen 

species (ROS) and reactive nitrogen compounds that can induce DNA breaks. For the cells, these 

processes often “collide” when DNA replication machinery encounters ROS-damaged DNA 

bases or single-strand DNA breaks, which can be converted to DNA double-strand breaks 

(DSBs) during replication fork collapse [2]. Cellular processes such as meiotic recombination [3] 

or cleavage of genes during immunoglobulin gene rearrangement can also give rise to DSBs [4]. 

Exposure to environmental DNA damaging agents such as ultraviolet radiations (UVR) and other 

chemical or genotoxic agents are also an important cause of DNA lesions, and DNA DSBs are 

perhaps the most lethal kind of damage that a cell could undergo. DNA DSBs when not repaired 

or managed properly threatens genomic stability and results in the development of cancers and 
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other syndromes such as ataxia telangiectasia (AT), Nijmegen breakage syndrome or the Lig4 

syndrome [5–7]. The cells have developed an array of mechanisms to combat the threats posed 

by different kinds of DNA damage. These mechanisms collectively called the DNA-damage 

response (DDR), detects DNA lesions, signal their presence and promote the repair genes [8,9]. 

In this review, we will primarily focus on the DDR as it pertains to DNA DSB repair. 

 When DNA DSBs trigger the DDR, a series of cellular responses converge on a 

fundamental binary decision: a) the activation of cell cycle checkpoints to facilitate DNA repair 

or b) activation of apoptosis when the degree of DNA damage passes a threshold from which the 

cell cannot recover and/or for which loss of the cell can be tolerated by cell replacement [7]. The 

cells are equipped with three distinct DNA repair pathways to combat the DSBs: homologous 

recombination (HR), non-homologous end joining (NHEJ), or microhomology-mediated end 

joining (MMEJ; also referred to as Alternative-NHEJ or Alt-NHEJ), and [10–12]. HR is an error-

free process and uses sister chromatids as templates for DNA repair and is mediated by RAD51. 

This is the predominant repair pathway during development, S and G2 phase of the cell cycle 

and has the longest sequence homology requirement [13]. As the name suggests, MMEJ requires 

only a 5-25 bp microhomologous sequence to align the broken strands before joining the ends, 

and although active throughout the cell cycle is most prominent during S/G2 [14]. The 

requirement for the small stretch of microhomology results in deletions and induces 

chromosomal abnormalities and rearrangements [15]. NHEJ is responsible for the repair of the 

majority of the DSBs in G1 and G0 phase of the cell cycle. Unlike HR and MMEJ, NHEJ does 

not require any homologous sequence for DNA repair and is highly error prone [16]. The NHEJ 

pathway is mediated by an enzyme complex called DNA-dependent protein kinase (DNA-PK) 

[17,18].  
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2. DNA-PK Structure and Function  

Identified as individual components during the early 1980’s DNA-PK is a nuclear serine 

/threonine kinase, consisting of a catalytic subunit called DNA-PKcs and a regulatory 

heterodimer Ku (Ku70/Ku80). The initially recognized roles for DNA-PKcs (originally termed 

p350) involved phosphorylation and transcriptional activation of SP-1, p53, and hsp90. The Ku 

subunits were known to bind double strand DNA, but their function remained unknown. 

Isolation of these two factors together led to the discovery of DNA-PK holoenzyme and its 

function in DNA repair pathways [11,19]. With the nuclear polypeptides reaching up to 4127 

amino acids, DNA-PKcs is considered as the largest kinase subunit, which depends entirely on 

DNA binding for its activity [19,20]. Studies on the amino acid sequence of DNA-PKcs has 

identified them to be a member of phosphatidyl inositol-3 kinase (PI3K) like kinase (PIKKs), but 

other than protein kinase activity, no lipid kinase activity has ever been reported for DNA-PKcs 

[21,22]. Regulatory subunit of DNA-PK called Ku is a heterodimeric protein with two tightly 

associated subunits Ku70 and Ku80, which forms a ring like structure through which DNA can 

pass. The abundant expression of DNA-PK in the nucleus allows it to identify and bind to any 

DNA DSBs, which constantly occurs in the body and thereby initiating its repair mechanisms 

[23]. 

 Structurally, DNA-PKcs consists of a DNA binding domain, a Ku binding domain, a 

Leucine Rich Region (LRR), FKBP12-rapamycin-associated protein (FAT), Ataxia 

Telangiectasia Mutated (ATM), transactivation/transformation-domain-associated protein 

(TRRAP), C terminal of FAT binding domain (FATC) and two phosphorylation clusters; PQR 

and ABCDE. Ku heterodimer consists of a conserved von Willebrand-like domain (vWA), DNA 
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heterodimerization core domain, SAP domain, nuclear localization signal (NLS) and a widely 

conserved C-terminal domain (CTD). Ku subunits have a high affinity for DNA fragments 

(higher affinity for DSBs than for single strand breaks) and DNA-PKcs affinity to DNA 

increases to ~100 folds in the presence of Ku subunits. For an efficient binding and subsequent 

activation of DNA-PKcs, an interaction between the C-terminal 12 residues of Ku80 with DNA-

PKcs is necessary [23,24]. Once activated DNA-PKcs initiate a series of phosphorylation/auto 

phosphorylation events that are required primarily for cell cycle checkpoint signaling and DNA 

repair [25]. However, studies have shown that DNA-PKcs can also phosphorylate peptide 

substrates that are not bound to the DNA, suggesting that the DNA itself can induce a 

conformational change in the DNA-PKcs to activate its phosphorylation activity.  

 

2.1. Role of DNA-PK in DNA repair mechanisms 

 The core protein complexes of NHEJ are the Ku subunits (Ku70/Ku80), DNA-PKcs, 

DNA ligase IV (Lig4), its cofactor the X-ray cross complementation group 4 protein (XRCC4) 

and the nuclease Artemis [26]. The process of NHEJ starts with the recognition and binding of 

the broken DNA ends by the ring-shaped Ku70 and Ku80 subunits [27,28]. This recruits 

monomeric DNA-PKcs through its interactions with Ku and DNA on both sides. Together with 

the Ku subunits, DNA-PKcs form the heterodimer DNA-PK. Following this, the DNA-PKcs 

dimerizes and interacts across the DNA termini and forms a synaptic complex [29]. DNA-PKcs 

recruitment facilitates the translocation of the Ku heterodimer into the DNA duplex and allows 

DNA-PKcs to serve as a tether for broken DNA ends [30]. It is also proposed that DNA-PKcs 

protect the DNA from exonucleolytic degradation and aligns the broken ends of DNA. In this 

regard, DNA-PKcs act as a scaffold protein and aids in the localization of repair proteins to the 
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site of DNA damage. DNA binding activates the kinase activity of DNA-PKcs and 

phosphorylates and alters the activity of other proteins that mediate NHEJ, including Ku70, 

Ku80, Artemis, XRCC4, and Lig4 [27]. Ligation of DNA ends is mediated by Lig4 in addition 

with XRCC4. An additional factor, Cernunnos/XRCC4-like factor (XLF), has also been 

identified as a binding partner of the Lig4-XRCC4 complex and is necessary for efficient ligation 

by NHEJ [31]. Activated DNA-PKcs also phosphorylates Ser139 on histone variant H2AX (γ-

H2AX), which is a well-known marker for DNA DSBs and recruits the repair factors to the site 

and coordinates the signaling cascades required for efficient repair [32,33]. DNA-PK activation 

and its activity are modulated by the DNA to which it binds. The 5’ end of the DNA activates the 

kinase activity while the 3’ end anneals the DNA termini across the break [34]. Mutation studies 

on the Ku subunits and DNA-PKcs have shown that the Ku80/DNA-PKcs interactions are 

necessary for DNA-PK activity and are not specific to any structural region of the Ku80 C-

terminus. Moreover, each structural region within the Ku80 C-terminus is necessary for the 

activation of the kinase activity. It was also observed that the structural features of the substrate 

like DNA length, DNA overhangs, orientation and sequence of the overhangs, influence 

Ku80/DNA-PKcs interaction and DNA-PK activation [35].  

     <Fig. 1.> 

 DNA-PK’s kinase activity is requisite for its role in NHEJ [36]. Although a significant 

number of DNA-PK target proteins have been identified (including Ku70, Ku80, Artemis, 

XRCC4, XLF and DNA Lig4), it is now considered that the phosphorylation of these sites by 

DNA-PK is not required for successful NHEJ [37–39]. A recent study has shown that DNA-PK 

mediated phosphorylation facilitates DNA polymerase λ (pol λ)-mediated gap filling DNA 

synthesis during NHEJ [40]. The most important target site of DNA-PK phosphorylation is the 
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auto phosphorylation of the catalytic subunit itself [41–43]. DNA-PK autophosphorylation is 

essential for regulation of end processing, enzyme inactivation, and complex dissociation. The 

autophosphorylation of two clusters of residues, ABCDE (residues 2609-2647) and PQR 

(residues 2023-2056) regulates DNA end access for subsequent processing and ligation [44–46]. 

Mutational studies have shown that phosphorylation within ABCDE opens the ends for 

processing, while phosphorylation within the PQR cluster was shown to have an inhibitory effect 

on end processing [41,47]. These phosphorylation events point towards a mechanism by which 

DNA-PK protects the DNA ends and allows processing only when it is needed. DNA-PKcs 

autophosphorylation also results in the loss of kinase activity leading to the dissociation of DNA-

PKcs from the Ku-DNA complex. Both the ABCDE and PQR regions seem to be necessary for 

DNA-PKcs dissociation [47]. 

 Despite NHEJ being the prevalent mechanism of DNA repair in G1, NHEJ and HR are in 

direct competition in S/G2 of the cell cycle, as evidenced by continued expression of NHEJ 

factors throughout the cell cycle [48]. This suggests that there exists a mechanism that facilitates 

HR even if DNA-PK is recruited to the DSB first. One suggestion is that NHEJ and HR may be 

regulated in part by autophosphorylation of DNA-PK.  DNA-PKcs autophosphorylation at the T, 

J, and K (JK cluster, Thr946, and Ser1004), does not affect end processing, and protect certain 

DSBs from NHEJ and promotes HR [49]. However, what mediates the autophosphorylation in 

the JK cluster is not known yet. Both the abundance of DNA-PKcs/Ku throughout the cell cycle 

and the higher rate of Ku recruitment to DSB sites over RAD51 recruitment, may also explain  in 

part how NHEJ is preferred over HR  [50,51] and it has been suggested that NHEJ is the default 

pathway for DSB repair and HR may be triggered only when NHEJ fails [52]. However, this is a 

highly over-simplified and inaccurate picture of the complex mechanisms controlling DNA 
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repair pathway choice. These mechanisms are reviewed in detail elsewhere [53,54] and include 

cell cycle control of HR via CDK activity and the Cullin ligases [55–59], topics beyond the 

scope of this review.  

 With regard to alternative pathways of end joining, Ku is known to repress MMEJ [60], 

and DNA-PK activity is required for this suppression [37,61]. In addition, the poly-ADP ribose 

polymerase 1 (PARP1) can directly compete with DNA-PK and the Ku heterodimer for DNA 

end-binding to promote MMEJ [62]. Although not discussed here in detail, DNA-PK can also 

play a role in none-DSB repair pathways including repair of single-strand breaks and base 

excision repair (BER) of oxidized DNA bases [63–66].  

 

2.2. Role of DNA-PK in telomere maintenance and immunity 

The functions of DNA-PK in the cells are not limited to DNA repair mechanism but 

include telomere maintenance, transcriptional and translational regulation of various genes, 

innate immunity, etc. [11,19,67,68]. DNA-PKcs plays a crucial role in the protection of the 

telomeres and telomere capping. Ample expression of DNA-PKcs and Ku subunits in the 

telomere region coincides with this notion. It is, therefore, speculated that the presence of DNA-

PKcs at the telomere serves to protect the chromosome ends from nuclease activity. In agreement 

to this, studies conducted in mice deficient in both telomerase and DNA-PKcs showed a 

significantly higher rate of telomere shortening in comparison to telomerase knockout mice 

suggesting that DNA-PKcs also prevent shortening of the telomeres and hence can also play a 

critical role in aging [10,19,69]. Being the core component of NHEJ pathway, DNA-PK plays a 

major role in the generation of B-cells and T-cells by V(D)J recombination, where the non-

specificity of the pathway results in the production of wide range of immunological cells. The 
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process is essential for the normal immunological functions of the body, and any alternations 

could result in Severe Combined Immunodeficiency (SCID) phenotype or other immune 

diseases. Recent studies have shown the involvement of DNA-PK in viral infection-mediated 

innate immunity, where DNA-PK acts as a nucleic acid sensor, binding to cytoplasmic DNA’s 

and activating Interferon Regulatory Factor-3 (IRF-3)-mediated transcriptional activation of 

various cytokines and chemokines [67,68].  

 Because of the importance of DNA-PK in the development of immunological cells, any 

mutation to DNA-PKcs mostly presents with a SCID phenotype or radiosensitive SCID (RS-

SCID) phenotype, especially if there is a defect in other components of the NHEJ pathway as 

well. SCID mice with a mutation in DNA-PKcs showed defects in V(D)J recombination, 

developed thymic T-cell lymphoma and also showed telomere fusions or shorter telomeres, but 

were viable and lived beyond one year of age [10]. However, spontaneous DNA-PKc mutations 

in specific strains of horses and dogs could not survive more than a few months of age and died 

due to infections [70,71]. Therefore, it could be speculated that DNA-PKcs is highly expressed 

in humans compared to mice and rodents. Even though SCID patients with a mutant DNA-PKc 

were not reported until recently, mutations in other components of NHEJ pathway have been 

reported and showed similar phenotypes as in the mice models.  In 2009, van der Berg and 

colleagues identified the first human RS-SCID patient, with an L3062R missense mutation in 

DNA-PKcs FAT domain. The mutation led to deficient Artemis activation and resulted in 

reduced B and T cells in peripheral blood, but did not affect the kinase activity or its auto 

phosphorylation. Mouse models with mutations in Ku subunits also result in overlapping 

phenotypes including RS-SCID, growth defects, etc., but no spontaneous mutations or cases have 

been reported for the same [71,72].  
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3. Differential expression of DNA-PK in normal and cancer cells 

 DNA-PK is widely expressed in all mammalian cells, with primates showing up to 50 

fold more expression compared to other mammals. Cultured human cells also express DNA-PK 

abundantly, and there exist conflicting reports on DNA-PK being differentially expressed in 

different human tissues [20,73]. A study led by Moll et.al, in various normal human tissues, 

reported a higher expression of DNA-PK in meiotic/actively dividing cells (neural cells and 

reproductive tissues), while epithelial cells from different tissues (colon, kidney, pancreas, 

endometrium, prostate, testis, brain, nerve ganglia and skin) showed a moderate expression 

profile.  Fewer tissues like resting breast and liver showed very less to no expression at all [73]. 

However, a similar study by Sakata and group reported the expression of DNA-PKcs and Ku in 

the liver and resting breast tissues as well and attributed these differences to the different 

antibody used and a number of samples tested [74]. Transcription level expression of 

components of DNA-PKcs did not show any drastic difference between the tissues analyzed, 

other than the expression of Ku subunits being 2-4 fold higher than DNA-PKcs [73]. Terminally 

differentiated cells do not replicate their DNA and therefore are less likely to undergo any 

damages due to replication. They still undergo transcription and need to maintain their genetic 

integrity. Interestingly, these cells undergo damage response by other repairing pathways such as 

Nucleotide Excision Repair (NER), or Transcription Coupled Repair (TCR) and do not undergo 

NHEJ, in which DNA-PK is essential [75]. While the earlier belief was that DNA DSB repair is 

down regulated in certain differentiated cells. Recent studies on differentiated adipocytes and 

astrocytes showed an up regulation of DNA DSB repair with an increased expression of DNA-

PK components [76,77].   
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<Fig. 2.> 

 Genomic instability caused by DNA damage and exacerbated by defects in the DDR is a 

ubiquitous feature of cancer cells and how cells respond to DNA damage is a major driver of 

cancer progression as well as a determinant of a tumor’s response to therapy [1,78–80]. 

Differential expression of DNA-PK in clinical samples of tumors strongly implicates 

dysregulation of DNA-PK levels in cancer development. Elevated expression of DNA-PK is 

observed in esophageal cancers and colorectal cancers compared to the normal mucosal cells 

surrounding the tumor [81]. Clinicopathological studies have identified that DNA-PKcs elevated 

expression in colorectal cancers, which correlated with the clinical stage of the disease, 

lymphatic invasion, and distant metastasis, making it a potential biomarker for clinical 

assessment of pathogenesis and prognosis of colorectal carcinoma [82]. DNA-PKcs over 

expression is also observed in nasopharyngeal carcinoma and was associated with poor overall 

survival rate compared to patients with lower expression of DNA-PKcs. However, a couple of 

studies on Korean population showed no significant correlation between DNA-PKcs expression 

and clinical outcome of nasopharyngeal carcinoma [83]. Another study has reported a loss of 

DNA-PKcs expression of around 22.5% (63 out of 279) in gastric cancers, especially in stage I 

of gastric cancers [84]. Intra-tumoral heterogeneity of DNA-PK expression has made its 

quantification difficult in cancer cells. However, these studies implicate a crucial role for DNA-

PKcs in the cancers of the gastrointestinal system. Non-small cell lung cancers (NSCLC) also 

exhibit a significant up regulation of DNA-PK expression and is also correlated with the 

differentiation degree of the disease, but was not associated with metastasis [85,86]. In glioma 

patients, the median survival rate of patients with high DNA-PK level was longer than that of 

patients with low DNA-PKcs. Recently it was reported that DNA-PK is involved in melanoma 
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tumor progression and metastasis by regulating tumor angiogenesis, migration, and invasion. 

Secretomic analysis revealed that DNA-PK regulates the secretion of several metastases 

associated proteins involved in tumor microenvironment modification, further indicating its 

crucial pro-metastatic role [87].  

<Table 1> 

Interestingly, in lymphoblastic cell lines, in spite of the higher mRNA transcript level, 

DNA-PKcs level is reduced compared to normal cells, indicating a post-transcriptional, 

proteasome-dependent regulation of DNA-PKcs [88]. Despite the elevated DNA-PK level 

observed in many tumors, the attenuated DNA-PK level has also been reported in several studies. 

In peripheral blood lymphocytes of cancer patients, there was an inverse correlation between the 

DNA-PK activity and disease progression [89]. Attenuated and reduced level of DNA-PK is also 

observed in certain breast, cervical and lung cancers [90]. Somatic mutation in DNA-PK is also 

closely associated with tumor pathogenesis. A mutation in the critical threonine residue 

(Thr2609) is essential for the catalytic activity of DNA-PK, as observed in breast and pancreatic 

cancers. Single nucleotide polymorphism analysis has identified a mutation in a non-coding 

intron (6721 G to T) of DNA-PK, to be associated with bladder cancer and hepatocellular 

carcinoma [91]. These findings suggest a complex and intricate regulation of DNA-PK during 

tumor progression and its dual role in DNA damage and pro-tumorigenic survival pathways. 

 

4. Epigenetic alternations and genomic instability 

 DNA in eukaryotic cells is packaged into chromatin through histone and non-histone 

proteins which complicate the DNA damage repair mechanisms. The access of DNA repair 

proteins to damaged DNA lesions is essential for the efficient repair process. To overcome this 
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physical barrier, major alterations including post-transitional histone modifications and ATP-

dependent chromatin remodeling factors are required in order to facilitate the entrance of repair 

proteins to the damage lesions [92–94].  

With the term ‘epigenetic alterations’ we refer to reversible and heritable changes in gene 

function which are not caused by modifications in the underlying DNA sequence. These involve 

DNA methylation and multiple types of histone modifications such as various 

acetylations/deacetylations, methylations, etc. Moreover, extensive studies on microRNAs 

(miRNAs) have revealed their ability to induce post-transcriptional modifications on their target 

genes, thus having an impact on gene expression [95–97]. Although the implication of these 

alterations in a plethora of cellular processes (e.g. cell differentiation, gene expression, 

imprinting, X chromosome inactivation, etc.) is fundamental for maintaining normal function, 

there is accumulating evidence that these changes are also associated with the pathophysiology 

underlining various human diseases including cancer [98–100]. Several studies have 

demonstrated the interaction between DNA-PK and epigenetic alterations during DNA repair 

mechanisms [33,101]. DNA DSBs initiate the phosphorylation of histone H2AX protein at the 

conserved serine residue (Ser139) in C terminus to generate γ-H2AX. This phosphorylation 

event is important for stable association of repair factors at DNA damage sites and is essential 

for maintaining genomic stability [102,103]. Moreover, the phosphorylation of H2AX by DNA-

PK is stimulated by histone acetyltransferase (HAT), which act mainly on the N-terminal tails of 

H3 and H4, by inducing conformational changes in nucleosome [104]. Interestingly, data from a 

study revealed the existence of a bromodomain (BRD)-like module in DNA-PKcs which is able 

to identify H2AX acetyl-lysine 5 (K5ac) as well as to promote the phosphorylation of H2AX at 

Ser139. Radioresistant tumor cells appeared to show increased levels of DNA-PKcs activation 
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while binding of JQ1, a Kac antagonist, to the bromodomain module led to re-sensitizing them to 

radiation [105]. Furthermore, DNA-PK may indirectly modulate the levels of γ-H2AX after 

genotoxic damage through activation of Akt that in turn inhibits GSK3β, as inhibition of GSK3β 

signaling appears to inhibit the dephosphorylation of γ-H2AX to a similar extent to chemical 

inhibition of PP2A [33]; a known γ-H2AX phosphatise [106].  

DNA-PK is also implicated in the epigenetic regulation of DNA repair. For example, 

DNA-PK can affect the activity of histone acetyl transferase (HAT) hGCN5 during DNA repair. 

A study was done by Barlev et al. reported that the DNA-PK repress the activity of hGCN5, 

which has a conserved domain called bromodomain (BrD) at several levels. At the first level, 

Ku70/80 may sequester hGCN5 in non-functional complexes through binding to its BrD. Later, 

DNA-PKcs interacts with Ku and phosphorylates hGNC5, resulting in inhibition of HAT 

activity. However, more studies are required to investigate the role of DNA-PK in modulating 

hGCN5 activity [101]. MOF is another HAT protein that specifically acetylates histone H4 at 

lysine 16 (H4K16ac) position. Depletion of MOF resulted in a reduced level of H4K16ac which 

correlate with the defective DDR process. This results in delayed accumulation of DNA-PK in 

post-irradiation and decreased the association of MOF with DNA by preventing chromatin 

alterations that are essential for efficient DNA repair [94]. Tip60 is a HAT protein which has a 

crucial role in activation of DNA-PKcs kinase activity. This has been proved through silencing 

Tip60 expression which blocks the autophosphorylation of DNA-PKcs. Furthermore, the 

association of DNA-PKcs with HAT increases the activity by 5-fold in response to bleomycin 

treatment [107]. ATP-dependent chromatin remodeling factors are another type of alterations that 

affect the function of DNA-PK. One study showed that the chromatin remodeling factor, ALC1 

(Amplified in Liver Cancer 1) binds to DNA-PK and catalyzes nucleosome sliding through its 
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interaction with poly (ADP-ribose) protein [108]. In addition, SIRT6, another chromatin 

regulatory factor, was found to play a critical role in the global deacetylation of Histone H3 

Lysine 9 and is capable of stabilizing DNA-PKcs to chromatin at DNA DSB sites [109].  

<Fig. 3.> 

Histone methylation is another abundant post-translational modification that implicated 

in DDR process. The indirect interplay between DNA-PK and histone methylation in response to 

DNA damage was demonstrated by Jiang et al [110]. DNA-PK phosphorylates a metabolic 

enzyme fumarase, at Thr236 during ionizing radiation. The phospho-fumarase interacts with 

H2A.Z, a H2A variant, at DSB regions and result in generation of fumarate which inhibits 

KDM2B histone demethylase activity that are responsible for H3K9me3 demethylation. This 

inhibition promotes the accumulation of DNA-PK at DSB for NHEJ-DNA repair by enhancing 

demethylation of H3 at Lys 36 position. However, Young et al. showed that DNA-PK is not 

required for the recruitment of KDM4B to DNA damage region induced by a laser micro-

irradiation [111]. The decrease in the level of H3K9 methylation is important for DNA repair by 

inducing chromatin relaxation [112]. Furthermore, a recent study showed that inhibition of 

DNA-PK resulted in elevated histone methyltransferase activity of EZH2 thereby suggesting that 

its phosphorylation by DNA-PK is responsible for the decreased enzyme’s methyltransferase 

activity [113]. Moreover, in another report, heterochromatin protein 1β (HP1β) was shown to 

interact with DNA-PKcs with the resulting binding being dependent on the methylation status of 

three specific lysine residues namely Lys1150, Lys2746 and Lys3248. Finally, replacement of 

lysine with arginine caused the improper function of DNA-PKcs, in DDR, and consequently led 

to higher levels of sensitivity to radiation [114]. DNA-PK was also found to be involved in 

histone ubiquitination which regulates the DDR process especially the ubiquitination of H2AX 
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and H2A that are essential for further recruitment of repair proteins such as ATM, 53BP1 and 

BRCA1.  DNA-PK has shown to promote H2AX and H2A monoubiquitination in response to 

DSBs induced by camptothecin, which causes transcription-blocking Top1cc, in WI38 fibroblast 

cells [115].  

DNA methylation is another epigenetic marker which affects chromatin structure and 

genome stability through the methylation of cytosine residues by DNA methyltransferase 

(DNMT). Despite of the interplay between DNA-PK and different histone modifications, the 

interaction between DNA-PK and DNA methylation is still not well understood. Indeed, 

DNMT1 was found to be involved in modulating DDR in DNA-methylation-independent 

manner by its recruitment to DSBs [116]. Ha et al. reported that DNA-PK is not involved in the 

recruitment of DNMT1 and it was primarily dependent on its interaction with ATR effector 

kinase CHK1 [117]. Furthermore, another group has shown that glioblastoma and lung 

carcinoma cells treated with DNMT inhibitors were more sensitive to radiation due to 

impairment of DDR [118]. In particular, DNA-PK-deficient glioblastoma cells were 

preferentially more sensitive to Zebularine (a DNMTs inhibitor) thus implying its potential 

interaction with epigenetic mechanisms [119].  

Apart from DNA methylation and histone modifications, miRNAs have also been shown 

to act as an epigenetic mechanism capable of regulating gene expression. In general, miRNAs 

are small, single-stranded RNAs which are firstly transcribed to their primary form (pri-miRNA), 

then are processed to a precursor form in the nucleus (pre-miRNA) and finally are exported to 

the cytoplasm where they are cleaved, by RNAse III endonuclease Dicer, to mature miRNAs 

[120,121]. There is evidence that a single miRNA may have more than one mRNA targets while 

an individual mRNA may be targeted by multiple miRNAs [122]. Findings from a recent report 
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demonstrated that mi-RNA-488-3p was capable of sensitizing malignant melanoma cells to 

cisplatin treatment by targeting PRKDC (the gene encoding DNA-PKcs) thus leading to a 

decline in its protein expression levels [123]. In addition, miR-21 was shown to provoke an 

increase in the activity of DNA-PKcs by targeting GSK3B, thus stimulating an increase in DSBs 

repair leading to radioresistance observed in various tumor cell lines [124]. On another note, 

overexpression of miR-101 in lung and brain cancer cell lines was found to reduce the protein 

levels of DNA-PKcs, while increasing their sensitivity to radiation [125]. In another study, miR-

101 sensitized pancreatic tumor cells to the effect(s) of gemcitabine while also promoted 

apoptosis by down-regulating DNA-PKcs [126]. Reduced protein levels of DNA-PK were also 

observed in lung cancer cell lines following transfection with miR-101, hence causing an 

elevation in their radiosensitization [127]. Furthermore, miR-136 overexpression was associated 

with a decrease in the expression levels of DNA-PK in ovarian tumor cells [128]. On the 

contrary, overexpression of miR-1323 was found to increase the protein levels of DNA-PKcs in 

primary lung cell lines, whereas silencing of  miR-1323 in radioresistant lung tumor cells was 

followed by a decline in the protein content of DNA-PK [129].  

In addition, histone deacetylase (HDAC) inhibitors have been recorded as novel 

anticancer drugs and were found to cause an accumulation of DNA damage by affecting the 

expression of DNA repairing genes including DNA-PKcs [130]. Suberoylanilide hydroxamic 

acid (SAHA), a HDAC class I and II inhibitor, has been reported to downregulate the expression 

DNA-PK in human prostate carcinoma and glioma cells [131]. The treatment with Trichostatin A 

(TSA) radiosensitizes NSCLC cells by decreasing the expression level of Ku70, Ku80, and 

DNA-PKcs, leading to the inhibition of DNA repair capability [132]. Moreover, HAT inhibitors 

have been reported to sensitize the cancer cells towards radiotherapy and chemotherapy [133]. 
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CBP and P200 are HAT proteins that were recruited to DSBs and cause acetylation of specific 

lysine within histone H3 and H4. The inhibition of CBP and P200 in lung cancer cells using 

inhibitors or small interfering RNA leads to the suppression of NHEJ by preventing the histone 

acetylation at damage sites and thereby suppressing the recruitment of Ku70 and Ku80 to DSBs 

[134]. These examples further indicated the role of epigenetic alterations in the function and 

regulation of DNA-PK during DNA repair mechanism and the effect of DNA-PK on the proteins 

that are involved in these regulations.  

 

5. Transcriptional regulation by DNA-PK 

 Altered expression of DNA-PK contributes to cancer development, progression and 

metastasis by regulating a plethora of canonical pro-survival signaling pathways. Apart from the 

critical role of DNA-PK in DDR, it can regulate specific pro-tumorigenic pathways including 

genomic stability, hypoxia, metabolism and inflammatory responses. A major function of DNA 

PK in transcriptional regulation of several genes (c-Myc, c-Jun, and p53) is through direct 

involvement in tumor cell survival and proliferation. Several mechanisms by which DNA-PK 

regulate these cellular events have been identified in recent years. One study reported the 

interaction of DNA-PKcs with Akt which induces autophosphorylation of DNA-PKcs and 

promotes its kinase activity and recruitment at the broken DNA ends [135]. Positive regulation 

by survival factors may affect the genomic rearrangement as it is reported that increased survival 

may alter the genomic stability [136]. DNA-PKcs was also shown to be regulated by casein 

kinase II (CK2), a kinase associated with enhanced cell cycle progression. Inhibition of CK2 in 

human glioblastoma cell lines (M059K and T98G) shown decreased phosphorylation of Akt 

kinases that were earlier reported to associate with DNA-PKcs [137]. Recently, DNA-PKcs has 

ACCEPTED M
ANUSCRIP

T



21 
 

been shown to interact with the transcription factor SNAI1 (also referred to as snail), in response 

to DNA damage and promote cancer cell migration. The snail is a zinc finger protein belonging 

to the family of transcription factors that repress E-cadherin and thereby regulates epithelial to 

mesenchymal transition. Ionizing radiation (IR) activated DNA-PKcs was shown to 

phosphorylate Snail at Ser100 residue leading to Snail stabilization [138]. Phosphorylation of 

Snail at this residue negatively regulates DNA-PKcs kinase activity leading to inhibition of DNA 

damage repair resulting in genomic rearrangement and instability. Snail overexpression also 

contributes to survival after DNA damage, a phenomenon not seen in cells lacking DNA-PK 

[139]. Findings from a recent report also outlined the role of DNA-PKcs as a transcriptional 

modulator by stimulating tumor progression and metastasis in prostate carcinoma [140]. 

Furthermore, DNA-PK is activated by mild hypoxic conditions by auto phosphorylation at Ser 

2056 by a mechanism independent of DNA repair pathway and positively regulates hypoxia 

inducible factor (HIF-1) thereby activating several pro-tumorigenic genes [141]. RPA70, another 

protein involved in hypoxic response and DNA repair in cancer cells is also indirectly regulated 

by DNA-PK. The interaction between RPA70 and TP53 under normal conditions is disrupted by 

hypoxia induced DNA-PK by phosphorylating TP53, resulting in the release of  RPA70, which 

mediates apoptotic resistance in cancer [142–144]. The interaction between DNA-PK and TP53 

following cellular stress is complicated with conflicting results generated from in-vitro and in 

vivo studies [145]. 

 Apparently, DNA-PK specifically activates TP53 by phosphorylating its active sites. 

However, how this regulates TP53-mediated signaling that links to DNA damage response and 

cell cycle arrest/apoptosis, needs further in depth analysis [1,143]. p21WAF1/CIP1 also known as 

cyclin dependent kinase inhibitor 1 or CDK-interacting protein 1, is a key factor in p53-mediated 
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cell fate after DNA damage. Following DNA damage, DNA-PKcs is recruited to the p21 

promoter where it forms a complex with p53 protein and suppresses p21 gene transcription 

leading to cell death. Inhibition of DNA-PKcs with its pharmacological inhibitor, NU-7026 

blocked its interaction with p53 and restored p21 transcription equivalent to undamaged levels 

and significantly reduced cell death following the pro-death stimulation. No such effects were 

observed on inhibiting ATM or ATM and Rad3-related (ATR) proteins, the other members of 

the PI3KK family, suggesting that DNA-PKcs negatively regulates p21 gene expression by 

modulating p53 binding at CDKN1A promoter.  

It has been shown that radiosensitive mice have a reduced expression of DNA-PKcs and 

in-efficient DNA damage induced repair response [146]. Residual tumor cells in cervical 

cancers, which were resistant to radiation treatment, had a higher expression of DNA-PKcs 

showing a positive correlation between radioresistance and elevated DNA-PK level [147]. Down 

regulation of DNA-PKcs is also positively correlated with chemosensitization in human cervical 

carcinoma and radiosensitive phenotype in lymphoblastic cell lines [88,148]. Similarly, prostate 

cancer patients with elevated expression of DNA-PKcs in tumors, respond less to standard 

radiation therapy [149]. DNA-PK is also implicated in cetuximab (EGFR specific antibody) 

induced radiosensitization in lung and breast cancer cell lines, by immobilizing the complex of 

EGFR- DNA-PK in the cytoplasm and blocking EGFR transport into the nucleus [150]. A recent 

study, however, showed that patients with high levels of CD44 and DNA-PK had better overall 

survival rate and sensitized mesenchymal subtypes of glioblastoma to radiotherapy and 

temozolomide.  

Differential secretomic studies have revealed that DNA-PKcs is also directly involved in 

regulating tumor microenvironment by controlling the secretion of several proteins involved in 
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tumor microenvironment modulation, like matrix metalloproteinase (MMPs) and at least 44 

metastasis associated genes. In tumors where DNA-PK was inhibited, there was a delay in tumor 

proliferation, mainly due to inhibition of MMPs. Furthermore, DNA-PK is also involved in 

regulating neo-angiogenesis in primary tumors. A low level of DNA-PK is associated with a 

delay in angiogenesis initiation, with a reduced potential to proliferate and metastasize [87]. Pre-

clinical studies with dual inhibition of mammalian target of rapamycin (mTOR) kinase and 

DNA-PK has been shown to induce cytotoxicity and blocks cell survival pathways in chronic 

lymphocytic leukemia [151,152]. Although DNA-PKcs serve to repair the damages incurred due 

to different stress or physiological parameters and maintain the integrity of the chromosomes, its 

association with different transcription factors or other signaling molecules involved in cell death 

or cell survival, contributes to genomic alteration and instability. 

 

6. Chemical and biological inhibitors of DNA-PK  

 The most successful approach to inhibit DNA-PK is by small molecules that target the 

ATP-binding site of the kinase domain. Various investigations have revealed that a small group 

of compounds (Fig. 4) can inhibit DNA-PK activity effectively [153,154]. The first identified 

inhibitor, wortmannin, obtained from the fungus Penicillium funiculosum, is a general 

competitive inhibitor of PI-3 kinase with an IC50 value of 16 nM [155]. Wortmannin exhibits its 

inhibitory nature by irreversible alkylation of Lysine 802 residue at the active site of DNA-PKc’s 

that is essential for phosphate transfer reaction. Wortmannin is identified as an effective 

radiosensitizer in a variety of normal and cancer cells with a Dose Reduction Factor (DRF) for 

IR at 10% survival (between 1.4 and 3). Being a DNA-PK inhibitor, wortmannin plays a 

significant role in p53 phosphorylation and acetylation. Lin et al. have shown that p53 
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phosphorylation induced by benzo[a]pyrene on HepG2 cells suppress and accumulates p53 

acetylation, which was moderately affected when treated with 20 μM wortmannin [156].  

Moreover, it has a vital role in the inhibition of histone modification. In ACC-LC-91 lung cancer 

cells, the histone H3 acetylation and histone H3K4 methylation induced by histone deacetylase  

(HDAC)1 was found to be inhibited and regulated by wortmannin [157]. Further, the treatment 

in MCF7 cells with this inhibitor proves to be effective in preventing the formation of 

phosphorylated histones which gets rapidly phosphorylated during DNA damage [158]. Despite 

all these interesting features, lack of specificity, poor solubility, invite toxicity limits its clinical 

applications [10]. 

 LY294002, a morpholine derivative of natural flavonoid quercetin, is another competitive 

DNA-PK inhibitor that binds irreversibly to the kinase domain of DNA-PK with an IC50 value 

of 1.4 μM producing a DRF at 10% survival with IR of 1.5 to 1.8. Even though LY204002 

possess interesting in vivo results as a radiosensitizing agent, rapid metabolic clearance, high in 

vivo toxicity, lack of specificity and poor stability makes its clinical evaluation unfeasible in 

humans [10,159]. However, LY294002 has been proved as a productive lead molecule for a 

series of compounds with favorable properties. Those compounds which are synthesized using 

LY294002 as a template have improved specificity with regards to DNA-PK inhibition. Among 

these, NU7026 is considered as one of the most potent molecules with 70-fold more selectivity 

towards DNA-PK, compared with other PI-3Ks. NU7026 exhibited an inhibition of various 

targets with an IC50 value of 0.23 μM against DNA-PK, 13 μM against PI3Ks, and > 100 μM 

for ATM or ATR. This compound enhanced the cytotoxic nature of various drugs like idarubicin, 

daunorubicin, doxorubicin, etoposide, and amsacrine [159]. Rapid absorption is possible due to 

the mono hydroxylation of the second position of the morpholino group, resulting in an opened 
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ring structure. Wang et al. showed that it is efficient in inhibiting DNA-PK activation induced by 

cisplatin without bringing any alteration to histone H4 expression [160]. NU7441, another 

molecule based on LY294002 backbone system with improved potency and having an IC50 

value of 0.3 μM for DNA-PK and seven μM for PI3K proteins [161,162].  

 Other compounds possessing different chemical structures found to have an inhibition 

property for  DNA-PK that comprise OK1035 [162] and SU11752 [163]. Both compounds lack 

the required potency for further development studies. Another interesting molecule found to 

inhibit DNA-PK activity is vanillin, a phenolic aldehyde obtained from certain species of vanilla 

pods [164]. The structural simplicity of vanillin makes it an attractive molecule for modifications 

in search for better molecules. Two methoxybenzaldehyde derivatives of vanillin, 2-nitro and 3-

iodo, were found to be a better inhibitor of DNA-PK than vanillin [165,166]. This may be due to 

the electron withdrawing nature of –NO2 which increases the reactivity of aldehyde group 

towards the amino group of the protein, and this mechanism is not observed in 3-iodo substituted 

compounds [163]. Anti-cancer agent NK314 [93], is an inhibitor of both topoisomerase IIα and 

DNA-PK. Other compounds found to have inhibitory property against DNA-PK are PI103, 

PP121, KU-0060648, and CC-115 [93,151,165,167,168]. Among these, PI103 is a potent ATP-

competitive DNA-PK inhibitor. PP121 inhibits DNA-PK with an IC50 value of 60 nM, while 

KU-0060648 is a dual inhibitor of DNA-PK, PI3Kα, PI3Kβ and PI3Kδ with an IC50 value of 8.6 

nM, 4 nM, 0.5 nM and 0.1 nM, respectively. The differences in selectivity of these compounds 

are due to the structural differences and similarity that exists within the active sites [168]. 

However, there is still a dearth of knowledge to identify a potent compound that can selectively 

inhibit DNA-PK’s expression in cancerous cells alone during therapy. 
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The majority of research so far has been carried out using small organic/synthetic 

compounds as DNA-PK inhibitors. A shift in focus to nucleotide and antibody based inhibitors 

have shown higher efficacy in DNA-PK inhibition. The two primary obstacles faced by small 

organic compounds such as poor solubility and/or short serum half-lives could be easily 

overcome by these inhibitors due to their biological nature [169]. One such nucleotide is 

GRN163L, a 13-mer oligonucleotide which inhibits the phosphorylation of DNA-PK and 

increases γ-H2AX phosphorylation in chronic lymphocytic leukemia (CLL) lymphocytes in 

response to treatment with fludarabine, a nucleotide analog [170]. A similar effect has been 

reported by an antibody based inhibitor, Folate-ScFv 18-2, where it also enables 

radiosensitization when tested against human KB oral carcinoma and NCI-H292 lung cancer 

cells [171]. Further, a study by Kim et al., in breast cancer cell lines NCI and MDA-MB-231 has 

shown how peptides can be effective in DNA-PK inhibition. A targeting peptide (HNI-38) 

containing c-terminus of Ku-80, inhibited the activity up to 50% by interfering with the 

interaction between DNA-PKcs and Ku complex thereby lowering the resistance of the cells to 

IR [172]. 

The strategy of using small interfering RNA (siRNA) oligonucleotide was found to play a 

remarkable role in inhibiting DNA-PK activity. A study by An et al., on HeLa cells reported that 

the siRNA targets the DNA-PKcs catalytic motif and could exhibit an increased efficiency to 

radiosensitization. It is demonstrated that DNA-PK silencing by siRNA could also lead to the 

downregulation of the activity and expression of the c-myc protein [173] which is an essential 

regulator of the progression of the cell cycle [174]. The knock down of DNA-PKcs using siRNA 

approach in low passage human fibroblasts also showed significant effects. The radiation-

induced interphase chromosome breaks were resisted at a reduced capacity. At first in post 
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irradiation mitosis, there was an increase in the yield of acentric chromosome fragments in 

addition to an increased radio-sensitivity [175]. Research by Collis et al. also supported the role 

of siRNA where prostate cancer cell lines such as DU145 and PC3, which were resistant to 

radiation, when transiently transfected with plasmid encoding siRNA, rendered them sensitive to 

IR via targeting DNA-PKcs [176]. 

Apart from the above mentioned DNA-PK inhibitors, antisense oligonucleotides also 

play an active role as DNA-PK inhibitor. An antisense oligonucleotide namely 2′-O-

methoxyethyl/uniform phosphorothioate chimeric antisense oligonucleotides (ASOs) modulate 

DNA-PK expression and increase the cell death in human glioma cell lines (M059K) after 

treatment with ionizing radiation, bleomycin, and etoposide [177]. Antisense oligonucleotide 

inhibitors not only sensitize the cells to IR but also pave the way for autophagy. Human 

malignant glioma M059K, U373-MG, and T98G cells, when treated with antisense 

oligonucleotides, inhibits DNA-PK and were sensitized to low dose IR by inducing autophagy 

[178]. An introduction of antisense Ku70 construct to human lung squamous cell carcinoma 

showed the increased sensitivity of transfected cells to cytotoxic agents such as bleomycin, 

methyl methanesulfonate and to IR. This study achieved a partial reduction of DNA end binding 

activity by partially reducing Ku 70 protein expression [179]. Moreover a histone modification 

wherein histone 3 lyisne 36 (H3L36) undergoes demethylation (H3L36me2) and enhance the 

presence of Ku70 at the damaged site and facilitates NHEJ repair process [180]. These examples 

act as a standing example to prove that biological inhibitors such as antisense oligonucleotides, 

siRNAs, peptides, and antibodies can also play a profound role as DNA-PK inhibitor in 

overcoming the hurdles faced by small organic/synthetic compounds. 
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7. Conclusions and future directions 

 Conventional cancer therapy including radiotherapy and chemotherapy depends on 

inducing DNA damage that is partly repaired by DNA-PK dependent pathways. Therefore, the 

expression of DNA-PK has a significant impact on therapy outcome in different ways. First, 

DNA-PK can be utilized as a biomarker for predicting prognosis and response to cancer 

treatments. However, the heterogeneity of DNA-PK expression in different types of tumors and 

within the same tumor makes it difficult to employ DNA-PK as a biomarker in clinical settings. 

In addition, the DNA-PK function is pleiotropic, and loss or gain of DNA-PK may impact both 

cell signaling pathways (e.g., Akt/G3Kb) and gene transcription via both direct interaction with 

transcription factors and via epigenetic mechanisms. Thus, how DNA-PK expression regulates 

tumor response to radiotherapy and chemotherapy is likely complex and will require further 

study to allow this kinase to be effectively used as a biomarker for treatment response. Secondly, 

chemicals and biologicals that target DNA-PK may greatly improve the outcome of cancer 

therapy. Despite the vast array of agents developed as DNA-PK inhibitors and the pleiotropic 

function of this kinase, two major problems limit the clinical approval of these compounds: lack 

of specificity and difficulty in targeting the inhibition specifically to cancer cells. Future studies 

should, therefore, aim at the development of more specific inhibitors and on finding ways to 

ensure the differential inhibition of DNA-PK using a broad range of cancer cells. In the new era 

of research, epigenetics may well address these challenges. 
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Figure legends 

 

Fig. 1. DNA-PK in NHEJ mechanism. The process of NHEJ starts with the recognition and 

binding of Ku70/80 sub-units to broken DNA ends which function as docking sites for other 

proteins including DNA-PKcs. DNA-PKcs recruitment to Ku70/80 complex dimerizes to form a 

synaptic complex which acts as scaffold proteins for localization of other repair proteins to the 

damaged site of DNA. Autophosphorylation of DNA-PK at ABCDE region opens the DNA ends 

for further processing by Artemis protein which was recruited and activated by DNA-PK. DNA-

PK also recruits and mediates the phosphorylation of DNA polymerase λ for gap filling during 

DNA synthesis. Upon autophosphorylation of DNA-PK at PQR region along with ABCDE 

protein, leads to dissociation of DNA-PKcs from the Ku-DNA complex. As an end process, 

Lig4-XRCC4 complex mediates efficient DNA ligation with the help of cernunnos/XRCC4-like 

factor (XLF) and repairs the DNA DSBs successfully.     

 

Fig. 2 The role of DNA-PK in normal cells (A) and cancer cells (B).  

A. Normal cells. DNA-PK is essential for maintaining genomic stability by regulating DNA 

repair, chromosome segregation, and telomere capping. (i) DNA-PK is a critical component of 

NHEJ pathway that is required for repairing damaged DNA and for generation of B and T cells 

by V(D)J recombination along with other proteins including Artemis, XRCC4, and Lig4. (ii) In 

mitosis, phosphorylated DNA-PKcs colocalizes with polo-like kinase 1 (PLK1) at the 

centrosomes and kinetochores, for proper chromosome segregation with an accumulation of 

midbody for controlling cytokinesis. (iii) During telomere capping, heterogeneous 

ribonucleoprotein A1 (hnRNP-A1) gets phosphorylated by DNA-PKcs and promotes the 

ACCEPTED M
ANUSCRIP

T



45 
 

replication protein A (RPA) to protect telomeres 1 (POT1), by switching telomeric 3’ single-

strands to form a cap over newly replicated telomeres. (iv) DNA-PK also plays an important role 

in B/T cell generation and viral infection-mediated innate immunity. DNA-PK functions as a 

pattern recognition receptor to activate innate immunity. It binds to cytoplasmic DNA and 

activates IFN regulatory factor 3 (IRF-3)-dependent innate immune response to trigger 

transcription of type I interferons (IFN). 

B. Cancer cells. In cancer cells, increased expression of DNA-PK regulates specific pro-

tumorigenic pathways including genomic instability, hypoxia, metabolism and inflammatory 

responses. (i) DNA-PK is directly involved in the transcriptional regulation of c-Myc, c-Jun and 

p53, leading to tumor cell survival and proliferation. Under hypoxic conditions, DNA-PK is 

activated independent of DNA repair pathway and regulates HIFα, thereby activating various 

pro-tumorigenic genes. (ii) DNA-PK contributes to EMT, an essential step in tumor metastasis, 

by regulating zinc finger transcription factor snail. (iii) DNA-PK also maintains the tumor 

microenvironment by controlling the secretion of several proteins like MMP-8.-9, SERPINA3 

etc. (iv) Moreover, DNA-PKcs regulates mitotic spindle organization via the Chk2–BRCA1 

signaling pathway and the loss of DNA-PKcs will prevent the activation of Chk2–BRCA1 

signaling pathway, leading to chromosomal instability. 

 

Fig. 3. Interplay between DNA-PK and epigenetic modifications. DNA DSBs caused by 

ionizing radiation or camptothecin initiates the phosphorylation of histone H2AX protein to 

generate γ-H2AX that can initiate histone modifications. DNA-PK can be affected by the 

function of different histone modifiers, such as acetyl transferase (HAT), MOF and Tip60 during 

DNA repair process. MOF specifically acetylates histone H4 at lysine 16 that are involved in 
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chromatin modification, to induce accumulation of DNA-PK at the damaged site, whereas Tip60 

induces the activation of DNA-PKcs kinase activity. The indirect interplay between histone 

demethylase and DNA-PK were also found to be involved in DDR process. DNA-PK indirectly 

inhibits the histone demethylase activity of KDM2B by recruiting its accumulation at damaged 

site. This inhibition by the phosphorylated fumarase by DNA-PK, interacts with H2A.Z at DSB 

regions and results in local generation of fumarate to inhibit KDM2B. DNA-PK is also involved 

in histone ubiquitination by promoting H2AX and H2A monoubiquitination which are essential 

for the recruitment of ATM and 53BP1. The modulation in nucleosome packaging with DNA in 

response to DSBs can also be induced by DNA-PK by its interaction with ATP-dependent 

chromatin remodeling factors such as ALC1, to catalyze nucleosome sliding through its 

interaction with PARP. These major alterations including post-transitional histone modifications 

and ATP-dependent chromatin remodeling factors facilitate the entry of repair proteins to the 

damage lesions and activate NHEJ/HR repair mechanisms.  

 

Fig. 4. Various small molecules as DNA PK inhibitors. Wortmannin (1), LY294002 (2), 

NU7026 (3),NU7441 (4), OK1035 (5), SU11752 (6), Vanillin (7) & derivatives; 2-nitro (8) and 

3-iodo (9),NK314 (10), PI103 (11), PP121 (12), KU-0060648 (13), CC-115 (14).    
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Figures: 
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Tables:  

 

Table 1. Differential expression levels of DNA-PK in normal and cancer cells 

Tissue/cell types DNA-PK 

expression 

levels 

                 Specificity 

 

References 

Normal cells 

Neural cells High expression Brain cortex and autonomous nervous 

system 

[73] 

Reproductive 

tissues 

High expression 

 

Moderate 

expression 

Testis 

 

Ovary and  prostate 

[73] 

Epithelial cells Moderate 

expression 

Colon,  pancreas and kidney [73] 

Breast tissues High expression 

Less to no 

expression 

Lactating breast tissues 

Resting breast tissues 

[73] 

Cancer Cells 

Esophageal cancer Differential 

expression 

Difficulty in prediction of radio or 

chemo-sensitivity of tumour 

 

[81] 

Colorectal 

carcinoma 

High expression Potential biomarker for clinical 

assessment of pathogenesis and 

prognosis of carcinoma 

 

[82] 

Gastric cancer Low expression Poor patient survival 

 

[84] 

Glioma High expression Better response to radiotherapy and 

chemotherapy 

 

[87] 
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Cervical cancer High expression Resistant to radiation treatment 

 

[147] 

Prostate cancer High expression Reduced response to standard radiation 

therapy 

 

[181] 

Human renal cell 

carcinoma 

Over expression Target for renal cell carcinoma 

intervention 

 

[182] 

B-cell chronic 

lymphocytic 

leukemia 

High expression Short survival and chemo- resistance [183] 

Non small lung 

cancer 

High expression Radio-resistance [184] 

Nasopharyngeal 

caricnoma 

High expression Poor survival [185] 
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