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a b s t r a c t

This work is aimed at describing MHD mixed convective heat and mass transfer peristaltic
flow through a vertical porous space in the presence of a chemical reaction. The flow is
examined in a wave frame of reference moving with the velocity of the wave. The channel
asymmetry is produced by choosing the peristaltic wave train on the walls to have different
amplitude and phase. The momentum, energy and concentration equation have been
linearized under long-wavelength approximation. Expressions for dimensionless stream
function, temperature and concentration field are constructed. The features of the fluid
flow, heat and mass transfer characteristics are analyzed by plotting graphs and discussed
in detail.

' 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Peristaltic flows are generated by the propagation of waves along the flexible walls of the channel or tube. These occur
widely in many biological and biomedical systems. In physiology, this plays an indispensable role in various situations such
as urine transport from kidneys to bladder through the ureter, chyme movement in the gastrointestinal tract, transport
of spermatozoa in the ductus efferents of the male reproductive tracts, movements of ovum in the female fallopian tube
and circulation of blood in the small blood vessels. The mechanism of peristaltic transport has been exploited for industrial
applications like sanitary fluid transport, blood pumps in heart lung machine and transport of corrosive fluids where the
contact of the fluid with the machinery parts is prohibited. Peristaltic transport of a toxic liquid is used in nuclear industry to
avoid contamination of the outside environment. Such flows are extensively studied in various geometries by using different
assumptions of large wave length, small amplitude ratio, small wave number, creeping flow, etc. At present a wealth of
literature on this topic dealing with the peristalsis in viscous and non-Newtonian fluid is available (see Refs. [ 1�12 ] and
several references therein).

Heat transfer in biological tissues involves complicated processes such as heat conduction in tissues, heat convection
due to blood flow through the pores of tissues, as well as radiation heat transfer between surface and its environment and
there is also mass transfer in organisms. Research interest in flow as well as heat transfer phenomena in a channel/tube
has increased substantially in recent years due to developments in the electronic industry, microfabrication technologies,
biomedical engineering, etc. The interaction between peristalsis and heat transfer has been investigated recently, where the
thermodynamic aspects of blood become significant in processes like oxygenation and hemodialysis [ 13�15 ]. Some recent
interesting contributions pertaining to heat transfer aspects of peristaltic transport are cited in Refs. [ 13�25 ].

Very few investigations have been made to study the combined effects of heat and mass transfer in peristaltic
literature [ 26�30 ]. Srinivas and Kothandapani [ 26] have analyzed the influence of heat and mass transfer on MHD peristaltic
flow through a porous space with compliant walls. Nadeem et al. [ 27] have presented a mathematical model to understand
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the influence of heat and mass transfer on peristaltic flow of a third order fluid in a diverging tube. Hayat and Hina [ 28] have
studied the influence of wall properties on the MHD peristaltic flow of a Maxwell fluid with heat and mass transfer. Eldabe
et al. [ 29] have analyzed the problem of peristaltic transport of a non-Newtonian fluid with variable viscosity in the presence
of heat and mass transfer and mixed diffusion flow between a vertical wall that deforms in the shape of a traveling wave
and a parallel flat wall. Nadeem and Akbar [ 30] have discussed the influence of radially varying MHD on the peristaltic flow
in an annulus with heat and mass transfer. Recently, Srinivas and Muthuraj [ 31] have examined the problem of MHD flow
in a vertical wavy porous space in the presence of a temperature-dependent heat source with slip-flow boundary condition.
More recently, Muthuraj and Srinivas [ 32] have investigated the problem of mixed convective heat and mass transfer in a
vertical wavy channel through porous medium with traveling thermal waves.

To the best of our knowledge, the influence of MHD mixed convective heat and mass transfer analysis on peristaltic flow
with chemical reaction has not been studied before. Therefore the main goal here is to construct a mathematical model
to understand the effect of heat and mass transfer on MHD peristaltic flow of a Newtonian fluid, in a vertical asymmetric
channel filled with porous medium, in the presence of chemical reaction. The features of the flow and heat and mass transfer
characteristics are analyzed by plotting graphs and discussed in detail. This paper is organized as follows: In Section 2, the
general equations are first modeled and then problem statement is given under the long-wavelength and low-Reynolds
number assumptions. Section 3 includes the analytic solutions for the problem. Section 4 contains numerical results and
discussion. The conclusions are summarized in Section 5.

2. Mathematical model

We consider the motion of an incompressible viscous fluid in a two-dimensional vertical channel induced by sinusoidal
wave trains propagating with constant speed c along the channel walls

H1 D d1 C a1 cos
2�
�

.X � ct / : : : right-hand side wall ;

H2 D � d2 � b1 cos

�
2�
�

.X � ct / C '
�

: : : left-hand side wall ; (1)

where a1; b1 are the amplitudes of the waves, � is the wave length, d1 C d2 is the width of the channel, the phase difference
' varies in the range 0 � ' � � ; ' D 0 corresponds to symmetric channel with waves out of phase and ' D � the waves
are in phase, and further a1; b1; d1; d2 and ' satisfies the condition

a2
1 C b2

1 C 2a1b1 cos ' � .d1 C d2/2 : (2)

It is assumed that the temperature at right-hand side wall is T0
1 and concentration is C0

1 while the temperature at the left-
hand side wall is T0

2 and concentration is C0
2 (Fig. 1). The continuity, momentum, energy and concentration equations are

described by
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where U; V are the velocity components in the laboratory frame .X; Y/; g is the acceleration due to gravity, T is the
temperature of the fluid, C is the concentration of the fluid, T is the mean value of T0

1 and T0
2; B0 is the transverse magnetic

field, C is the mean value of C0
1 and C0

2, k is the permeability of the medium, k1 is the chemical reaction parameter, � is the
coefficient of electric conductivity, � � is the porosity of the medium, � is the density, � is the coefficient of viscosity of the
fluid, P is the pressure, � t is the coefficient of thermal expansion, � c is the coefficient of expansion with concentration, cp

is the specific heat at constant pressure, Dm is the coefficient of mass diffusivity, K is the thermal conductivity of the fluid.
In writing the above equations the following assumptions are made: (i) Boussinesq approximation is invoked so that the
density variations will be retained only in the buoyancy term and (ii) dissipation function effect is neglected.

We shall carry out this investigation in a coordinate system moving with the wave speed c, in which the boundary shape
is stationary. The coordinates and velocities in the laboratory frame .X; Y/ and the wave frame .x; y/ are related by:

x D X � ct ; y D Y; u D U � c; v D V; p.x/ D P.X; t / (8)
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Fig. 1. Schematic diagram of the physical model.

where u; v are the velocity components in the wave frame .x; y/; p and P are pressures in wave and fixed frame of references
respectively. Introducing the following non-dimensional quantities:
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where Re is the Reynolds number, M is the Hartmann number, Da is the permeability parameter, gt is the local Grashof
number, gc is the local mass Grashof number, Pr is the Prandtl number, Sc is the Schmidt number, � is the dimensionless
wave number, and  is the chemical reaction parameter. In terms of these non-dimensional variables, the basic Eqs. (3)�(7)
can be expressed in the non-dimensional form, dropping the bars,
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The compatibility equations which govern the problem in terms of the stream function  . x; y/ after eliminating the pressure
gradient, Eqs. (11)�(14) becomes

Re�
�
. y xyy �  x yyy / C � 2. y xxx �  x xxy/

�
D 2� 2 xxyy C � 4 xxxx C  yyyy
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� 2

Da
 xx C gt � y C gc� y (16)

RePr � T y� x �  x� yU D� 2.� xx C � yy/ (17)
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The corresponding boundary conditions are
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It should be noted that Eq. (11) for the axial pressure gradient becomes

Re�
��

 y
@
@x

�  x
@
@y

�
 y

�
D �

@p

@x
C

�
� 2 @2

@x2
C

@2

@y2

�
 y � H2. y C 1/ C gt � C gc�: (21)

In laboratory frame, the dimensional volume flow rate is

Q D
Z H1 .X;t /

H2 .X;t /
U .X; Y; t / dY (22)

in which H1 and H2 are function of X and t . The above expression in wave frame becomes

q D
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where h1 and h2 are functions of x alone. From Eqs. (8), (22) and (23) we can write

Q D q C ch1.x/ � ch2.x/: (24)

The time-averaged flow over a period T at a fixed position X is

Q D
1

T

Z T

0

Qdt : (25)

Substituting (24) into (25) and integrating, we get

Q D q C cd1 C cd2: (26)

If we find the dimensionless mean flows � , in the laboratory frame, and F, in the wave frame, according to
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We note that h1.x/ and h2.x/ represent the dimensionless form of the surfaces of the peristaltic walls

h1.x/ D 1 C a cos.2� x/; h2.x/ D � d � b cos.2� x C '/ (30)

where a; b; d and ' satisfies the relation Ref. [ 2]

a2 C b2 C 2ab cos ' � .1 C d/2: (31)
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3. Solutions

We seek perturbation solution in terms of the small parameter � as follows:

f D f0 C � f1 C � 2f2 C � � �

where f represents any flow variable.
i.e.

 D  0 C � 1 C � 2 2 C � � �
� D � 0 C �� 1 C � 2� 2 C � � �
� D � 0 C �� 1 C � 2� 2 C � � �

p D p0 C � p1 C � 2p2 C � � � : (32)

Substituting Eq. (32) in Eqs. (16)�(18) , collecting the coefficients of various powers of � , we get
The zeroth order equations are

 0yyyy � H2 0yy C gt � 0y C gc� 0y D 0 (33)
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� 0yy �  Sc� 0 � Scc1 D 0 (35)
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The corresponding dimensionless boundary conditions in the wave frame are
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Solving the Eqs. (33)�(35) with boundary conditions (37) � (38) and the Eqs. (39)�(41) with boundary conditions (43) � (44) ,
we get
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C T109y2 sinh Hy C T110y2 cosh Hy C T111 cosh � y C T112 sinh � y C T113y cosh � y C T114y sinh � y

C T115 sinh .H C �/ y C T116 sinh .H � �/ y C T117 cosh.H C �/ y C T118 cosh.H � �/ y C T119 cosh 2� y

C T120 sinh 2 � y C T121y2 cosh � y C T122y2 sinh � y C T123y3 C T124y2 C T125y C T126 (51)

p1x D T180 C T181y C T178y2 C T177y3 C T176y4 C T182 sinh Hy C T183 cosh Hy C T184y sinh Hy

C T185y cosh Hy C T186 sinh � y C T187 cosh � y C T188y sinh � y C T189y cosh � y C T168y2 sinh � y

C T169y2 cosh � y C T170 sinh 2 � y C T171 cosh 2� y C T190 sinh .H C �/ y C T191 sinh .H � �/ y

C T192 cosh.H C �/ y C T193 cosh.H � �/ y (52)
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The non-dimensional expression for the pressure rise per wavelength is given as follows:

1 p� D
Z 1

0

�
@p

@x

�
dx: (53)

The frictional forces at y D h1 and y D h2 denoted by F� 1 and F� 2 respectively are given as follows.
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The coefficient of heat transfer at the wall is given by

Z D h2x� 0y C �
�
� 0x C h2x� 1y

�
: (56)

The shearing stress acting on the (left and right) wall is defined as
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where � xy; � yy; � xx are the usual stress components.
The non-dimensional shear stress reduces to
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C T� 2T114 C 4� T121Uy sinh � y C T� 2T113 C 4� T122Uy cosh � y C � 2T121y2 cosh � y C � 2T122y2 sinh � y

C 4� 2T119 cosh 2� y C 4� 2T120 sinh 2 � y C T115 .H C �/ 2 sinh .H C �/ y C T116 .H � �/ 2 sinh .H � �/ y

C T117 .H C �/ 2 cosh.H C �/ y C T118 .H � �/ 2 cosh.H � �/ y C 6T123y C 2T124 /: (58)

4. Results and discussion

This section provides the behavior of parameters involved in the expressions of flow, heat and mass transfer
characteristics. In particular, the influence of Hartmann number ( M), permeability parameter ( Da), Schmidt number ( Sc),
Prandtl number ( Pr ), Grashof number ( gt ), local mass Grashof number ( gc), chemical reaction parameter (  ), Reynolds
number (Re), dimensionless flow rate ( � ), mean half width of the channel ( d) and phase angle ( ' ) are examined and are
shown graphically in Figs. 2�10 .Fig. 2depicts the effects of M ; Da; gt ; Sc;  and ' on velocity field. It is apparent from Fig. 2(a)
that increasing M, leads to fall in the velocity. Physically speaking, the effect of increasing magnetic field strength dampens
the velocity. The effect of permeability parameter on the velocity is displayed in Fig. 2(b). It is clear that the Da increases,
the velocity leads to enhance. An increasing Da means reduce the drag force and hence cause the flow velocity to increase
(as noted in Ref. [ 22]). Increasing Grashof number means an increase of the buoyancy force, which supports the motion,
which is shown in Fig. 2(c). Fig. 2(d) shows the influence of Sc on velocity distribution. The values chosen for Sc are 0.5, 0.6,
0.78, 1 and 2, which corresponds to Hydrogen gas, water vapor, ammonia, carbon dioxide at 25 ,C, and ethyl benzene in air,
respectively. It is observed that increasing Schmidt number lead to reduce the fluid velocity. Fig. 2(e) illustrates that with
an increase of chemical reaction parameter (  ), the velocity field decreases. The opposite result to that is shown in Fig. 2(f)
if Sc is replaced by ' .
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Fig. 2. Velocity distribution a D 0:5; b D 0:3; d D 1:1; gc D 5; Re D 1; m D 2; q D 1; n D 2; c1 D 1; Pr D 0:71; � D 0:01 (a) . � / M D 0, (� )
M D 0:5; . � / M D 1; . ^ / M D 2; gt D 5; Da D 0:5;  D 0:5; ' D 0; Sc D 0:5 (b) . � / Da D 1 , (� ) Da D 0:5; . � / Da D 1; . ^ / Da D 1:5; gt D 5; M D
1;  D 0:5; ' D 0; Sc D 0:5 (c) . � / gt D 0, (� ) gt D 5; . � / gt D 10; . ^ / gt D 15; Da D 0:5; M D 2;  D 0:5; ' D 0; Sc D 0:5 (d) . � / Sc D 0:5, (� )
Sc D 0:6; . � / Sc D 0:78; . ^ / Sc D 1; . C/ Sc D 2; gt D 5; Da D 0:5; ' D 0; M D 1;  D 0:5 (e) . � /  D 0, (� )  D 0:1; . � /  D 0:2; . ^ /  D 0:5; gt D
5; Da D 0:5; M D 1; ' D 0; Sc D 0:5. (f) . � / ' D 0, (� ) ' D �= 8, . � / ' D �= 6; . ^ / ' D �= 3; gt D 5; Da D 0:5; M D 1;  D 0:5; Sc D 0:5.

The effects of gt ; Sc;  ; M and Da on the dimensionless pressure drop .1 p� / against the time-averaged flux . � / are
illustrated in Fig. 3. The graph is sectored so that the upper right-hand quadrant (I) denotes the region of the peristaltic
pumping ( � > 0 and 1 p� > 0). Quadrant (II) is designated as augmented flow when � > 0 and 1 p� < 0. Quadrant (IV)
such that � < 0 and 1 p� > 0 is called retrograde or backward pumping. It shows that there is a linear relation between
1 p� and � . Further, it is observed that peristaltic pumping region increases with an increase of gt ;  ; M and Da while it
decreases with increasing Sc. Two figures have been made to see the behavior of frictional forces under the presence of
gt Sc;  and M at the channel walls. In Fig. 4 we have plotted the frictional force at the wall y D h1versus dimensionless
average volume flow rate � for different values of gt and Sc. The effects of these parameters on the frictional force are quite
opposite to that of pumping characteristics. Fig. 5 shows that the variations of  and M on frictional force (at right wall
y D h2 of the channel) versus flow rate � . It is clear that the influence of  and M on F� 2 is similar to that of gt and Sc on F� 1.

Fig. 6 is made to see the effects of M ; ';  , q and Da on axial pressure gradient (d p=dx). It displays the variations of the axial
pressure gradient (d p=dx) over one wave length x 2 T0; 1U. Fig. 6(a) illustrates the influence of M on dp=dx. It is observed
that in the wide part of the channel x 2 T0; 0:36Uand x 2 T0:67; 1Uthe pressure gradient is small, that is, the flow can
easily pass without the imposition of large pressure gradient. However, in the narrow part of the channel, x 2 T0:36; 0:67U
a much larger pressure gradient is needed to maintain the same flux to pass it. Further, it is also found that the pressure
gradient increases by increasing M. Fig. 6(b) is made to see the variation of phase difference ' on dp=dx. It is found that d p=dx
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Fig. 3. Pressure drop (a D 0:5; b D 0:3; d D 1; m D 2; n D 2; q D 1; Pr D 0:71; Re D 2; gc D 5; c1 D 1; M D 2; � D 0:1; ' D 0) (a) . � / gt D 0, (� )
gt D 2; . � / gt D 4; . ^ / gt D 6; Sc D 0:5; Da D 0:5;  D 0:5 (b) . � / Sc D 0:5, (� ) Sc D 0:6; . � / Sc D 0:78; . ^ / Sc D 1;  D 0:5; Da D 0:5; gt D 5 (c)
. � /  D 0:2, (� )  D 0:25; . � /  D 0:3; . ^ /  D 0:35; Sc D 0:5; Da D 0:5; gt D 5 (d) . � / M D 0, (� ) M D 0:2; . � / M D 0:4; . ^ / M D 0:6; Sc D 0:5;  D
0:5; Da D 0:5; gt D 5 (e) . � / Da D 0:1, (� ) Da D 0:15; . � / Da D 0:2; . ^ / Da D 0:25; Sc D 0:5;  D 0:5; gt D 5.

Fig. 4. Frictional forces at the wall y D h1 (a D 0:5; b D 0:3; d D 1; m D 2; n D 2; q D 1; Pr D 0:71; Re D 2; gc D 5; c1 D 1;  D 0:5; Da D 0:5; M D
2; � D 0:1; ' D 0) (a) . � / gt D 0, (� ) gt D 2; . � / gt D 4; . ^ / gt D 6; Sc D 0:5 (b) . � / Sc D 0:5, (� ) Sc D 0:6; . � / Sc D 0:78; . ^ / Sc D 1; gt D 5.

decreases both in wider and narrow parts of the channel. Moreover, the narrow region in the channel is shifting to the left
with an increase in ' . The results presented in Fig. 6(c) shows the disturbance d p=dx for various values of  . It depicts that by
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Fig. 5. Frictional forces at the wall y D h2 (a D 0:5; b D 0:3; d D 1; m D 2; n D 2; q D 1; Pr D 0:71; Re D 2; gt D 5; Sc D 0:5; gc D 5; Da D 0:5; c1 D
1; � D 0:1; ' D 0) (a) . � /  D 0:2, (� )  D 0:25; . � /  D 0:3; . ^ /  D 0:35; M D 2 (b) . � / M D 0, (� ) M D 0:2; . � / M D 0:4; . ^ / M D 0:6;  D 0:5.

Fig. 6. Pressure gradient ( a D 0:5; b D 0:3; m D 2; n D 2; Pr D 0:71; Re D 1; Sc D 0:5; gc D 1; gt D 1; c1 D 1; � D 0:01; d D 1:1) (a)
. � / M D 0, (� ) M D 1; . � / M D 2; . ^ / M D 3; q D � 3;  D 0:5; Da D 0:5; ' D 0 (b) . � / ' D 0, (� ) ' D �= 8; . � / ' D �= 6; . ^ / ' D �= 3; q D
� 3; Da D 0:5; d D 1;  D 0:5 (c) . � /  D 0:1, (� )  D 0:3; . � /  D 0:5; . ^ /  D 0:7; q D � 3; d D 1; Da D 0:5; ' D 0 (d) . � / q D � 3, (� )
q D � 2:5; . � / q D � 2; . ^ / q D � 1:5;  D 0:5; Da D 0:5; ' D 0 (e) . � / Da D 0:5, (� ) Da D 1; . � / Da D 1:5; . ^ / Da D 2;  D 0:5; q D � 3; ' D 0.
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Fig. 7. Temperature distribution ( a D 0:5; b D 0:3; d D 1:1; m D � 1; n D � 1; q D � 1;  D 0:5; Re D 1; � D 0:01; M D 2; c1 D 1; gt D 5; gc D
5; Sc D 0:5; Da D 0:5) (a) . � / Pr D 0:044, (� ) Pr D 0:71; . � / Pr D 7; . ^ / Pr D 11:4; ' D 0 (b) . � / M D 0, (� ) M D 2; . � / M D 2:5; . ^ / M D 3; Pr D 0:71.

Fig. 8. Concentration distribution ( a D 0:3; b D 0:5; d D 1:1; q D 1; c1 D 1; m D 2; n D 2; Pr D 0:71; Re D 1;  D 0:5; gc D 5; gt D 5; � D 0:01; ' D
0) (a) . � / Sc D 0:5, (� ) Sc D 0:6; . � / Sc D 0:78; . ^ / Sc D 1; . C/ Sc D 2;  D 0:5. (b) . � /  D � 0:5, (� )  D 0:1, . � /  D 0:5, .^ /  D 1:5, Sc D 0:5.

increasing  ; dp=dx increases throughout the channel. Fig. 6(d) shows the variation of q on dp=dx. It depicts that increasing
q lead to decrease the pressure gradient. The similar effect can be noticed if q is replaced by Da (see the Fig. 6(e)).

Fig. 7 depicts the temperature profiles for various values of Pr and M. In Fig. 7(a), we note that increasing Pr (i.e.,
Pr D 0:044, 0.71, 7 and 11, which corresponds to mercury, air, water and water at 4 ,C, respectively) leads to increase
the fluid temperature. It is also found that the temperature profile is linear for lower value of Pr while it becomes parabolic
in nature for higher values of Pr . The behavior of the fluid temperature with changing M is shown in Fig. 7(b). This shows
that temperature increases with an increase of M . The aim of Fig. 8 is to examine the fluid concentration for different values
of Sc and  . Fig. 8(a) is prepared to see the influence of Sc on concentration field. It shows that, there is decrease in the
concentration distribution with increasing Sc. Similar effects can be found for the behavior of concentration distribution for
different values of chemical reaction parameter, which is shown in Fig. 8(b). Fig. 9 is prepared to study the role of different
values of  ; Re; Da and Sc on Shear stress distribution. We notice that stress is in oscillatory behavior, which may be due to
peristalsis. Further, we observe that, when x < 0 shear stress increases with increasing Re while it decreases with increasing
 ; Da and Sc but this behavior is reversed, when x > 0. The effects of gc; Pr ; Sc and ' on coefficient of heat transfer is analyzed
through Fig. 10. From this figure, we observe that the absolute value of heat transfer coefficient increases by increasing
gc; Pr ; Sc and ' .

5. Conclusion

The problem of MHD mixed convective heat and mass transfer peristaltic flow, through a vertical asymmetric channel
with porous medium, in the presence of a chemical reaction has been analyzed. The momentum, energy and concentration
equations have been linearized under long-wavelength approximation. Analytical solutions have been developed for
stream function, temperature, concentration and heat transfer coefficient. The features of the flow, heat and mass transfer
characteristics are analyzed by plotting graphs and discussed in detail. The main findings are summarized as follows:

� The axial pressure gradient increases with an increase in M and  while it decreases with an increase of '; q and Da.
� Pumping rate increases with the increase of gt ;  ; M and Da.
� Increasing Sc and  leads to decrease the fluid concentration.
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Fig. 9. Shear stress distribution ( a D 0:5; b D 0:3; d D 1:1; m D 1; n D 1; q D � 1; c1 D 1; Pr D 0:71; M D 2; gc D 5; gt D 5; � D 0:2; ' D 0)
(a) . � /  D 0:1, (� )  D 0:2; . � /  D 0:3; . ^ /  D 0:4; Re D 1; Sc D 0:5; Da D 0:5 (b) . � / Re D 1, (� ) Re D 3; . � / Re D 5; . ^ / Re D
7;  D 0:1; Sc D 0:5; Da D 0:5 (c) . � / Da D 0:5, (� ) Da D 0:7; . � / Da D 0:9; . ^ / Da D 1:1; Re D 1;  D 0:1; Sc D 0:5 (d) . � / Sc D 0:5, (� )
Sc D 0:6; . � / Sc D 0:78; . ^ / Sc D 1; Re D 1;  D 0:1; Da D 0:5.

� Heat transfer coefficient ( z) increases with an increase of gc; Pr , Sc and ' .
� The results of the hydrodynamic case for a non-porous space in the absence of chemical reaction can be captured as a

limiting case of our analysis by taking M ;  ! 0 and Da ! 1 .
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Fig. 10. Coefficient of heat transfer ( a D 0:5; b D 0:3; d D 1:1; m D 2; n D 2; M D 0; Da D 0:5; Re D 7;  D 0:1; gt D 5; � D 0:01) (a) . � / gc D 0, (� )
gc D 2; . � / gc D 4; . ^ / gc D 6; ' D 0; Pr D 7; Sc D 0:5 (b) . � / Pr D 3, (� ) Pr D 5; . � / Pr D 7; . ^ / Pr D 11:4; ' D 0; gc D 5; Sc D 0:5 (c) . � / Sc D 0:5,
(� ) Sc D 1; . � / Sc D 2; . ^ / Sc D 3; ' D 0; gc D 5; Pr D 7 (d) . � / ' D 0, (� ) ' D �= 8; . � / ' D �= 6; . ^ / ' D �= 3; Pr D 7; gc D 5; Sc D 0:5.
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1 cosh Hh1 C T111 cosh � h1 C T112 sinh � h1 C T113h1 cosh � h1 C T114h1 sinh � h1

C T115 sinh .H C �/ h1 C T116 sinh .H � �/ h1 C T117 cosh.H C �/ h1 C T118 cosh.H � �/ h1

C T119 cosh 2� h1 C T120 sinh 2 � h1 C T121h2
1 cosh � h1 C T122h2

1 sinh � h1 C T123h3
1

C T124h2
1 C T125h1 C T126U

T132 D �T T106 cosh Hh2 C T105 sinh Hh2 C T107h2 sinh Hh2 C T108h2 cosh Hh2 C T109h2
2 sinh Hh2

C T110h2
2 cosh Hh2 C T111 cosh � h1 C T112 sinh � h2 C T113h2 cosh � h2 C T114h2 sinh � h2

C T115 sinh .H C �/ h2 C T116 sinh .H � �/ h2 C T117 cosh.H C �/ h2 C T118 cosh.H � �/ h2

C T119 cosh 2� h2 C T120 sinh 2 � h2 C T121h2
2 cosh � h2 C T122h2

2 sinh � h2 C T123h3
2

C T124h2
2 C T125h2 C T126U

T133 D �T .HT105 C T108 / cosh Hh1 C .HT106 C T107 / sinh Hh1 C .T108 C 2T109 /h1 sinh Hh1

C .T107 C 2T110 /h1 cosh Hh1 C T110h2
1 sinh Hh1 C T109h2

1 cosh Hh1 C .� T112 C T113 / cosh � h1

C .� T111 C T114 / sinh � h1 C .T114 C 2T121 /h1 cosh � h1 C .T113 C 2T122 /h1 sinh � h1

C T115 .H C �/ cosh.H C �/ h1 C T116 .H � �/ cosh.H � �/ h1 C T117 .H C �/ sinh .H C �/ h1

C T118 .H � �/ sinh .H � �/ h1 C 2� T119 sinh 2 � h1 C 2� T120 cosh 2� h1 C � T121h2
1 sinh � h1

C � T122h2
1 cosh � h1 C 3T123h2

1 C 2T124h1 C T125U

T134 D �T .HT105 C T108 / cosh Hh2 C .HT106 C T107 / sinh Hh2 C .T108 C 2T109 /h2 sinh Hh2

C .T107 C 2T110 /h2 cosh Hh1 C T110h2
2 sinh Hh2 C T109h2

2 cosh Hh2 C .� T112 C T113 / cosh � h2

C .� T111 C T114 / sinh � h2 C .T114 C 2T121 /h2 cosh � h2 C .T113 C 2T122 /h2 sinh � h2

C T115 .H C �/ cosh.H C �/ h2 C T116 .H � �/ cosh.H � �/ h2 C T117 .H C �/ sinh .H C �/ h2

C T118 .H � �/ sinh .H � �/ h2 C 2� T119 sinh 2 � h2 C 2� T120 cosh 2� h2 C � T121h2
2 sinh � h2

C � T122h2
2 cosh � h2 C 3T123h2

2 C 2T124h2 C T125U
T135 D cosh Hh1 � cosh Hh2 � H.h1 � h2/ sinh Hh1I T136 D sinh Hh1 � sinh Hh2 � H.h1 � h2/ cosh Hh1I
T137 D T131 � T132 � T133 .h1 � h2/ I T138 D cosh Hh1 � cosh Hh2 � H.h1 � h2/ sinh Hh2I
T139 D sinh Hh1 � sinh Hh2 � H.h1 � h2/ cosh Hh2I T140 D T131 � T132 � T134 .h1 � h2/ I

T141 D Agt �
gcc1Sc

� 2
� H2B2 � H2I T142 D Bgt � 2H2T4I T143 D .� 2 � H2/� T5 C gcA1

T144 D .� 2 � H2/� T6 C gcB1I T145 D 2ReTT4A2x C H2.C2C2x � D2D2x/UI T146 D 2ReT4B2xI
T147 D ReT2T4C2x C H2C2A2x � HB2D2xUI T148 D ReT2T4D2x C H2D2A2x � HB2C2xUI
T149 D ReTB2xH2C2 � 2HT4D2xUI T150 D ReTB2xH2D2 � 2HT4C2xUI T151 D ReA2x� 2T5I
T152 D ReA2x� 2T6I T153 D ReB2x� 2T5I T154 D ReB2x� 2T6I T155 D ReT.� 2 � H�/. D2xT6 C C2xT5/UI
T156 D ReT.� 2 C H�/. D2xT6 � C2xT5/UI T157 D ReT.� 2 � H�/. C2xT6 C D2xT5/UI
T158 D ReT.� 2 C H�/. C2xT6 � D2xT5/UI T159 D 6T123 � H2.B5 C T125 / C gcT64 C gt A3I
T160 D H3.C5 C T106 / C H2.2T107 � HC5/ C H.6T110 C T106 / C gt T31I
T161 D H3.D5 C T106 / C H2.2T108 � HD5/ C H.6T109 C T105 / C gt T32I
T162 D gt T35 C 4H2T109 I T163 D gt T36 C 4H2T110 I
T164 D � 3T111 � H2.� T111 C T114 / C 3� 2T114 C 6� T121 C gt T33 C B4gcI
T165 D � 3T112 � H2.� T112 C T113 / C 3� 2T113 C 6� T122 C gt T34 C A4gcI
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T166 D � 3T114 � H2.� T114 C 2T121 / C 6� 2T121 C gt T38 C .T55 C T59/gc

T167 D � 3T113 � H2.� T114 C 2T122 / C 6� 2T122 C gt T37 C .T55 C T58/gcI
T168 D � 3T121 � H2� T121 C gcT58I T169 D � 3T122 � H2� T122 C gcT59I T170 D .8� 3 � 2�/ T119 C gcT56I
T171 D .8� 3 � 2�/ T120 C gcT57I T172 D T.H C �/ 3 � H2.H C �/ UT117 C gcT60I
T173 D T.H � �/ 3 � H2.H � �/ UT118 C gcT61I
T174 D T.H C �/ 3 � H2.H C �/ UT115 C gcT62I T175 D T.H � �/ 3 � H2.H � �/ UT116 C gcT63I
T176 D gt T30I T177 D gt T29I T178 D gt T28 � 3T123 I T179 D gt B3 � 2H2T124 I
T180 D T145 C T159 I T181 D T146 C T179 I T182 D T148 C T160 I T183 D T147 C T161 I T184 D T160 C T162 I
T185 D T149 C T163 I T186 D T151 C T164 I T187 D T152 C T165 I T188 D T153 C T167 I T189 D T154 C T166 I
T190 D T155 C T172 I T191 D T156 C T173 I T192 D T157 C T174 I T193 D T158 C T175 :
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