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a b s t r a c t

This work is aimed at describing MHDmixed convective heat and mass transfer peristaltic

flow through a vertical porous space in the presence of a chemical reaction. The flow is

examined in a wave frame of reference moving with the velocity of the wave. The channel

asymmetry is produced by choosing the peristalticwave train on thewalls to have different

amplitude and phase. The momentum, energy and concentration equation have been

linearized under long-wavelength approximation. Expressions for dimensionless stream

function, temperature and concentration field are constructed. The features of the fluid

flow, heat and mass transfer characteristics are analyzed by plotting graphs and discussed

in detail.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Peristaltic flows are generated by the propagation of waves along the flexible walls of the channel or tube. These occur
widely in many biological and biomedical systems. In physiology, this plays an indispensable role in various situations such
as urine transport from kidneys to bladder through the ureter, chyme movement in the gastrointestinal tract, transport
of spermatozoa in the ductus efferents of the male reproductive tracts, movements of ovum in the female fallopian tube
and circulation of blood in the small blood vessels. The mechanism of peristaltic transport has been exploited for industrial
applications like sanitary fluid transport, blood pumps in heart lung machine and transport of corrosive fluids where the
contact of the fluidwith themachinery parts is prohibited. Peristaltic transport of a toxic liquid is used in nuclear industry to
avoid contamination of the outside environment. Such flows are extensively studied in various geometries by using different
assumptions of large wave length, small amplitude ratio, small wave number, creeping flow, etc. At present a wealth of
literature on this topic dealing with the peristalsis in viscous and non-Newtonian fluid is available (see Refs. [1–12] and
several references therein).

Heat transfer in biological tissues involves complicated processes such as heat conduction in tissues, heat convection
due to blood flow through the pores of tissues, as well as radiation heat transfer between surface and its environment and
there is also mass transfer in organisms. Research interest in flow as well as heat transfer phenomena in a channel/tube
has increased substantially in recent years due to developments in the electronic industry, microfabrication technologies,
biomedical engineering, etc. The interaction between peristalsis and heat transfer has been investigated recently, where the
thermodynamic aspects of blood become significant in processes like oxygenation and hemodialysis [13–15]. Some recent
interesting contributions pertaining to heat transfer aspects of peristaltic transport are cited in Refs. [13–25].

Very few investigations have been made to study the combined effects of heat and mass transfer in peristaltic
literature [26–30]. Srinivas and Kothandapani [26] have analyzed the influence of heat andmass transfer onMHD peristaltic
flow through a porous space with compliant walls. Nadeem et al. [27] have presented a mathematical model to understand
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the influence of heat andmass transfer on peristaltic flow of a third order fluid in a diverging tube. Hayat and Hina [28] have
studied the influence of wall properties on the MHD peristaltic flow of a Maxwell fluid with heat and mass transfer. Eldabe
et al. [29] have analyzed the problem of peristaltic transport of a non-Newtonian fluidwith variable viscosity in the presence
of heat and mass transfer and mixed diffusion flow between a vertical wall that deforms in the shape of a traveling wave
and a parallel flat wall. Nadeem and Akbar [30] have discussed the influence of radially varying MHD on the peristaltic flow
in an annulus with heat and mass transfer. Recently, Srinivas and Muthuraj [31] have examined the problem of MHD flow
in a vertical wavy porous space in the presence of a temperature-dependent heat source with slip-flow boundary condition.
More recently, Muthuraj and Srinivas [32] have investigated the problem of mixed convective heat and mass transfer in a
vertical wavy channel through porous medium with traveling thermal waves.

To the best of our knowledge, the influence of MHDmixed convective heat and mass transfer analysis on peristaltic flow
with chemical reaction has not been studied before. Therefore the main goal here is to construct a mathematical model
to understand the effect of heat and mass transfer on MHD peristaltic flow of a Newtonian fluid, in a vertical asymmetric
channel filledwith porousmedium, in the presence of chemical reaction. The features of the flow and heat andmass transfer
characteristics are analyzed by plotting graphs and discussed in detail. This paper is organized as follows: In Section 2, the
general equations are first modeled and then problem statement is given under the long-wavelength and low-Reynolds
number assumptions. Section 3 includes the analytic solutions for the problem. Section 4 contains numerical results and
discussion. The conclusions are summarized in Section 5.

2. Mathematical model

We consider the motion of an incompressible viscous fluid in a two-dimensional vertical channel induced by sinusoidal
wave trains propagating with constant speed c along the channel walls

H1 = d1 + a1 cos
2π

λ
(X − ct) . . . right-hand side wall,

H2 = −d2 − b1 cos



2π

λ
(X − ct)+ ϕ



. . . left-hand side wall, (1)

where a1, b1 are the amplitudes of the waves, λ is the wave length, d1 + d2 is the width of the channel, the phase difference
ϕ varies in the range 0 ≤ ϕ ≤ π, ϕ = 0 corresponds to symmetric channel with waves out of phase and ϕ = π the waves
are in phase, and further a1, b1, d1, d2 and ϕ satisfies the condition

a21 + b21 + 2a1b1 cosϕ ≤ (d1 + d2)
2 . (2)

It is assumed that the temperature at right-hand side wall is T ′
1 and concentration is C ′

1 while the temperature at the left-
hand side wall is T ′

2 and concentration is C ′
2 (Fig. 1). The continuity, momentum, energy and concentration equations are

described by

∂U

∂X
+
∂V

∂Y
= 0, (3)

ρ

[

∂U

∂t
+ U

∂U

∂X
+ V

∂U

∂Y

]

= −
∂P

∂X
+ µ



∂2U

∂X2
+
∂2U

∂Y 2



− σB2
0U −

µφ∗

k
U + ρgβt(T − T )+ ρgβc(C − C) (4)

ρ

[

∂V

∂t
+ U

∂V

∂X
+ V

∂V

∂Y

]

= −
∂P

∂Y
+ µ



∂2V

∂X2
+
∂2V

∂Y 2



−
µφ∗

k
V , (5)

[

∂T

∂t
+ U

∂T

∂X
+ V

∂T

∂Y

]

=
K

ρcp

[

∂2T

∂X2
+
∂2T

∂Y 2

]

(6)

[

∂C

∂t
+ U

∂C

∂X
+ V

∂C

∂Y

]

= Dm

[

∂2C

∂X2
+
∂2C

∂Y 2

]

− k1C (7)

where U, V are the velocity components in the laboratory frame (X, Y ), g is the acceleration due to gravity, T is the
temperature of the fluid, C is the concentration of the fluid, T is the mean value of T ′

1 and T ′
2, B0 is the transverse magnetic

field, C is the mean value of C ′
1 and C ′

2, k is the permeability of the medium, k1 is the chemical reaction parameter, σ is the
coefficient of electric conductivity, φ∗ is the porosity of the medium, ρ is the density, µ is the coefficient of viscosity of the
fluid, P is the pressure, βt is the coefficient of thermal expansion, βc is the coefficient of expansion with concentration, cp
is the specific heat at constant pressure, Dm is the coefficient of mass diffusivity, K is the thermal conductivity of the fluid.
In writing the above equations the following assumptions are made: (i) Boussinesq approximation is invoked so that the
density variations will be retained only in the buoyancy term and (ii) dissipation function effect is neglected.

We shall carry out this investigation in a coordinate systemmoving with the wave speed c , in which the boundary shape
is stationary. The coordinates and velocities in the laboratory frame (X, Y ) and the wave frame (x, y) are related by:

x = X − ct, y = Y , u = U − c, v = V , p(x) = P(X, t) (8)
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Fig. 1. Schematic diagram of the physical model.

where u, v are the velocity components in thewave frame (x, y), p and P are pressures inwave and fixed frame of references
respectively. Introducing the following non-dimensional quantities:

x̄ =
x

λ
; ȳ =

y

d1
; ū =

u

c
; v =

v

cδ
; δ =

d1

λ
; p̄ =

d21p

µcλ
; t̄ =

ct

λ
; h1 =

H1

d1
;

h2 =
H2

d1
; d =

d2

d1
; a =

a1

d1
;

b =
b1

d1
; Re =

ρcd1

µ
; θ =

T − T

T ′
1 − T

; n =
T ′
2 − T

T ′
1 − T

; φ =
C − C

C ′
1 − C

; m =
C ′
2 − C

C ′
1 − C

;

Pr =
cpµ

K
; Sc =

µ

ρDm

gt =
ρgβt



T ′
1 − T



d21

µc
; gc =

ρgβc



C ′
1 − C



d21

µc
; γ =

k1d
2
1

ν
; Da =

k

φ∗d21
; M2 =

σB2
0d

2
1

µ
(9)

where Re is the Reynolds number, M is the Hartmann number, Da is the permeability parameter, gt is the local Grashof
number, gc is the local mass Grashof number, Pr is the Prandtl number, Sc is the Schmidt number, δ is the dimensionless
wave number, and γ is the chemical reaction parameter. In terms of these non-dimensional variables, the basic Eqs. (3)–(7)
can be expressed in the non-dimensional form, dropping the bars,

∂u

∂x
+
∂v

∂y
= 0 (10)

Reδ



u
∂u

∂x
+ v

∂u

∂y



= −
∂p

∂x
+



δ2
∂2u

∂x2
+
∂2u

∂y2



− H2(u + 1)+ gtθ + gcφ, (11)

Reδ3


u
∂v

∂x
+ v

∂v

∂y



= −
∂p

∂y
+ δ2



δ2
∂2v

∂x2
+
∂2v

∂y2



−
δ2

Da

v (12)

RePrδ



u
∂θ

∂x
+ v

∂θ

∂y



=


δ2
∂2θ

∂x2
+
∂2θ

∂y2



, (13)

Reδ



u
∂φ

∂x
+ v

∂φ

∂y



=
1

Sc



δ2
∂2φ

∂x2
+
∂2φ

∂y2



− γφ − c1 (14)

where, c1 = k1d
2
1
C̄

ν(C ′
1
−C̄)

;H =


M2 + 1
Da

.

Introducing the dimensionless stream function ψ(x, y) such that

u =
∂ψ

∂y
and v = −

∂ψ

∂x
. (15)
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The compatibility equationswhich govern the problem in terms of the stream functionψ(x, y) after eliminating the pressure
gradient, Eqs. (11)–(14) becomes

Reδ


(ψyψxyy − ψxψyyy)+ δ2(ψyψxxx − ψxψxxy)


= 2δ2ψxxyy + δ4ψxxxx + ψyyyy

−H2ψyy −
δ2

Da

ψxx + gtθy + gcφy (16)

RePrδ[ψyθx − ψxθy] = δ2(θxx + θyy) (17)

Reδ[ψyφx − ψxφy] =
1

Sc
(δ2φxx + φyy)− γφ − c1. (18)

The corresponding boundary conditions are

ψ =
q

2
ψy = −1 θ = 1 φ = 1 at y = h1 (19)

ψ = −
q

2
ψy = −1 θ = n φ = m at y = h2. (20)

It should be noted that Eq. (11) for the axial pressure gradient becomes

Reδ

[

ψy

∂

∂x
− ψx

∂

∂y



ψy

]

= −
∂p

∂x
+



δ2
∂2

∂x2
+
∂2

∂y2



ψy − H2(ψy + 1)+ gtθ + gcφ. (21)

In laboratory frame, the dimensional volume flow rate is

Q =
∫ H1(X,t)

H2(X,t)

U (X, Y , t) dY (22)

in which H1 and H2 are function of X and t . The above expression in wave frame becomes

q =
∫ h1

h2

u (x, y) dy, (23)

where h1 and h2 are functions of x alone. From Eqs. (8), (22) and (23) we can write

Q = q + ch1(x)− ch2(x). (24)

The time-averaged flow over a period T at a fixed position X is

Q =
1

T

∫ T

0

Qdt. (25)

Substituting (24) into (25) and integrating, we get

Q = q + cd1 + cd2. (26)

If we find the dimensionless mean flowsΘ , in the laboratory frame, and F , in the wave frame, according to

Θ =
Q

cd1
, F =

q

cd1
, (27)

one finds that Eq. (19) becomes

Θ = F + 1 + d (28)

in which

F =
∫ h1

h2

∂ψ

∂y
dy. (29)

We note that h1(x) and h2(x) represent the dimensionless form of the surfaces of the peristaltic walls

h1(x) = 1 + a cos(2πx), h2(x) = −d − b cos(2πx + ϕ) (30)

where a, b, d and ϕ satisfies the relation Ref. [2]

a2 + b2 + 2ab cosϕ ≤ (1 + d)2. (31)
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3. Solutions

We seek perturbation solution in terms of the small parameter δ as follows:

f = f0 + δf1 + δ2f2 + · · ·
where f represents any flow variable.

i.e.

ψ = ψ0 + δψ1 + δ2ψ2 + · · ·
θ = θ0 + δθ1 + δ2θ2 + · · ·
φ = φ0 + δφ1 + δ2φ2 + · · ·

p = p0 + δp1 + δ2p2 + · · · . (32)

Substituting Eq. (32) in Eqs. (16)–(18), collecting the coefficients of various powers of δ, we get
The zeroth order equations are

ψ0yyyy − H2ψ0yy + gtθ0y + gcφ0y = 0 (33)

θ0yy = 0 (34)

φ0yy − γ Scφ0 − Scc1 = 0 (35)

p0x = ψ0yyy − H2(ψ0y + 1)+ gtθ0 + gcφ0. (36)

The corresponding dimensionless boundary conditions in the wave frame are

ψ0 =
q

2
ψ0y = −1 θ0 = 1 φ0 = 1 at y = h1 (37)

ψ0 = −
q

2
ψ0y = −1 θ0 = n φ0 = m at y = h2. (38)

The first order equations are

Re[ψ0yψ0xyy − ψ0xψ0yyy] = ψ1yyyy − H2ψ1yy + gtθ1y + gcφ1y (39)

Re[ψ0yθ0x − ψ0xθ0y] = θ1yy (40)

Re[ψ0yφ0x − ψ0xφ0y] =
1

Sc
θ1yy − γφ1 (41)

p1x = ψ1yyy − H2ψ1y + gtθ1 + gcφ1 − Re[ψ0yψ0xy − ψ0xψ0yy]. (42)

The corresponding dimensionless boundary conditions in the wave frame are

ψ1 = 0 ψ1y = 0 θ1 = 0 φ1 = 0 at y = h1 (43)

ψ1 = 0 ψ1y = 0 θ1 = 0 φ1 = 0 at y = h2. (44)

Solving the Eqs. (33)–(35) with boundary conditions (37)–(38) and the Eqs. (39)–(41) with boundary conditions (43)–(44),
we get

Zeroth order solution:

θ0 = Ay + B (45)

φ0 = A1 coshαy + B1 sinhαy −
c1Sc

α2
(46)

ψ0 = A2 + B2y + C2 coshHy + D2 sinhHy + T4y
2 + T5 sinhαy + T6 coshαy (47)

p0x = T141 + T142y + T143 coshαy + T144 sinhαy. (48)

First order solution:

θ1 = A3 + B3y + T28y
2 + T29y

3 + T30y
4 + T31 sinhHy + T32 coshHy + T33 sinhαy + T34 coshαy

+ T35y sinhHy + T36y coshHy + T37y sinhαy + T38y coshαy (49)

φ1 = A4 coshαy + B4 sinhαy + (T54 + T58)y sinhαy + (T55 + T59)y coshαy + T56 sinh 2αy

+ T57 cosh 2αy + T58y
2 sinhαy + T59y

2 coshαy + T60 sinh(H + α)y + T61 sinh(H − α)y

+ T62 cosh(H + α)y + T63 cosh(H − α)y + T64 (50)

ψ1 = A5 + B5y + (C5 + T106) coshHy + (D5 + T105) sinhHy + T107y sinhHy + T108y coshHy
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+ T109y
2 sinhHy + T110y

2 coshHy + T111 coshαy + T112 sinhαy + T113y coshαy + T114y sinhαy

+ T115 sinh(H + α)y + T116 sinh(H − α)y + T117 cosh(H + α)y + T118 cosh(H − α)y + T119 cosh 2αy

+ T120 sinh 2αy + T121y
2 coshαy + T122y

2 sinhαy + T123y
3 + T124y

2 + T125y + T126 (51)

p1x = T180 + T181y + T178y
2 + T177y

3 + T176y
4 + T182 sinhHy + T183 coshHy + T184y sinhHy

+ T185y coshHy + T186 sinhαy + T187 coshαy + T188y sinhαy + T189y coshαy + T168y
2 sinhαy

+ T169y
2 coshαy + T170 sinh 2αy + T171 cosh 2αy + T190 sinh(H + α)y + T191 sinh(H − α)y

+ T192 cosh(H + α)y + T193 cosh(H − α)y (52)

where α =
√
γ Sc .

The non-dimensional expression for the pressure rise per wavelength is given as follows:

1pλ =
∫ 1

0



∂p

∂x



dx. (53)

The frictional forces at y = h1 and y = h2 denoted by Fλ1 and Fλ2 respectively are given as follows.

Fλ1 =
∫ 1

0

−h2
1



dp

dx



dx (54)

Fλ2 =
∫ 1

0

−h2
2



dp

dx



dx. (55)

The coefficient of heat transfer at the wall is given by

Z = h2xθ0y + δ


θ0x + h2xθ1y


. (56)

The shearing stress acting on the (left and right) wall is defined as

τ̄ =
σxy



1 −


dy

dx

2


+


σyy − σxx
 

dy

dx



1 +


dy

dx

2
at y = H2(x) and H1(x) (57)

where σxy, σyy, σxx are the usual stress components.

The non-dimensional shear stress reduces to

τ = H2(C2 coshHy + D2 sinhHy)+ 2T4 + α2(T5 sinhαy + T6 coshαy)

+ δ([H2(C5 + T106)+ 2(HT107 + T110)] coshHy + [H2(D5 + T107)+ 2(HT108 + T109)] sinhHy

+ [H2T107 + 4HT110]y sinhHy + [H2T108 + 4HT109]y coshHy + H2T109y
2 sinhHy

+H2T110y
2 coshHy + [α2T111 + 2(αT114 + T121)] coshαy + [α2T112 + 2(αT113 + T122)] sinhαy

+ [α2T114 + 4αT121]y sinhαy + [α2T113 + 4αT122]y coshαy + α2T121y
2 coshαy + α2T122y

2 sinhαy

+ 4α2T119 cosh 2αy + 4α2T120 sinh 2αy + T115(H + α)2 sinh(H + α)y + T116(H − α)2 sinh(H − α)y

+ T117(H + α)2 cosh(H + α)y + T118(H − α)2 cosh(H − α)y + 6T123y + 2T124). (58)

4. Results and discussion

This section provides the behavior of parameters involved in the expressions of flow, heat and mass transfer
characteristics. In particular, the influence of Hartmann number (M), permeability parameter (Da), Schmidt number (Sc),
Prandtl number (Pr ), Grashof number (gt ), local mass Grashof number (gc), chemical reaction parameter (γ ), Reynolds
number (Re), dimensionless flow rate (Θ), mean half width of the channel (d) and phase angle (ϕ) are examined and are
showngraphically in Figs. 2–10. Fig. 2 depicts the effects ofM,Da, gt , Sc, γ andϕ on velocity field. It is apparent fromFig. 2(a)
that increasingM , leads to fall in the velocity. Physically speaking, the effect of increasing magnetic field strength dampens
the velocity. The effect of permeability parameter on the velocity is displayed in Fig. 2(b). It is clear that the Da increases,
the velocity leads to enhance. An increasing Da means reduce the drag force and hence cause the flow velocity to increase
(as noted in Ref. [22]). Increasing Grashof number means an increase of the buoyancy force, which supports the motion,
which is shown in Fig. 2(c). Fig. 2(d) shows the influence of Sc on velocity distribution. The values chosen for Sc are 0.5, 0.6,
0.78, 1 and 2, which corresponds to Hydrogen gas, water vapor, ammonia, carbon dioxide at 25 °C, and ethyl benzene in air,
respectively. It is observed that increasing Schmidt number lead to reduce the fluid velocity. Fig. 2(e) illustrates that with
an increase of chemical reaction parameter (γ ), the velocity field decreases. The opposite result to that is shown in Fig. 2(f)
if Sc is replaced by ϕ.
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Fig. 2. Velocity distribution a = 0.5, b = 0.3, d = 1.1, gc = 5, Re = 1,m = 2, q = 1, n = 2, c1 = 1, Pr = 0.71, δ = 0.01 (a) (−) M = 0, (∗)
M = 0.5, (◦) M = 1, (∧) M = 2, gt = 5,Da = 0.5, γ = 0.5, ϕ = 0, Sc = 0.5 (b) (−) Da = ∞, (∗) Da = 0.5, (◦) Da = 1, (∧) Da = 1.5, gt = 5,M =
1, γ = 0.5, ϕ = 0, Sc = 0.5 (c) (−) gt = 0, (∗) gt = 5, (◦) gt = 10, (∧) gt = 15,Da = 0.5,M = 2, γ = 0.5, ϕ = 0, Sc = 0.5 (d) (−) Sc = 0.5, (∗)
Sc = 0.6, (◦) Sc = 0.78, (∧) Sc = 1, (+) Sc = 2, gt = 5,Da = 0.5, ϕ = 0,M = 1, γ = 0.5 (e) (−) γ = 0, (∗) γ = 0.1, (◦) γ = 0.2, (∧) γ = 0.5, gt =
5,Da = 0.5,M = 1, ϕ = 0, Sc = 0.5. (f) (−) ϕ = 0, (∗) ϕ = π/8, (◦) ϕ = π/6, (∧) ϕ = π/3, gt = 5,Da = 0.5,M = 1, γ = 0.5, Sc = 0.5.

The effects of gt , Sc, γ ,M and Da on the dimensionless pressure drop (1pλ) against the time-averaged flux (Θ) are
illustrated in Fig. 3. The graph is sectored so that the upper right-hand quadrant (I) denotes the region of the peristaltic
pumping (Θ > 0 and 1pλ > 0). Quadrant (II) is designated as augmented flow when Θ > 0 and 1pλ < 0. Quadrant (IV)
such that Θ < 0 and 1pλ > 0 is called retrograde or backward pumping. It shows that there is a linear relation between
1pλ and Θ . Further, it is observed that peristaltic pumping region increases with an increase of gt , γ ,M and Da while it
decreases with increasing Sc . Two figures have been made to see the behavior of frictional forces under the presence of
gtSc, γ and M at the channel walls. In Fig. 4 we have plotted the frictional force at the wall y = h1versus dimensionless
average volume flow rateΘ for different values of gt and Sc . The effects of these parameters on the frictional force are quite
opposite to that of pumping characteristics. Fig. 5 shows that the variations of γ and M on frictional force (at right wall
y = h2 of the channel) versus flow rateΘ . It is clear that the influence of γ andM on Fλ2 is similar to that of gt and Sc on Fλ1.

Fig. 6 ismade to see the effects ofM, ϕ, γ , q andDa on axial pressure gradient (dp/dx). It displays the variations of the axial
pressure gradient (dp/dx) over one wave length x ∈ [0, 1]. Fig. 6(a) illustrates the influence of M on dp/dx. It is observed
that in the wide part of the channel x ∈ [0, 0.36] and x ∈ [0.67, 1] the pressure gradient is small, that is, the flow can
easily pass without the imposition of large pressure gradient. However, in the narrow part of the channel, x ∈ [0.36, 0.67]
a much larger pressure gradient is needed to maintain the same flux to pass it. Further, it is also found that the pressure
gradient increases by increasingM . Fig. 6(b) ismade to see the variation of phase differenceϕ on dp/dx. It is found that dp/dx
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Fig. 3. Pressure drop (a = 0.5, b = 0.3, d = 1,m = 2, n = 2, q = 1, Pr = 0.71, Re = 2, gc = 5, c1 = 1,M = 2, δ = 0.1, ϕ = 0) (a) (−) gt = 0, (∗)
gt = 2, (◦) gt = 4, (∧) gt = 6, Sc = 0.5,Da = 0.5, γ = 0.5 (b) (−) Sc = 0.5, (∗) Sc = 0.6, (◦) Sc = 0.78, (∧) Sc = 1, γ = 0.5,Da = 0.5, gt = 5 (c)

(−) γ = 0.2, (∗) γ = 0.25, (◦) γ = 0.3, (∧) γ = 0.35, Sc = 0.5,Da = 0.5, gt = 5 (d) (−)M = 0, (∗)M = 0.2, (◦)M = 0.4, (∧)M = 0.6, Sc = 0.5, γ =
0.5,Da = 0.5, gt = 5 (e) (−) Da = 0.1, (∗) Da = 0.15, (◦) Da = 0.2, (∧) Da = 0.25, Sc = 0.5, γ = 0.5, gt = 5.

Fig. 4. Frictional forces at the wall y = h1 (a = 0.5, b = 0.3, d = 1,m = 2, n = 2, q = 1, Pr = 0.71, Re = 2, gc = 5, c1 = 1, γ = 0.5,Da = 0.5,M =
2, δ = 0.1, ϕ = 0) (a) (−) gt = 0, (∗) gt = 2, (◦) gt = 4, (∧) gt = 6, Sc = 0.5 (b) (−) Sc = 0.5, (∗) Sc = 0.6, (◦) Sc = 0.78, (∧) Sc = 1, gt = 5.

decreases both in wider and narrow parts of the channel. Moreover, the narrow region in the channel is shifting to the left
with an increase in ϕ. The results presented in Fig. 6(c) shows the disturbance dp/dx for various values of γ . It depicts that by



S. Srinivas, R. Muthuraj / Mathematical and Computer Modelling 54 (2011) 1213–1227 1221

Fig. 5. Frictional forces at the wall y = h2 (a = 0.5, b = 0.3, d = 1,m = 2, n = 2, q = 1, Pr = 0.71, Re = 2, gt = 5, Sc = 0.5, gc = 5,Da = 0.5, c1 =
1, δ = 0.1, ϕ = 0) (a) (−) γ = 0.2, (∗) γ = 0.25, (◦) γ = 0.3, (∧) γ = 0.35,M = 2 (b) (−)M = 0, (∗) M = 0.2, (◦)M = 0.4, (∧)M = 0.6, γ = 0.5.

Fig. 6. Pressure gradient (a = 0.5, b = 0.3,m = 2, n = 2, Pr = 0.71, Re = 1, Sc = 0.5, gc = 1, gt = 1, c1 = 1, δ = 0.01, d = 1.1) (a)

(−) M = 0, (∗) M = 1, (◦) M = 2, (∧) M = 3, q = −3, γ = 0.5,Da = 0.5, ϕ = 0 (b) (−) ϕ = 0, (∗) ϕ = π/8, (◦) ϕ = π/6, (∧) ϕ = π/3, q =
−3,Da = 0.5, d = 1, γ = 0.5 (c) (−) γ = 0.1, (∗) γ = 0.3, (◦) γ = 0.5, (∧) γ = 0.7, q = −3, d = 1,Da = 0.5, ϕ = 0 (d) (−) q = −3, (∗)
q = −2.5, (◦) q = −2, (∧) q = −1.5, γ = 0.5,Da = 0.5, ϕ = 0 (e) (−) Da = 0.5, (∗) Da = 1, (◦) Da = 1.5, (∧) Da = 2, γ = 0.5, q = −3, ϕ = 0.
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Fig. 7. Temperature distribution (a = 0.5, b = 0.3, d = 1.1,m = −1, n = −1, q = −1, γ = 0.5, Re = 1, δ = 0.01,M = 2, c1 = 1, gt = 5, gc =
5, Sc = 0.5,Da = 0.5) (a) (−) Pr = 0.044, (∗) Pr = 0.71, (◦) Pr = 7, (∧) Pr = 11.4, ϕ = 0 (b) (−)M = 0, (∗)M = 2, (◦)M = 2.5, (∧)M = 3, Pr = 0.71.

Fig. 8. Concentration distribution (a = 0.3, b = 0.5, d = 1.1, q = 1, c1 = 1,m = 2, n = 2, Pr = 0.71, Re = 1, γ = 0.5, gc = 5, gt = 5, δ = 0.01, ϕ =
0) (a) (−) Sc = 0.5, (∗) Sc = 0.6, (◦) Sc = 0.78, (∧) Sc = 1, (+) Sc = 2, γ = 0.5. (b) (−) γ = −0.5, (∗) γ = 0.1, (◦) γ = 0.5, (∧) γ = 1.5, Sc = 0.5.

increasing γ , dp/dx increases throughout the channel. Fig. 6(d) shows the variation of q on dp/dx. It depicts that increasing
q lead to decrease the pressure gradient. The similar effect can be noticed if q is replaced by Da (see the Fig. 6(e)).

Fig. 7 depicts the temperature profiles for various values of Pr and M . In Fig. 7(a), we note that increasing Pr (i.e.,
Pr = 0.044, 0.71, 7 and 11, which corresponds to mercury, air, water and water at 4 °C, respectively) leads to increase
the fluid temperature. It is also found that the temperature profile is linear for lower value of Pr while it becomes parabolic
in nature for higher values of Pr . The behavior of the fluid temperature with changing M is shown in Fig. 7(b). This shows
that temperature increases with an increase ofM . The aim of Fig. 8 is to examine the fluid concentration for different values
of Sc and γ . Fig. 8(a) is prepared to see the influence of Sc on concentration field. It shows that, there is decrease in the
concentration distribution with increasing Sc . Similar effects can be found for the behavior of concentration distribution for
different values of chemical reaction parameter, which is shown in Fig. 8(b). Fig. 9 is prepared to study the role of different
values of γ , Re,Da and Sc on Shear stress distribution. We notice that stress is in oscillatory behavior, which may be due to
peristalsis. Further, we observe that, when x < 0 shear stress increaseswith increasing Rewhile it decreaseswith increasing
γ ,Da and Sc but this behavior is reversed,when x > 0. The effects of gc, Pr , Sc andϕ on coefficient of heat transfer is analyzed
through Fig. 10. From this figure, we observe that the absolute value of heat transfer coefficient increases by increasing
gc, Pr , Sc and ϕ.

5. Conclusion

The problem of MHD mixed convective heat and mass transfer peristaltic flow, through a vertical asymmetric channel
with porous medium, in the presence of a chemical reaction has been analyzed. The momentum, energy and concentration
equations have been linearized under long-wavelength approximation. Analytical solutions have been developed for
stream function, temperature, concentration and heat transfer coefficient. The features of the flow, heat and mass transfer
characteristics are analyzed by plotting graphs and discussed in detail. The main findings are summarized as follows:

• The axial pressure gradient increases with an increase inM and γ while it decreases with an increase of ϕ, q and Da.

• Pumping rate increases with the increase of gt , γ ,M and Da.

• Increasing Sc and γ leads to decrease the fluid concentration.
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Fig. 9. Shear stress distribution (a = 0.5, b = 0.3, d = 1.1,m = 1, n = 1, q = −1, c1 = 1, Pr = 0.71,M = 2, gc = 5, gt = 5, δ = 0.2, ϕ = 0)

(a) (−) γ = 0.1, (∗) γ = 0.2, (◦) γ = 0.3, (∧) γ = 0.4, Re = 1, Sc = 0.5,Da = 0.5 (b) (−) Re = 1, (∗) Re = 3, (◦) Re = 5, (∧) Re =
7, γ = 0.1, Sc = 0.5,Da = 0.5 (c) (−) Da = 0.5, (∗) Da = 0.7, (◦) Da = 0.9, (∧) Da = 1.1, Re = 1, γ = 0.1, Sc = 0.5 (d) (−) Sc = 0.5, (∗)
Sc = 0.6, (◦) Sc = 0.78, (∧) Sc = 1, Re = 1, γ = 0.1,Da = 0.5.

• Heat transfer coefficient (z) increases with an increase of gc, Pr , Sc and ϕ.

• The results of the hydrodynamic case for a non-porous space in the absence of chemical reaction can be captured as a
limiting case of our analysis by takingM, γ → 0 and Da → ∞.
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Appendix

A = 1 − Bh1; B =
1 − n

h1 − h2

; A1 =
1 + c1Sc

α2
− B1 sinhαh1

coshαh1

; B1 =



1 + c1Sc

α2



coshαh2 − (1 + m) coshαh1

sinhα(h1 − h2)
;

D2 =
T13T14 − T11T16

T12T14 − T11T15
; C2 =

T13T15 − T12T15

T11T15 − T12T14
; B2 = T9 − HC2 sinhHh1 − HD2 coshHh1;

A2 = T7 − B2h1 − C2 coshHh1 − D2 sinhHh1; A3 = T127 − B3h1; B3 =
T127 − T128

h1 − h2

;

A4 =
T129 − B4 sinhαh1

coshαh1

; B4 =
T129 coshαh2 − T130 coshαh1

sinhα(h1 − h2)
; D5 =

T137T138 − T135T140

T136T138 − T135T139
;

C5 =
T140 − D5T139

T138
; B5 = T133 − HC5 sinhHh1 − HD5 coshHh1;

A5 = T131 − B5h1 − C5 coshHh1 − D5 sinhHh1; Ax = −(Bxh1 + Bh1x); Bx = −
1 − n(h1x − h2x)

(h1 − h2)2
;
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Fig. 10. Coefficient of heat transfer (a = 0.5, b = 0.3, d = 1.1,m = 2, n = 2,M = 0,Da = 0.5, Re = 7, γ = 0.1, gt = 5, δ = 0.01) (a) (−) gc = 0, (∗)
gc = 2, (◦) gc = 4, (∧) gc = 6, ϕ = 0, Pr = 7, Sc = 0.5 (b) (−) Pr = 3, (∗) Pr = 5, (◦) Pr = 7, (∧) Pr = 11.4, ϕ = 0, gc = 5, Sc = 0.5 (c) (−) Sc = 0.5,

(∗) Sc = 1, (◦) Sc = 2, (∧) Sc = 3, ϕ = 0, gc = 5, Pr = 7 (d) (−) ϕ = 0, (∗) ϕ = π/8, (◦) ϕ = π/6, (∧) ϕ = π/3, Pr = 7, gc = 5, Sc = 0.5.

A1x =



coshαh1 (−[B1αh1x coshαh1 + B1x sinhαh1])−


1 + c1Sc

α2
− B1 sinhαh1



αh1x sinhαh1



cosh2 αh1

;

B1x =









sinhα(h1 − h2)

[

1 +
c1Sc

α2



αh2x sinhαh2 − (1 + m)αh1x sinhαh1

]

−
[

1 +
c1Sc

α2



coshαh2 − (1 + m) coshαh1

]

α(h1x − h2x) coshα(h1 − h2)









sinh2 α(h1 − h2)
;

D2x =



(T12T14 − T11T15)(T13xT14 + T13T14x − [T11xT16 + T11T16x])
−(T13T14 − T11T16)(T12T14x + T12xT14 − [T11xT15 + T11T15x])



(T12T14 − T11T15)
2

;

C2x =



(T11T15 − T12T14) (T13T15x + T13xT15 − [T12xT15 + T12T15x])
−(T13T15 − T12T15) (T11xT15 + T11T15x − [T12xT14 + T12T14x])



(T11T15 − T12T14)
2

;

B2x = T9x − H[C2x sinhHh1 + C2Hh1x coshHh1] − H[D2x coshHh1 + D2Hh1x sinhHh1]
A2x = T7x − (B2h1x + B2xh1)− (C2x coshHh1 + C2Hh1x sinhHh1)− (D2x sinhHh1 + D2Hh1x coshHh1);

T1x = −gtBx; T2x = −gcαA1x; T3x = −gcαB1x; T4x = −
T1x

2H2
; T5x =

T2x

α2(α2 − H2)
; T6x =

T3x

α2(α2 − H2)
;

T7x = −2T4h1h1x + (T5αh1x coshαh1 + T5x sinhαh1)+ (T6αh1x sinhαh1 + T6x coshαh1);
T8x = −2T4h2h2x + (T5αh2x coshαh2 + T5x sinhαh2)+ (T6αh2x sinhαh2 + T6x coshαh2);
T9x = −2(T4h1x + T4xh1)+ α(T5αh1x sinhαh1 + T5x coshαh1)+ α(T6αh1x coshαh1 + T6x sinhαh1);
T10x = −2(T4h2x + T4xh2)+ α(T5αh2x sinhαh2 + T5x coshαh2)+ α(T6αh2x coshαh2 + T6x sinhαh2);
T11x = Hh1x sinhHh1 − Hh2 sinhHh2 − H[(h1 − h2)Hh1x coshHh1 + (h1x − h2x) sinhHh1];
T12x = Hh1x coshHh1 − Hh2x coshHh2 − H[(h1 − h2)Hh1x sinhHh1 + (h1x − h2x) coshHh1];
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T13x = T7x − T8x − [T9x(h1 − h2)+ T9(h1x − h2x)];
T14x = Hh1x sinhHh1 − Hh2x sinhHh2 − H[(h1 − h2)Hh2x coshHh2 + (h1x − h2x) sinhHh2];
T15x = Hh1x coshHh1 − Hh2x coshHh2 − H[(h1 − h2)Hh2x sinhHh2 + (h1x − h2x) coshHh2];
T16x = T7x − T8x − [T10x(h1 − h2)+ T10(h1x − h2x)]; T1 = −gtB; T2 = −gcαA1; T3 = −gcαB1;

T4 = −
T1

2H2
; T5 =

T2

α2(α2 − H2)
; T6 =

T3

α2(α2 − H2)
; T7 =

q

2
− T4h

2
1 + T5 sinhαh1 + T6 coshαh1;

T8 = −
q

2
− T4h

2
2 + T5 sinhαh2 + T6 coshαh2; T9 = −1 − 2T4h1 + αT5 coshαh1 + αT6 sinhαh1;

T10 = −1 − 2T4h2 + αT5 coshαh2 + αT6 sinhαh2; T11 = coshHh1 − coshHh2 − H(h1 − h2) sinhHh1;
T12 = sinhHh1 − sinhHh2 − H(h1 − h2) coshHh1; T13 = T7 − T8 − T9(h1 − h2);
T14 = coshHh1 − coshHh2 − H(h1 − h2) sinhHh2; T15 = sinhHh1 − sinhHh2 − H(h1 − h2) coshHh2;
T16 = T7 − T8 − T10(h1 − h2); T17 = RePr(AxB2 − BA2x); T18 = RePr(BxB2 − BB2x + 2T4Ax);
T19 = 2RePrT4Bx; T20 = RePr(HAxC2 − BD2x); T21 = RePr(HAxD2 − BC2x); T22 = RePrαT6Ax;
T23 = RePrαT5Ax; T24 = RePrHC2Bx; T25 = RePrHD2Bx; T26 = RePrαT6Bx;

T27 = RePrαT5Bx; T28 =
T17

2
; T29 =

T18

6
; T30 =

T19

12
;

T31 =
T20

H2
−

2T25

H3
; T32 =

T21

H2
−

2T24

H3
; T33 =

T22

α2
−

2T27

α3
; T34 =

T23

α2
−

2T26

α3
; T35 =

T24

H2
; T36 =

T25

H2
;

T37 =
T26

α2
; T38 =

T27

α2
; T39 =

ReScα

2
(T5A1x − T6B1x); T40 = ReSc(B2B1x − αA1A2x);

T41 = ReSc(B2A1x − αB1A2x); T42 =
αReSc

2
(T5B1x + T6αA1x); T43 =

αReSc

2
(T5A1x + T6αB1x);

T44 = ReSc(2T4A1x − αB1B2x); T45 = ReSc(2T4B1x − αA1B2x); T46 = ReSc(HC2A1x − αB1D2x);
T47 = ReSc(HC2B1x − αA1D2x); T48 = ReSc(HD2A1x − αB1C2x); T49 = ReSc(HD2B1x − αA1C2x);

T50 =
(T46 + T49)

2
; T51 =

(T46 − T49)

2
; T52 =

(T47 + T48)

2
; T53 =

(T48 − T47)

2
; T54 =

T40

2α
; T55 =

T41

2α
;

T56 =
T42

3α2
; T57 =

T43

3α2
; T58 =

T45

2α
; T59 =

T44

2α
; T60 =

T50

(H + α)2 − α2
; T61 =

T51

(H − α)2 − α2
;

T62 =
T52

(H + α)2 − α2
; T63 =

T53

(H − α)2 − α2
; T64 = −

T39

α2
; T65 = Re(H2B2D2x − H3C2A2x);

T66 = Re(H2B2C2x − H3D2A2x); T67 = Re(2T4H
2C2x − H3D2B2x); T68 = Re(2T4H

2D2x − H3C2B2x);
T69 = −Reα3T5A2x; T70 = −Reα3T6A2x; T71 = −Reα3T5B2x; T72 = −Reα3T6B2x;

T73 =
Re

2



(T5D2x + T6C2x)(H
2α − α3)



; T74 =
Re

2



(T5D2x − T6C2x)(H
2α − α3)



;

T75 =
Re

2



(T5C2x + T6D2x)(H
2α − α3)



; T76 =
Re

2



(T5C2x − T6D2x)(H
2α − α3)



;

T77 = HT31 + T36; T78 = HT32 + T35; T79 = αT33 + T38; T80 = αT34 + T37; T81 = αA4 + T54 + T58;
T82 = αB4 + T55 + T59; T83 = 2T59 + (T54 + T58)α; T84 = 2T58 + (T55 + T59)α; T85 = T65 − gtT78;
T86 = T66 − gtT77; T87 = T67 − gtHT35; T88 = T68 − HgtT36; T89 = T69 − gtT79 − gcT82;
T90 = T70 − gtT80 − gcT81; T91 = T71 − gtαT37 − gcT83; T92 = T72 − gtαT38 − gcT84; T93 = T73 − gcT62(H + α);
T94 = T74 − gcT63(H − α); T95 = T75 − gcT60(H + α); T96 = T76 − gcT61(H − α); T97 = −2αgcT56;
T98 = −2αgcT57; T99 = −αgcT58; T100 = −αgcT59; T101 = −αgtT30; T102 = −3gtT29; T103 = −2gtT28;

T104 = −gtB3; T105 =
T85

2H
; T106 =

T86

2H
; T107 =

T87

2H
; T108 =

T88

2H
; T109 =

T88

2H
; T110 =

T87

2H
;

T111 =
T89

α2 − H2
+

2(αT91 − T99)

(α2 − H2)2
+

8α2T99

(α2 − H2)3
; T112 =

T90

α2 − H2
+

2(αT92 − T100)

(α2 − H2)2
+

8α2T100

(α2 − H2)3
;

T113 =
T91

α2 − H2
−

4αT100

(α2 − H2)2
; T114 =

T92

α2 − H2
−

4αT99

(α2 − H2)2
; T115 =

T93

(H + α)2 − H2
; T116 =

T94

(H − α)2 − H2
;

T117 =
T95

(H + α)2 − H2
; T118 =

T96

(H − α)2 − H2
; T119 =

T97

4α2 − H2
; T120 =

T98

4α2 − H2
; T121 =

T99

α2 − H2
;
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T122 =
T100

α2 − H2
; T123 = −

T101

H2
; T124 = −

T102

H2
; T125 = −

6T101

H4
−

T103

H2
; T126 = −

T104

H2
−

2T102

H4
;

T127 = −(T28h2
1 + T29h

3
1 + T30h

4
1 + T31 sinhHh1 + T32 coshHh1 + T33 sinhαh1 + T34 coshαh1

+ T35h1 sinhHh1 + T36h1 coshHh1 + T37h1 sinhαh1 + T38h1 coshαh1)

T128 = −(T28h2
2 + T29h

3
2 + T30h

4
2 + T31 sinhHh2 + T32 coshHh2 + T33 sinhαh2 + T34 coshαh2

+ T35h2 sinhHh2 + T36h2 coshHh2 + T37h2 sinhαh2 + T38h2 coshαh2)

T129 = −[(T54 + T58)h1 sinhαh1 + (T55 + T59)h1 coshαh1 + T56 sinh 2αh1 + T57 cosh 2αh1

+ T58h
2
1 sinhαh1 + T59h

2
1 coshαh1 + T60 sinh(H + α)h1 + T61 sinh(H − α)h1

+ T62 cosh(H + α)h1 + T63 cosh(H − α)h1 + T64]
T130 = −[(T54 + T58)h2 sinhαh2 + (T55 + T59)h2 coshαh2 + T56 sinh 2αh2 + T57 cosh 2αh2

+ T58h
2
2 sinhαh2 + T59h

2
2 coshαh2 + T60 sinh(H + α)h2 + T61 sinh(H − α)h2

+ T62 cosh(H + α)h2 + T63 cosh(H − α)h2 + T64]
T131 = −[T106 coshHh1 + T105 sinhHh1 + T107h1 sinhHh1 + T108h1 coshHh1 + T109h

2
1 sinhHh1

+ T110h
2
1 coshHh1 + T111 coshαh1 + T112 sinhαh1 + T113h1 coshαh1 + T114h1 sinhαh1

+ T115 sinh(H + α)h1 + T116 sinh(H − α)h1 + T117 cosh(H + α)h1 + T118 cosh(H − α)h1

+ T119 cosh 2αh1 + T120 sinh 2αh1 + T121h
2
1 coshαh1 + T122h

2
1 sinhαh1 + T123h

3
1

+ T124h
2
1 + T125h1 + T126]

T132 = −[T106 coshHh2 + T105 sinhHh2 + T107h2 sinhHh2 + T108h2 coshHh2 + T109h
2
2 sinhHh2

+ T110h
2
2 coshHh2 + T111 coshαh1 + T112 sinhαh2 + T113h2 coshαh2 + T114h2 sinhαh2

+ T115 sinh(H + α)h2 + T116 sinh(H − α)h2 + T117 cosh(H + α)h2 + T118 cosh(H − α)h2

+ T119 cosh 2αh2 + T120 sinh 2αh2 + T121h
2
2 coshαh2 + T122h

2
2 sinhαh2 + T123h

3
2

+ T124h
2
2 + T125h2 + T126]

T133 = −[(HT105 + T108) coshHh1 + (HT106 + T107) sinhHh1 + (T108 + 2T109)h1 sinhHh1

+ (T107 + 2T110)h1 coshHh1 + T110h
2
1 sinhHh1 + T109h

2
1 coshHh1 + (αT112 + T113) coshαh1

+ (αT111 + T114) sinhαh1 + (T114 + 2T121)h1 coshαh1 + (T113 + 2T122)h1 sinhαh1

+ T115(H + α) cosh(H + α)h1 + T116(H − α) cosh(H − α)h1 + T117(H + α) sinh(H + α)h1

+ T118(H − α) sinh(H − α)h1 + 2αT119 sinh 2αh1 + 2αT120 cosh 2αh1 + αT121h
2
1 sinhαh1

+αT122h2
1 coshαh1 + 3T123h

2
1 + 2T124h1 + T125]

T134 = −[(HT105 + T108) coshHh2 + (HT106 + T107) sinhHh2 + (T108 + 2T109)h2 sinhHh2

+ (T107 + 2T110)h2 coshHh1 + T110h
2
2 sinhHh2 + T109h

2
2 coshHh2 + (αT112 + T113) coshαh2

+ (αT111 + T114) sinhαh2 + (T114 + 2T121)h2 coshαh2 + (T113 + 2T122)h2 sinhαh2

+ T115(H + α) cosh(H + α)h2 + T116(H − α) cosh(H − α)h2 + T117(H + α) sinh(H + α)h2

+ T118(H − α) sinh(H − α)h2 + 2αT119 sinh 2αh2 + 2αT120 cosh 2αh2 + αT121h
2
2 sinhαh2

+αT122h2
2 coshαh2 + 3T123h

2
2 + 2T124h2 + T125]

T135 = coshHh1 − coshHh2 − H(h1 − h2) sinhHh1; T136 = sinhHh1 − sinhHh2 − H(h1 − h2) coshHh1;
T137 = T131 − T132 − T133(h1 − h2); T138 = coshHh1 − coshHh2 − H(h1 − h2) sinhHh2;
T139 = sinhHh1 − sinhHh2 − H(h1 − h2) coshHh2; T140 = T131 − T132 − T134(h1 − h2);

T141 = Agt −
gcc1Sc

α2
− H2B2 − H2; T142 = Bgt − 2H2T4; T143 = (α2 − H2)αT5 + gcA1

T144 = (α2 − H2)αT6 + gcB1; T145 = 2Re[T4A2x + H2(C2C2x − D2D2x)]; T146 = 2ReT4B2x;
T147 = Re[2T4C2x + H2C2A2x − HB2D2x]; T148 = Re[2T4D2x + H2D2A2x − HB2C2x];
T149 = Re[B2xH

2C2 − 2HT4D2x]; T150 = Re[B2xH
2D2 − 2HT4C2x]; T151 = ReA2xα

2T5;
T152 = ReA2xα

2T6; T153 = ReB2xα
2T5; T154 = ReB2xα

2T6; T155 = Re[(α2 − Hα)(D2xT6 + C2xT5)];
T156 = Re[(α2 + Hα)(D2xT6 − C2xT5)]; T157 = Re[(α2 − Hα)(C2xT6 + D2xT5)];
T158 = Re[(α2 + Hα)(C2xT6 − D2xT5)]; T159 = 6T123 − H2(B5 + T125)+ gcT64 + gtA3;
T160 = H3(C5 + T106)+ H2(2T107 − HC5)+ H(6T110 + T106)+ gtT31;
T161 = H3(D5 + T106)+ H2(2T108 − HD5)+ H(6T109 + T105)+ gtT32;
T162 = gtT35 + 4H2T109; T163 = gtT36 + 4H2T110;
T164 = α3T111 − H2(αT111 + T114)+ 3α2T114 + 6αT121 + gtT33 + B4gc;
T165 = α3T112 − H2(αT112 + T113)+ 3α2T113 + 6αT122 + gtT34 + A4gc;
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T166 = α3T114 − H2(αT114 + 2T121)+ 6α2T121 + gtT38 + (T55 + T59)gc

T167 = α3T113 − H2(αT114 + 2T122)+ 6α2T122 + gtT37 + (T55 + T58)gc;
T168 = α3T121 − H2αT121 + gcT58; T169 = α3T122 − H2αT122 + gcT59; T170 = (8α3 − 2α)T119 + gcT56;
T171 = (8α3 − 2α)T120 + gcT57; T172 = [(H + α)3 − H2(H + α)]T117 + gcT60;
T173 = [(H − α)3 − H2(H − α)]T118 + gcT61;
T174 = [(H + α)3 − H2(H + α)]T115 + gcT62; T175 = [(H − α)3 − H2(H − α)]T116 + gcT63;
T176 = gtT30; T177 = gtT29; T178 = gtT28 − 3T123; T179 = gtB3 − 2H2T124;
T180 = T145 + T159; T181 = T146 + T179; T182 = T148 + T160; T183 = T147 + T161; T184 = T160 + T162;
T185 = T149 + T163; T186 = T151 + T164; T187 = T152 + T165; T188 = T153 + T167; T189 = T154 + T166;
T190 = T155 + T172; T191 = T156 + T173; T192 = T157 + T174; T193 = T158 + T175.
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