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Abstract

An ECG signal, generally filled with noise, when de-noised, enables a physician to effectively determine and predict the

condition and health of the heart. This paper aims to address the issue of denoising a noisy ECG signal using the Fast

Fourier Transform based bandpass filter. Multi-stage adaptive peak detection is then applied to identify the R-peak in the

QRS complex of the ECG signal. The result of test simulations using the MIT/BIH Arrhythmia database shows high

sensitivity and positive predictivity (PP) of 99.98 and 99.96% respectively, confirming the accuracy and reliability of

proposed algorithm for detecting R-peaks in the ECG signal.
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1 Introduction

At present, medical research organizations mainly focus on

cardiovascular diseases (CVD) and related problems due to

increased mortality worldwide from CVDs. Further, tech-

nological progress in cardiac function assessments has

become the nucleus and heart of all leading research

studies in the area of CVDs [1]. Use of technologies in

hospitals and medical facilities has undergone stupendous

advancements thereby changing the face of the traditional

and regular cardiovascular-diagnosis. Amongst the com-

monly used clinical cardiac tests, electrocardiogram (ECG)

analysis which represents the electrical activity of the heart

is utilized to test the heart-related irregularity [2]. ECG

signals are captured from the polarization and depolariza-

tion of the ventricles and atrias, that alternately contract

and expand to pump blood throughout the body [3]. This

polarization and depolarization of the chambers produce

the ECG signal.’’

The ECG signals demonstrate the latent operation of the

heart and constitute events that concur and coexist with the

succession of depolarization and repolarization of the atria

and ventricles. Figure 1 represents the different ECG

waves produced during a cardiac cycle. The QRS complex

is made-up of two troughs, namely, ‘Q’ and ‘S’ and a sharp

R-peak. The literature identifies a higher detection accu-

racy of these three events (P-peak, QRS complex and

T-peak) during the analysis period of fewer than 30 min.

Also, to ameliorate the advancement in the technologi-

cal diagnostic tool, long duration monitoring of ECG sig-

nals is conducted by connecting the electrodes of ECG

recorder to a device that banks on the wireless transmis-

sion, considered as a fundamental requirement for early

detection of CVDs [4]. A precise, exact and coherent

e-health device, supplementing CVD screening and diag-

nosis process, with an efficient well-ordered ECG system is

the need of the hour. The technique should be cost-effec-

tive, authentic, expandable and capable of effectual patient

tracking with a medical data management tool. Such a tool

becomes a necessity for tracking the health of many CVD

patients to prevent critical heart failure and to provide rapid

medical attention to patients. A model of a wearable ECG

monitoring system that can be used for the acquisition,
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processing and wireless transmission of ECG data for

monitoring the health of CVD patient is shown in Fig. 2.

Wireless transmission of the ECG data is the major

source of power consumption in the ECG monitoring

system. Hence, a solution that reduces the size and protects

the integrity of the signal quality is required. Size of the

transmitted ECG data can be reduced using an efficient

compression method. However, most of the high-perfor-

mance compression methods are complex and require high

energy consumption, rendering them unsuitable for wear-

able ECG monitoring systems [5–7]. Therefore, an efficient

compression method that is simple, fast and suitable for a

large duration of ECG data must be identified.

The present work outlines a simple, fast, and efficient

R-peak detection algorithm that holds the integrity of the

signal. Optimal results are obtained by considering hard-

ware complexity and detection accuracy as performance

metrics for the proposed R-peak detection algorithm. An

FFT (Fast Fourier Transform) based bandpass filter is

employed to accurately isolate the ECG data from the

recorded which may contain noise. Adaptive peak detec-

tion is then used to identify the R-peak in the QRS complex

of the ECG signal. Simulation results verify the effec-

tiveness of the proposed R-peak detection algorithm.

2 Proposed ECG detection scheme

2.1 Database

There are various standard databases which provide ECG

waveform namely, AHA database, PTB diagnostic ECG

database, MIT-BIH arrhythmia database. The MIT-BIH

Arrhythmia database (MITADB) from physionet.org [8] is

utilized in the proposed algorithm. It provides around

thirty-four different ECG samples out of which some

contain large amounts of noise. The data can be of different

duration ranging from 10 s to 30 min and 05.556 s.

2.2 Proposed algorithm description

As the ECG signal is an electrical signal and is vulnerable

to various forms of noise, namely, power line interference,

electromyographic noise (EMG), baseline drift, and a

composite noise constructed from the noises that are

Fig. 1 ECG signal

Fig. 2 Wearable ECG

monitoring system Model

Fig. 3 Block diagram representation of the proposed FFT based ECG denoising and adaptive R-peak detection algorithm
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present in the atmosphere/surroundings [9]. Various de-

noising techniques namely, time-domain [10], time–fre-

quency domain (wavelet transform) [11–17], digital filter-

ing [18–20], and Fourier transform to name a few, are

proposed in the last few decades. An FFT based filtering

and adaptive R-peak detection algorithm are selected based

on the trade-off between algorithmic complexity, robust-

ness and detection performance. Initially, to reduce noise,

the ECG signal is isolated from the other signals using a

bandpass filter implemented using the FFT. Then, the

R-peaks are identified by implementing an adaptive peak

detection algorithm. Using a fixed time duration modeled

from a single ideal ECG cycle, false R-peak detections are

identified. The block diagram representation of the pro-

posed FFT based denoising and adaptive R-peak detection

algorithm is shown in Fig. 3.

The pseudo code of the proposed algorithm is as

follows:

Various low frequency noise, namely, baseline wan-

dering and high frequency noises, namely, additive white

gaussian noise, muscle contraction (EMG), power line

interference affects an ECG signal while recording. The

MITADB contains ECG signals with high and low noise

levels. Also, some random noise sources are generated and

added to the original ECG signal to test the algorithm for

critical cases. The analog input ECG signal is first sampled

at 360 Hz to convert the data into a digital format which

can be analyzed and processed further. The sampled data is

directly taken from the MITADB. The noise, as described

above, in the recorded ECG signal can be reduced using

different methods such as moving average [21], adaptive

filtering [22], wavelet transform [23], to name the impor-

tant. In this work, Fast Fourier Transform is utilized to

implement a bandpass filter with cut-in and cut-off fre-

quencies 0.5 Hz and 15 Hz respectively to reduce the

various noises present in the ECG signal. The noise is

reduced by multiplying a shifted rectangle function defined

by Eq. (1) with the Fourier spectrum of the ECG signal

using Eq. (2).

wr k½ � ¼
1; �

M � 1

2
� k�

M � 1

2
0; otherwise

( )

ð1Þ

Y k½ � ¼ wr k � C0½ �X k½ � ð2Þ

where M is the width of the basdpass filter equal to

15.5 Hz, C0 is the centre frequency of the bandpass filter

equal to 7.75 Hz, k represents frequency, and X[k] is the

Fourier spectrum of the input ECG signal.

The final de-noised ECG signal can then be obtained by

applying the inverse FFT on the processed frequency data

Eq. (3).

y n½ � ¼
1

L

X

L�1

k¼0

wr k � C0½ �X k½ �W�kn
L ð3Þ

The FFT and inverse FFT are calculated using Eqs. (4)

and (5), where x[n] and X[k] are the input signal and FFT of

the input signal, respectively, k represents frequency, n

represents sample, L is the length if x[n], and WL is given

by Eq. (6).

1. START program 

2. LOAD ECG data in Inp_n 

3. IF input signal is inverted THEN  

4.     INVERT and STORE Inp_n IN Inp_n 

5. ENDIF 

6. COMPUTE and STORE FFT of input IN Inp_FFT 

7. FOR frequency f_k IN RANGE {0 TO maximum frequency in Inp_FFT} 

8.     IF frequency f_k less than 0.5Hz OR frequency f_k more than 15Hz THEN 

9.         SET amplitude of Inp_FFT at frequency f_k TO 0 

10.     ENDIF 

11. ENDFOR 

12. COMPUTE and STORE inverse FFT of Inp_FFT IN Out_n 

13. COMPUTE and STORE magnitude of highest peak of Out_n IN P_max 

14. COMPUTE and STORE 10% of P_max IN Pass_mark_1 

15. FIND and STORE peaks with amplitude more than Pass_mark_1 IN Pass_1_peaks 

16. COMPUTE and STORE mean of Pass_1_peaks IN P_mean 

17. COMPUTE and STORE 45% of P_mean IN Pass_mark_2 

18. FIND and STORE peaks with amplitude more than Pass_mark_2 IN Pass_2_peaks 

19. PLOT Pass_2_peaks 

20. END program 
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X k½ � ¼
X

L�1

n¼0

x n½ �Wkn
L ; 0� k� L� 1 ð4Þ

x n½ � ¼
1

L

X

L�1

k¼0

X k½ �W�kn
L ; 0� n� L� 1 ð5Þ

WL ¼ e�j2p
L ð6Þ

The de-noised ECG signal is compared with the original

ECG signal with the help of a noise detector to test the

removal of noise sources. The signal to noise ratio (SNR)

of the proposed de-noised algorithm is calculated using

Eq. (7).

SNR ¼ 10 log10

P

i si
P

i si � ŝij j2

 !

ð7Þ

where Si, Ŝi are the original signal and reconstructed sig-

nal, respectively. If the noise detector identifies any noise

in the de-noised ECG signal, then the whole denoising

process is repeated. When the noise in the recorded signal

is reduced to a minimum level, the R-peaks are identified

through a multistage adaptive peak detection process. The

first stage of the peak detection process identifies the

highest peak and stores 10% of this peak as the stage one

mark. The second and final stage mark is obtained by

taking 45% of the mean of all R-peaks found using the

stage one mark. This method of multistage adaptive peak

detection allows the algorithm to partially adapt to different

signals compared to a fixed threshold value. After the R-

peak detection, the interval between two consecutive R-

peaks are determined by taking the ratio of the distance

between two adjacent R-peaks and the frequency of the

original signal. Then, the heart rate (HR) of the signal is

calculated using Eq. (8).

Heart Rate HRð Þ¼
60

Average R�Rpeak interval

� �

ð8Þ

The heart rate is used to analyze the physiological

condition of the person. If the heart rate exceeds 100 bpm

continuously, then the subject is diagnosed with sinus

tachycardia, and if the heart rate is below 50 bpm contin-

uously, then the diagnosis is sinus bradycardia.

3 Result and discussion

Sensitivity, positive predictability (Pp) and detection error-

rate (DER) are the performance measure used to calculate

the performance of the proposed R-peak detection algo-

rithm. The Sensitivity, PP, and DER are computed using

Eqs. (9–11).

Sensitivity ¼
TP

TP þ FNð Þ
ð9Þ

PP ¼
TP

TP þ FPð Þ
ð10Þ

DER ¼
FP þ FN

Total number of peaks

� �

ð11Þ

where true positive (TP) is the count of R-peaks detected as

R-peaks, false negative (FN) is the count of missed

R-peaks, and false positive (FP) is the count of extra

detected R-peaks. Sensitivity provides the information

about the percentage of truly detected peaks out of the total

true peaks. PP gives information on the percentage of

detected true peaks out of all detected peaks. The proposed

technique is performed using the MITADB [24] with

10-second ECG signal and full-length ECG signal data.

The R-peak detection results for the ten-seconds ECG

signals taken from the MITADB is reported in Table 1.

Sensitivity, PP, DER and R–R peak time and HR are con-

sidered to evaluate the small ECG data set.

Table 2 concludes that the proposed detector achieves

the highest sensitivity and PP of 99.65 and 99.65%

respectively using the MITADB of small-length. The pro-

posed detector obtained the highest sensitivity and PP of

100% with 108.mat and 214.mat signals from the MITADB

which contain maximum noise [25].

The R-peak detection results for the full-length ECG

signals taken from the MITADB is listed in Table 3. It is

noticed from Table 4, that the proposed detector achieves

the highest sensitivity and PP of 99.98% and 99.96

respectively using the MITADB of full-length.

The performance of the proposed R-peak detector under

noisy conditions are shown in Fig. 4. Through the imple-

mentation of the FFT based bandpass filter (Fig. 4a bottom

and top right plots), most of the noise in the recorded ECG

signal (Fig. 4a top left plot) is removed (Fig. 4a bottom left

plot). The de-noised result (Fig. 4b) is then processed using

an adaptive two-stage R-peak detection method. The first

stage (Fig. 4c) uses the highest peak in the signal as a basis

for detecting potential R-peaks. The second and final stage

of this process generates a new limit using the R-peaks

detected by the first stage, to identify the R-peaks more

accurately. Each stage further utilizes a time duration based

upon a single ideal ECG cycle to analyze the R-peak dis-

tribution and eliminate false detections. This two-stage

process can further be expanded to an N stage process that

can potentially result in more refined results. However,

each additional stage increases the computational com-

plexity and time required to obtain results. Hence

restricting the process to two stages achieves a balance

between complexity and detection accuracy, this allows the

proposed algorithm to be unique and efficient.
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3.1 Comparison with the existing methods

Comparison of the proposed algorithm with the existing

algorithms confirms that the proposed algorithm has better

detection accuracy regarding Sensitivity, PP, and DER. The

proposed R-Peak detector achieves the highest sensitivity

and positive predictability of 99.98 and 99.96%, respec-

tively using the MITADB of full-length (Fig. 5). There are

few other algorithms such as genetic algorithm and a neural

network which offer good performance, but their

Table 1 Peak detection results of the proposed design using ten-seconds ECG data

Signal 100 101 102 103 104 105 106 107 108 109 111 112 113 114 115 116 117

SE (%) 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

? P (%) 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

DER (%) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

R–R time 0.8 0.89 0.82 0.85 0.81 0.72 0.99 0.85 0.97 0.64 0.85 0.69 1.07 1.13 1 0.75 1.16

HR 75 67.4 73.2 70.6 74.1 83.3 60.6 70.6 61.9 93.8 70.6 87 56.1 53.1 60 80 51.7

Signal 118 119 121 122 123 124 200 201 202 205 207 208 209 210 212 213 214

SE (%) 100 100 100 100 100 100 93.3 100 100 100 90 100 100 100 100 100 100

?P (%) 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

DER (%) 0 0 0 0 0 0 0.66 0 0 0 0.1 0 0 0 0 0 0

R–R time 0.83 0.92 0.99 0.66 1.26 1.21 1.13 0.7 1.12 0.66 1.21 1.09 0.63 0.67 0.66 0.54 0.8

HR 72.3 65.2 60.6 90.9 47.6 49.6 53.1 85.7 53.6 90.9 49.6 55 95.2 89.6 90.9 111 75

Signal 215 217 219 220 221 222 223 228 230 231 232 233 234

SE (%) 100 100 100 100 100 100 100 100 100 100 100 100 100

? P (%) 100 100 100 100 100 100 93.3 100 92.9 100 100 100 100

DER (%) 0 0 0 0 0 0 0.66 0 0.07 0 0 0 0

R–R time 0.53 0.84 0.73 0.83 0.83 0.79 0.75 0.82 0.73 1 1.02 0.69 0.66

HR 113 71.4 82.2 72.3 72.3 75.9 80 73.2 82.2 60 58.8 87 90.9

Table 2 Total performance of the proposed design using short-length

ECG data

Signal SE (%) ? P (%) DER (%) R–R time HR

Average 99.65 99.65 0.6 0.86 73.28

Table 3 Peak detection results

of the proposed design using

full-length ECG data

Signal 100 101 102 103 104 105 107 108 109 111 112

SE (%) 100 100 100 100 100 99.92 100 99.65 100 100 100

? P (%) 100 100 100 100 99.95 99.96 100 99.88 100 100 100

DER (%) 0 0 0 0 0.0004 0.001 0 0.004 0 0 0

R–R time 0.8 0.97 0.82 0.86 0.83 0.72 0.86 1.11 0.73 0.86 0.71

HR 75 67.81 73.17 69.76 72.28 83.33 69.76 79.91 52.9 69.76 84.5

Signal 114 115 116 117 118 119 121 122 123 124 201

SE (%) 99.89 100 100 100 100 100 100 100 100 100 100

?P (%) 99.94 100 100 100 100 100 100 100 100 100 99.54

DER (%) 0.001 0 0 0 0 0 0 0 0 0 0.0005

R–R time 0.96 0.92 0.75 1.17 0.83 0.9 0.97 0.72 1.19 1.14 1.01

HR 62.5 65.21 80 51.28 72.28 66.66 61.85 83.33 50.42 52.63 59.4

Table 4 Total performance of the proposed design using full-length

ECG data

Signal SE (%) ?P (%) DER (%) R–R time HR

Average 99.98 99.96 0.03 0.91 67.99
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computational complexities are relatively high compared to

the proposed FFT algorithm. The proposed FFT algorithm

is simple, cheaper and requires less hardware when com-

pared to the existing techniques. Hence, the proposed

algorithm is better suited for R-peak detection.

4 Conclusion

In this paper, an attempt to remove the noise from an ECG

signal is addressed through the use of an efficient FFT

based denoising algorithm. The usage of adaptive peak

detection technique along with FFT improved the detection

Fig. 4 The output of the proposed algorithm. Note: The 115.mat input

ECG signal taken from the MITADB is represented in a, with the de-

noising process shown using 4 subplots. b The output of the FFT

based bandpass filter. c The result of the first pass in the R-peak

detection process with the stage 1 mark (horizontal navy-blue line)

and the detected peaks (orange asterisks). d The result of the final

stage with the stage 2-mark horizontal navy-blue line) and the

detected peaks (orange asterisks). (Color figure online)

99.98

99.31

99.6 99.55 99.59 99.58 99.6

99.96

99.71
99.51 99.49 99.56 99.55 99.56

Prorosed [25] [26] [27] [28] [29] [18]

Peformance comparison of proposed design with existing 

algorithms

Sensitivity Positive Predictivity

Fig. 5 Performance comparison of the proposed algorithm with the existing R-peak detection algorithms
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accuracy of the R-peak, which is used to calculate the heart

rate. The proposed algorithm achieves a sensitivity rate and

PP of 99.65% with a DER of 0.6% for short-length ECG

data. With the full-length ECG data, it achieves a sensi-

tivity rate of 99.98% and PP of 99.96% with a DER of

0.03%. The results of the comparison with other ECG de-

noising and detection algorithms shows an impressive

99.65% (sensitivity) and 99.65% (PP), confirming the

accuracy and reliability of the proposed algorithm. The use

of FFT to de-noise the ECG signal makes the proposed

algorithm simple and efficient, allowing this approach of

de-noising and detection to be made available to wearable

devices such as pacemakers and portable ECG monitoring

stations to record, collect and transmit data to a common

server and take immediate medical action.
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