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wirelength. Further, we show that the edge isoperimetric problem solves the wirelength
problem of regular graphs and, in particular, hypercubes into triangular snakes and
caterpillars.
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1. Introduction

An interconnection network is modeled by a simple graph whose vertices represent components of the network and
whose edges represent physical communication links. Conversely, any graph can also be considered as a topological
structure of some interconnection network. Topologically, graphs and interconnection networks are the same things. In
interconnection networks, the simulation of one architecture by another is important. The problem of simulating one
network by another is modeled as a graph embedding problem. There are several different reasons why such an embedding
is important [26,27,29,32].

Let G(V , E) and H(V , E) be finite graphs with n vertices. An embedding f of G into H is defined [3] as follows:

1. f is a bijective map from V (G) → V (H)

2. f is a one-to-one map from E(G) to {Pf (f (u), f (v)) : Pf (f (u), f (v)) is a path in H between f (u) and f (v) for (u, v) ∈
E(G)}.

The edge congestion of an embedding f of G into H is the maximum number of edges of the graph G that are embedded
on any single edge of H . Let EC f (G,H(e)) denote the number of edges (u, v) of G such that e is in the path Pf (f (u), f (v))
between f (u) and f (v) in H . In other words,

EC f (G,H(e)) =






(u, v) ∈ E(G) : e ∈ Pf (f (u), f (v))




where Pf (f (u), f (v)) denotes the path between f (u) and f (v) in H with respect to f .
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Fig. 1. Wiring diagram of a shuffle-exchange network G into a cube H withWLf (G,H) = 12. The edge congestions are marked on the edges of H .

If we think of G as representing the wiring diagram of an electronic circuit, with the vertices representing components
and the edges representingwires connecting them, then the edge congestion EC(G,H) is theminimum, over all embeddings
f : V (G) → V (H), of the maximum number of wires that cross any edge of H [4].

The wirelength [25] of an embedding f of G into H is given by

WLf (G,H) =
−

(u,v)∈E(G)

dH(f (u), f (v)) =
−

e∈E(H)

EC f (G,H(e))

where dH(f (u), f (v)) denotes the length of the path Pf (f (u), f (v)) in H . See Fig. 1. Then, thewirelength of G into H is defined
as

WL(G,H) = minWLf (G,H)

where the minimum is taken over all embeddings f of G into H . The wirelength problem [3,4,10,25,27,28] of a graph G into
H is to find an embedding of G into H that induces the minimum wirelengthWL(G,H).

The wirelength of a graph embedding arises from VLSI designs, data structures and data representations, networks for
parallel computer systems, biological models that deal with cloning and visual stimuli, parallel architecture, structural
engineering and so on [23,32].

Grid embedding plays an important role in computer architecture. VLSI layout problem [6], crossing number
problem [13], edge embedding problem [17] are all a part of grid embedding. Embedding problems have been considered
for binary trees into paths [23], binary trees into hypercubes [14], complete binary trees into hypercubes [1], incomplete
hypercubes in books [15], tori and grids into twisted cubes [22], meshes into locally twisted cubes [19], meshes into faulty
crossed cubes [34], meshes into crossed cubes [16], generalized ladders into hypercubes [8], grids into grids [30], binary
trees into grids [27], hypercubes into cycles [10,18], star graph into path [33], snarks into torus [31], generalized wheels into
arbitrary trees [28], and hypercubes into grids [25].

Even though there are numerous results and discussions on the wirelength problem, most of them deal with only
approximate results and the estimation of lower bounds [3,10]. The embeddings discussed in this paper produce exact
wirelength.

2. Edge isoperimetric problem

The following two versions of the edge isoperimetric problem of a graph G(V , E) have been considered in the
literature [5], which is NP-complete [17].

Problem 1. Find a subset of vertices of a given graph, such that the edge cut separating this subset from its complement
has minimal size among all subsets of the same cardinality. Mathematically, for a given m, if θG(m) = minA⊆V ,|A|=m |θG(A)|
where θG(A) = {(u, v) ∈ E : u ∈ A, v ∉ A}, then the problem is to find A ⊆ V such that |A| = m and θG(m) = |θG(A)|.

Problem 2. Find a subset of vertices of a given graph, such that the number of edges in the subgraph induced by this
subset is maximal among all induced subgraphs with the same number of vertices. Mathematically, for a given m, if
IG(m) = maxA⊆V ,|A|=m |IG(A)| where IG(A) = {(u, v) ∈ E : u, v ∈ A}, then the problem is to find A ⊆ V such that |A| = m

and IG(m) = |IG(A)|.

For a given m, where m = 1, 2, . . . , n, we consider the problem of finding a subset A of vertices of G such that |A| = m

and |θG(A)| = θG(m). Such subsets are called optimal. We say that optimal subsets are nested if there exists a total order O

on the set V such that for anym = 1, 2, . . . , n, the collection of the firstm vertices in this order is an optimal subset. In this
case, we call the order O an optimal order [5,20]. This implies thatWL(G, Pn) =

∑n

m=0 θG(m).
Further, if a subset of vertices is optimal with respect to Problem 1, then its complement is also an optimal set. But, it is

not true for Problem 2 in general. However for regular graphs, a subset of vertices S is optimal with respect to Problem 1 if
and only if S is optimal for Problem 2 [5]. In the literature, Problem 2 is defined as the maximum subgraph problem.

The hypercube is one of the most popular, versatile and efficient topological structures of interconnection networks. The
hypercube has many excellent features and thus becomes the first choice of topological structure of parallel processing and
computing systems. The machine based on hypercubes such as the Cosmic Cube from Caltech, the iPSC/2 from Intel and
Connection Machines have been implemented commercially [12].
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Fig. 2. (a) Grid P4 × P4 . (b) cylinder C4 × P4 .

Fig. 3. The lexicographic embedding lex of Q 4 into C4 × P4 .

Definition 1 ([32]). For r ≥ 1, let Q r denote the graph of r-dimensional hypercube. The vertex set of Q r is formed by the
collection of all r-dimensional binary strings. Two vertices x, y ∈ V (Q r) are adjacent if and only if the corresponding binary
strings differ exactly in one bit.

Equivalently, if n = 2r , then the vertices of Q r can also be identified with integers 0, 1, . . . , n − 1 so that if a pair of
vertices i and j are adjacent, then i − j = ±2p for some p ≥ 0.

Definition 2 ([7]). A set of m vertices of Q r is said to be a composite set if the number of edges of the subgraph induced by
thesem vertices is not less than the number of edges of a subgraph induced by any other set ofm vertices of Q r . A composite
hypercube of Q r is defined to be a subgraph of Q r , which is induced by some composite set of Q r .

Definition 3 ([21]). An incomplete hypercube on i vertices of Q r is the subcube induced by {0, 1, . . . , i − 1} and is denoted
by Li, 1 ≤ i ≤ 2r .

Theorem 1 ([7,11,20]). Let Q r be an r-dimensional hypercube. For 1 ≤ i ≤ 2r , Li is a composite set. �

Lemma 1 ([2,25]). Let Q r be an r-dimensional hypercube. Let m = 2t1 + 2t2 + · · · + 2tl such that r ≥ t1 > t2 > · · · > tl ≥ 0.
Then |E(Q r [Lm])| = [t1 · 2t1−1 + t2 · 2t2−1 + · · · + tl · 2

tl−1] + [2t2 + 2 · 2t3 + · · · + (l − 1)2tl ]. �

3. Wirelength of hypercubes in cylinders

Definition 4. The 2-dimensional grid is defined as Pd1 × Pd2 , where di ≥ 2 is an integer for each i = 1, 2. The cylinder
Cd1 × Pd2 , where d1, d2 ≥ 3 is a Pd1 × Pd2 grid with a wraparound edge in each column. See Fig. 2.

It is clear that the vertex set of Pd1 × Pd2 is V = {x1x2 : 0 ≤ xi ≤ di − 1, i = 1, 2} and two vertices x = x1x2 and y = y1y2
are linked by an edge, if |x1 − y1| + |x2 − y2| = 1.

Lexicographic embedding. The lexicographic embedding [3] ofQ r with the labeling 0 to 2r −1 into C4×P2r−2 is an assignment
of label to the vertex x1x2 of C4 × P2r−2 as

x1 + 4x2 if x1 = 0, 1,

3 + 4x2 if x1 = 2,

2 + 4x2 if x1 = 3,

where 0 ≤ x2 ≤ 2r−2 − 1. This lexicographic embedding is denoted by lex. See Fig. 3.
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Lemma 2. Let

Rlex
1 = {0, 1 × 4, 2 × 4, · · · (2r−2 − 1) × 4, 1, 1 × 4 + 1, 2 × 4 + 1, · · · (2r−2 − 1) × 4 + 1}.

Then Rlex
1 is a composite set in Q r .

Proof. Define ϕ : Rlex
1 → L2r−1 by ϕ(k × 4 + l) = l × 2r−2 + k. If the binary string of k × 4 + l is α1α2 · · · αr−2β1β2, then

the binary string of l× 2r−2 + k is β1β2α1α2 · · · αr−2. Thus the binary string of two numbers x and y differ in exactly one bit
⇔ the binary string of ϕ(x) and ϕ(y) differ in exactly one bit. Therefore (x, y) is an edge in Rlex

1 ⇔ (ϕ(x), ϕ(y)) is an edge in

L2r−1 . Hence Rlex
1 and L2r−1 are isomorphic. By Theorem 1, Rlex

1 is a composite set in Q r . �

Lemma 3. Let

Rlex
2 = {0, 1 × 4, 2 × 4, · · · (2r−2 − 1) × 4, 2, 1 × 4 + 2, 2 × 4 + 2, · · · (2r−2 − 1) × 4 + 2}.

Then Rlex
2 is a composite set in Q r .

Proof. Define ϕ : Rlex
2 → L2r−1 by ϕ(k × 4 + l × 2) = k × 2 + l. If the binary string of k × 4 + l × 2 is α1α2 · · · αr−2β1β2,

then the binary string of k × 2 + l is β2α1α2 · · · αr−2β1. Thus the binary string of two numbers x and y differ in exactly one
bit ⇔ the binary string of ϕ(x) and ϕ(y) differ in exactly one bit. Therefore (x, y) is an edge in Rlex

2 ⇔ (ϕ(x), ϕ(y)) is an edge

in L2r−1 . Hence Rlex
2 and L2r−1 are isomorphic. By Theorem 1, Rlex

2 is a composite set in Q r . �

As a consequence of Theorem 1, we have the following result.

Lemma 4. For j = 1, 2, . . . , 2r−2, C lex
j = {0, 1, . . . , 4j − 1} is a composite set in Q r . �

Notation: EC f (G,H(e)) will be represented by EC f (e). For any set S of edges of H, EC f (S) =
∑

e∈S EC f (e).

Lemma 5 (Congestion Lemma [25]). Let G be an r-regular graph and f be an embedding of G into H. Let S be an edge cut of H

such that the removal of edges of S leaves H into 2 components H1 and H2 and let G1 = f −1(H1) and G2 = f −1(H2). Also S

satisfies the following conditions:

(i) For every edge (a, b) ∈ Gi, i = 1, 2, Pf (f (a), f (b)) has no edges in S.
(ii) For every edge (a, b) in G with a ∈ G1 and b ∈ G2, Pf (f (a), f (b)) has exactly one edge in S.
(iii) G1 is an optimal set.

Then EC f (S) is minimum and EC f (S) = r |V (G1)| − 2 |E(G1)|. �

Lemma 6 (Partition Lemma [25]). Let f : G → H be an embedding. Let {S1, S2, . . . , Sp} be a partition of E(H) such that each Si
is an edge cut of H. Then

WLf (G,H) =

p
−

i=1

EC f (Si). �

Lemma 7 (k-partition Lemma [24]). Let f : G → H be an embedding. Let [kE(H)] denote a collection of edges of H with each

edge in H repeated exactly k times. Let {S1, S2, . . . , Sp} be a partition of [kE(H)] such that each Si is an edge cut of H. Then

WLf (G,H) =
1

k

p
−

i=1

EC f (Si). �

Theorem 2 ([20,25]).WL(Q r , P2r ) = 22r−1 − 2r−1. �

Lemma 8. The lexicographic embedding lex of hypercube Q r into cylinder C4×P2r−2 induces aminimumwirelengthWL(Q r , C4×
P2r−2).

Proof. Let Ai be an edge cut of the cylinder C4 × P2r−2 such that Ai disconnects C4 × P2r−2 into two components Xi and X ′
i

where V (Xi) is Rlex
i , i = 1, 2. Let Bj be an edge cut of the cylinder C4 × P2r−2 such that Bj disconnects C4 × P2r−2 into two

components Yj and Y ′
j where V (Yj) is C

lex
j , j = 1, 2, . . . , 2r−2 − 1. See Fig. 4. Let Gi and G′

i be the inverse images of Xi and X ′
i

under lex respectively. The edge cut Ai satisfies conditions (i) and (ii) of the Congestion Lemma. Further, by Lemmas 2 and 3,
the subgraph Gi induced by the vertices of Rlex

i is a composite set. Thus by the Congestion Lemma, EC lex(Ai) is minimum for
i = 1, 2. Similarly, let Gj and G′

j be the inverse images of Yj and Y ′
j under lex respectively. By Lemma 4, Gj is a composite set

induced by the vertices of C lex
j . Thus the edge cut Bj satisfies conditions (i)–(iii) of the Congestion Lemma. Therefore, EC lex(Bj)

is minimum for j = 1, 2, . . . , 2r−2 − 1. The Partition lemma implies thatWLlex(Q
r , C4 × P2r−2) is minimum. �
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Fig. 4. (a) Each Ai is an edge cut of C4 × P23 which disconnects C4 × P23 into two components Xi and X ′
i where V (Xi) is R

lex
i . (b) Each Bj is an edge cut of

C4 × P23 which disconnects C4 × P23 into two components Yj and Y ′
j where V (Yj) is C

lex
j .

a b

Fig. 5. Triangular snake (a) 1S7 . (b) 1S8 .

Theorem 3. The exact wirelength of Q r into C4 × P2r−2 is given by

WL(Q r , C4 × P2r−2) = 22r−3 + 2r−1.

Proof. By the symmetric property of the lexicographic embedding, the edges of Q r are stretched in the cylinder C4 × P2r−2

either vertically or horizontally. Therefore, each edge of the edge cut Ai has the same edge congestion. Also, each edge of the
edge cut Bj has the same edge congestion. Hence the sum of the edge congestions in each row (resp. column) is the same.

Since each column is isomorphic to Q 2, the wirelength of each column is 4. By Theorem 2, the wirelength of each row is
22r−5 − 2r−3. Therefore,WL(Q r , C4 × P2r−2) = 4(22r−5 − 2r−3) + 4(2r−2) = 22r−3 + 2r−1. �

It is claimed in Guu’s Ph.D. dissertation [18], that the Greycode numbering minimizes cyclic wirelength of hypercubes
and WL(Q r , C2r ) = 3 × 22r−3 − 2r−1. Using the proof techniques followed in this paper, we have the following conjecture.

Conjecture 1. WL(Q r , C2r1 × P2r2 ) = 2r1(22r2−1 − 2r2−1) + 2r2(3 × 22r1−3 − 2r1−1), where r1 + r2 = r, r1 ≤ r2. �

Conjecture 2. WL(Q r , C2r1 × C2r2 ) = 2r1(3 × 22r2−3 − 2r2−1) + 2r2(3 × 22r1−3 − 2r1−1), where r1 + r2 = r, r1 ≤ r2. �

4. Wirelength of hypercubes in triangular snakes

A triangular cactus is a connected graph all of whose blocks are triangles. A triangular snake is a triangular cactus whose
block-cutpoint-graph is a path.

Definition 5. A triangular snake 1Sn with n vertices is a graph obtained from a path v1, v2, . . . , v⌊n/2⌋+1 by joining vi and
vi+1 to a new vertex ui for i = 1, 2, . . . , ⌈n/2⌉ − 1. See Fig. 5.

Embedding algorithm A.

Input: An r-regular graph G with optimal order and a triangular snake 1Sn.

Algorithm: Label the vertices of G using optimal order and the vertices of 1Sn as follows: Label the vertex vi as 2i − 2 for
i = 1, 2, . . . , ⌊n/2⌋ , v⌊n/2⌋+1 as n − 1 and ui as 2i − 1 for i = 1, 2, . . . , ⌈n/2⌉ − 1.

Output: An embedding f of G into 1Sn given by f (x) = xwith minimum wirelength.

Proof of correctness. We consider two cases.

Case 1 (n odd): Let Si = {(2i − 2, 2i − 1), (2i − 2, 2i)}, S ′
i = {(2i − 1, 2i), (2i − 2, 2i)} and S ′′

i = {(2i − 2, 2i −
1), (2i − 1, 2i)}, 1 ≤ i ≤ ⌊n/2⌋. See Fig. 6. The edge set {Si, (2i − 1, 2i) : 1 ≤ i ≤ ⌊n/2⌋} constitutes all the edges of
1Sn exactly once. Similarly, the edge set



S ′
i , (2i − 2, 2i − 1) : 1 ≤ i ≤ ⌊n/2⌋



constitutes all the edges of1Sn exactly once.
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Fig. 6. The edge cuts of triangular snake 1Sn, n is odd.

Fig. 7. Caterpillar CAT(5, 1, 2, 1, 3).

Thus,


Si, S
′
i , S

′′
i : 1 ≤ i ≤ ⌊n/2⌋



is a partition of [2E(1Sn)]. For each i, E(1Sn) \ Si has two components Hi1 and Hi2, where

V (Hi1) = {0, 1, . . . , 2i − 2}. Let Gi1 = f −1(Hi1) and Gi2 = f −1(Hi2). Since Gi1 is an optimal set, each Si satisfies conditions
(i)–(iii) of the Congestion Lemma. Therefore EC f (Si) is minimum. Similarly EC f (S

′
i ) is minimum. For each i, E(1Sn) \ S ′′

i has

two components Hi1 and Hi2, where V (Hi1) = {2i− 1}. Let Gi1 = f −1(Hi1) and Gi2 = f −1(Hi2). Since Gi1 is a vertex of G, each
S ′′
i satisfies conditions (i)–(iii) of the Congestion Lemma. Therefore EC f (S

′′
i ) is minimum. The 2-partition Lemma implies that

the wirelength is minimum.

Case 2 (n even): Let Si = {(2i−2, 2i−1), (2i−2, 2i)}, S ′
i = {(2i−1, 2i), (2i−2, 2i)}, S ′′

i = {(2i−2, 2i−1), (2i−1, 2i)}, 1 ≤
i ≤ ⌈n/2⌉ − 1 and S⌈n/2⌉ = S ′

⌈n/2⌉ = {(n − 2, n − 1)}. The edge set {Si, S⌈n/2⌉, (2i − 1, 2i) : 1 ≤ i ≤ ⌈n/2⌉ − 1} constitutes

all the edges of 1Sn exactly once. Similarly, the edge set {S ′
i , S

′
⌈n/2⌉, (2i − 2, 2i − 1) : 1 ≤ i ≤ ⌈n/2⌉ − 1} constitutes

all the edges of 1Sn exactly once. Thus {Si, S
′
i , S

′′
i , S⌈n/2⌉, S

′
⌈n/2⌉ : 1 ≤ i ≤ ⌈n/2⌉ − 1} is a partition of [2E(1Sn)]. For each

i, 1 ≤ i ≤ ⌈n/2⌉−1, E(1Sn)\Si has two componentsHi1 andHi2, where V (Hi1) = {0, 1, . . . , 2i−2}. Let Gi1 = f −1(Hi1) and
Gi2 = f −1(Hi2). Since Gi1 is an optimal set, each Si satisfies conditions (i)–(iii) of the Congestion Lemma. Therefore EC f (Si) is
minimum. Similarly EC f (S

′
i ) is minimum. For each i, 1 ≤ i ≤ ⌈n/2⌉−1, E(1Sn)\ S ′′

i has two components Hi1 and Hi2, where

V (Hi1) = {2i− 1}. Let Gi1 = f −1(Hi1) and Gi2 = f −1(Hi2). Since Gi1 is a vertex of G, each S ′′
i satisfies conditions (i)–(iii) of the

Congestion Lemma. Therefore EC f (S
′′
i ) is minimum. Similarly EC f (S⌈n/2⌉) = EC f (S

′
⌈n/2⌉) is minimum. The 2-partition Lemma

implies that the wirelength is minimum. �

Theorem 4. The exact wirelength of an r-regular graph G with optimal order into a triangular snake 1Sn is given by

WL(G, 1Sn) =
1

2
{WL(G, Pn) + r ⌊n/2⌋} .

Proof. Following the notation used in Embedding Algorithm A, we divide the proof into two cases.

Case 1 (n odd): By edge isoperimetric problem [20],
∑⌊n/2⌋

i=1 [EC f (Si) + EC f (S
′
i )] = WL(G, Pn) and by Lemma 5, EC f (S

′′
i ) = r .

ThereforeWL(G, 1Sn) = 1
2
{WL(G, Pn) + r ⌊n/2⌋}.

Case 2 (n even): By edge isoperimetric problem [20],
∑⌈n/2⌉−1

i=1 [EC f (Si)+EC f (S
′
i )]+EC f (S⌈n/2⌉) = WL(G, Pn) and by Lemma 5,

EC f (S
′′
i ) = EC f (S

′
⌈n/2⌉) = r . ThereforeWL(G, 1Sn) = 1

2
{WL(G, Pn) + r ⌈n/2⌉}. �

As a consequence of Theorems 2 and 4, we have the following result.

Theorem 5. The exact wirelength of Q r into 1S2r is given by

WL(Q r , 1S2r ) = 22r−2 + (r − 1)2r−2. �

5. Wirelength of hypercubes in caterpillars

A tree is called a caterpillar if the deletion of vertices of degree one leaves a path. This path is called a spine.

Definition 6. Let m ≥ 1, and ki (i = 1, 2, . . . ,m) be non-negative integers such that m + k1 + · · · + km ≥ 3. A tree
which is obtained from a path v1, v2, . . . , vm by joining vi to new vertices vij(j = 1, 2, . . . , ki) is called a caterpillar
CAT(k1, k2, . . . , km). It has m + k1 + · · · + km vertices. See Fig. 7.
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Embedding Algorithm B.

Input: An r-regular graph G with optimal order and a caterpillar CAT(k1, k2, . . . , km).

Algorithm: Label the vertices of G using optimal order and the vertices of CAT(k1, k2, . . . , km) as follows: Label the vertex vi

as k1+k2+· · ·+ki−1+(i−1) for i = 1, 2, . . . ,m and vij as k1+k2+· · ·+ki−1+(i−1)+j for i = 1, 2, . . . ,m, j = 1, 2, . . . , ki,
where k0 = 0.

Output: An embedding f of G into CAT(k1, k2, . . . , km) given by f (x) = xwith minimum wirelength.

Proof of correctness. Let Si = {(k1 + k2 + · · · + ki−1 + i − 1, k1 + k2 + · · · + ki + i)}, 1 ≤ i ≤ m − 1, where k0 = 0.

Let S
j

i = {(k1 + k2 + · · · + ki−1 + i − 1, k1 + k2 + · · · + ki−1 + i − 1 + j)}, 1 ≤ i ≤ m, j = 1, 2, . . . , ki, where k0 = 0.

Thus, {Si : 1 ≤ i ≤ m − 1} ∪ {S
j

i : 1 ≤ i ≤ m, j = 1, 2, . . . , ki} is a partition of E(CAT(k1, k2, . . . , km)). For each i, 1 ≤ i ≤
m−1, E(CAT(k1, k2, . . . , km))\Si has two componentsHi1 andHi2, where V (Hi1) = {0, 1, . . . , k1 +k2 +· · ·+ki + i−1}. Let
Gi1 = f −1(Hi1) and Gi2 = f −1(Hi2). Since Gi1 is an optimal set, each Si satisfies conditions (i)–(iii) of the Congestion Lemma.

Therefore, EC f (Si) is minimum. For each i, j, 1 ≤ i ≤ m, 1 ≤ j ≤ ki, E(CAT(k1, k2, . . . , km)) \ S
j

i has two components H
j

i1

and H
j

i2, where V (H
j

i1) = {k1 + k2 + · · · + ki−1 + i − 1 + j}, k0 = 0. Let G
j

i1 = f −1(H
j

i1) and G
j

i2 = f −1(H
j

i2). Since G
j

i1

is a vertex of G, each S
j

i satisfies conditions (i)–(iii) of the Congestion Lemma. Therefore, EC f (S
j

i ) is minimum. The Partition
Lemma implies that the wirelength is minimum. �

Theorem 6. The exact wirelength of an r-regular graph G with optimal order into CAT(k1, k2, . . . , km) is given by

WL(G, CAT(k1, k2, . . . , km)) =

m−1
−

i=1

θG(k1 + k2 + · · · + ki + i) + r(k1 + k2 + · · · + km).

Proof. Following the notation used in Embedding Algorithm B, we have EC f (Si) = θG(k1 + k2 +· · ·+ ki + i), 1 ≤ i ≤ m− 1

and EC f (S
j

i ) = r, 1 ≤ i ≤ m, 1 ≤ j ≤ ki. Therefore,WL(G, CAT(k1, k2, . . . , km)) =
∑m−1

i=1 θG(k1 + k2 +· · ·+ ki + i)+ r(k1 +
k2 + · · · + km). �

As a consequence of Lemma 1 and Theorem 6, we have the following result.

Theorem 7. The exact wirelength of Q r into CAT(k1, k2, . . . , km), n = 2r = m + k1 + · · · + km is given by

WL(Q r , CAT(k1, k2, . . . , km)) =

m−1
−

i=1



r(k1 + · · · + ki + i) − 2


E(Q r [Lk1+···+ki+i])






+ r(k1 + k2 + · · · + km). �

6. Conclusion

In this paper, we compute the exact wirelength of hypercubes into cylinders. We also prove that the edge isoperimetric
problem solves the wirelength problem of regular graphs and, in particular, hypercubes into triangular snakes and
caterpillars. Further, this solves the wirelength problem of powers of the Petersen graph [5] and discrete tori [9] into
triangular snakes and caterpillars.
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