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Abstract 

Now-a-days agile software development process has become famous in industries and substituting the traditional methods of 

software development. However, an accurate estimation of effort in this paradigm still remains a dispute in industries. Hence, the 

industry must be able to estimate the effort necessary for software development using agile methodology efficiently. For this, 

different techniques like expert opinion, analogy, disaggregation etc. are adopted by researchers and practitioners. But no proper 

mathematical model exists for this. The existing techniques are ad-hoc and are thus prone to be incorrect. One popular approach 

of calculating effort of agile projects mathematically is the Story Point Approach (SPA). In this study, an effort has been made to 

enhance the prediction accuracy of agile software effort estimation process using SPA. For doing this, different types of neural 

networks (General Regression Neural Network (GRNN), Probabilistic Neural Network (PNN), Group Method of Data Handling 

(GMDH) Polynomial Neural Network and Cascade-Correlation Neural Network) are used. Finally performance of the models 

generated using various neural networks are compared and analyzed. 
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1. Introduction 

Agile methods are used while developing software to enable organizations respond to volatility. They provide 

chances to evaluate the direction all through the software development life cycle (Fowler1). By emphasizing on the 

repetition of work cycles along with product the teams yield an additive and iterative development. Instead of 

promising to market an assemble software that hasn't been developed, agile authorizes teams to repetitively re-plan 

their release to optimize its value throughout development (Schmietendorf3), in the marketplace making them 

competitor (Cohen5, PopliISCON23). 

Since predictability is the primary goal of project management, we need to be able to estimate the size and 

complexity of the products to be built in order to determine what to do next (SatapathyFCPASPRINGER20136, 

SatapathyACMSIGSEN12). For this, requirements need to be collected. Requirements in agile development are 

jotted down in cards and are called user stories. These stories are estimated using story points. The team defines the 

relationship between story point and effort. Usually 1 story point is equal to 1 ideal working day. Total no. of story 

points that a team can convey in a sprint (an iteration in agile software development) is called as “team velocity” or 

story points per sprint. In the SPA, aggregate number of story points alongside velocity of the project are considered 

to determine agile software development effort. Now for obtaining better prediction accuracy, four different neural 

network techniques are used in this study. The results obtained by applying these networks are empirically validated 

and compared to assess their performance. 

2. Related Work 

Keaveney et al. (Keaveney7) investigated the pertinence of conventional effort estimation procedures towards 

agile software development approaches. Coelho et al. (Coelho8) described the steps followed in story point-based 

method for effort estimation of agile software and highlighted the areas which need to be looked into further 

research. Andreas Schmietendorf et al. (Schmietendorf3) provided an investigation about estimation possibilities, 

especially for the extreme programming paradigm. Ziauddin et al. (Zia9) developed an effort estimation model for 

agile software projects. The model was fine-tuned with the help of the empirical data acquired from twenty one 

software projects. The test results demonstrate that model has great estimation exactness regarding MMRE and 

PRED(n). Satapathy et al. used SVR-Kernel methods for optimizing the effort calculated using story point approach 

in SatapathySPASEKE20142. Out of the four kernels used, the RBF-Kernel is shown to have best accuracy. Popli et 

al. (PopliICROIT14) proposed a model for effort and cost estimation in agile software development by using 

regression analysis. This framework is suitable to be used for project planning, execution and monitoring 

efficaciously. Hussain et al. (Hussain15) made an attempt to propose an approach which helps in removing problems 

like formalized user requirements and thus apply function points for agile software effort estimation. Hamouda et al. 

(Hamouda16) introduced a process and methodology that guarantees relativity in software sizing while using agile 

story points.  

Parag C. Pendharkar (PendharkarElSVJ201024) also proposed a PNN approach for predicting a software 

development parameter and a probability measure which denotes the chances of actual value of the parameter being 

less than its estimated value at the same time. This PNN approach was then compared with Chi-squared Automatic 

Interaction Detection (CHAID). Results indicate that PNN performs similar to the CHAID, but provides superior 

probability estimates. P. Reddy et al. (Reddy21) proposed software effort estimation models based on Radial Basis 

Function Neural Network (RBFN) and GRNN. Results proved that RBFN performs better than GRNN. P. S. Rao et 

al. (Rao22) proposes a GRNN to utilize improved software effort estimation for COCOMO dataset. The GRNN 

model is then compared with various other techniques, i.e., M5, Linear regression, SMO Poly-kernel and RBF 

kernel. Fahlman et al. (fahlman19) first proposed the cascade-correlation learning architecture for artificial neural 

networks. They are self-organizing networks, starting only with input and output neurons and adding hidden-layer 

neurons during the training process. The GMDH neural networks are illustrated by Farlow et al. in (farlow20) but 

they were first developed in the Combined Control Systems (CCS) group of the Institute of Cybernetics in Kyiv 

(Ukraina) in 1968. They are also self-organizing, starting only with input neurons and adding hidden units during 

training based on some criteria. 
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3. Evaluation criteria 

The performance of the various models is accessed by employing criteria outlined below (Menzies13): 

 

 The Mean Square Error (MSE) is calculated as: 

 

  (1) 

 

Where AEi = Actual Effort of ith test data,  PEi = Predicted Effort of ith test data and TD = Total number 

of data in the test set.  

 

 The squared correlation coefficient (R2), otherwise called as the coefficient of determination is 

calculated as: 

 

  (2) 

 

Where AE = Mean of Actual Effort Value. 

 

 The Mean Magnitude of Relative Error (MMRE) is calculated by summing MRE values over N 

observations: 

 

   (3) 
 

 

 The Prediction Accuracy (PRED) is calculated as: 

 

  
(4) 

4. Proposed work 

The proposed approach is implemented using the twenty one project data set developed by six software houses 

(Zia9). The data set is three-dimensional. The first dimension indicates the number story points required to complete 

the project, the second represents the velocity of the project, and the third represents the actual effort required to 

complete that project. This data is used by (Zia9) for predicting effort using regression. In this study, in order to 

enhance the effort estimation accuracy, neural networks are employed. The block diagram, demonstrated in figure 1, 

shows the proposed steps applied to predict effort with the help of various neural network models. 

 The steps taken to determine the effort of a software product are described below: 

 

 Collection of Total Number of Story Points, Project Velocity and Actual Effort: The total number of story 
points, project velocity values and actual effort are collected from (Zia9).  

 Normalization of Data Set: This step deals with generating the normalized values of the total number of 
story points and project velocity within the range [0,1]. Let Y be the complete data set and y is an element 
of the data set, then the normalized value of y can be calculated as: 
 

  (5) 

 
where y' = Normalized value of y in the range [0,1],  min(Y) = minimim value of Y and max(Y) = 
maximum value of Y. When max(Y) = min(Y), y' = 0.5. 
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 Partitioning the Data Set: The complete data set is partitioned into training set and test set. 

 Predict the effort value: The GRNN and PNN algorithms are run to get effort values. No network building 
is involved as everything is decided before making the effort prediction. In case of self-organizing 
networks, the values of learning parameters are assigned and the algorithm is run until an optimum network 
configuration is obtained. 

 Performance Evaluation: In this step, the models are accessed in order to evaluate their performance using 
MSE, R2, MMRE, Prediction Accuracy (PRED) values obtained using test samples. The model giving 
lower estimations of MSE, R2, MMRE and higher estimations of PRED is considered as best model. 
 
After the neural network implementation is completely done, the results obtained are compared to see 
which network performs better. A comparison with the results of models existing in literature is also done 
to see if the proposed work improved the prediction accuracy. 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1.  Proposed Steps to Apply Neural Network Models for Agile Software Effort Estimation 

5. Experimental details 

For implementing the proposed approaches, the data set given in (Zia9) is used. The detailed description about the 

data set has as of now been given in the proposed approach section. The inputs to the neural network models are 

total number of story points and project final velocity and the output is the effort i.e., the completion time. All the 

models are tested and validated using leave-one-out validation for achieving better accuracy. 

 

5.1 Model design using general regression neural networks 

 

 General Regression Neural Networks (GRNN) were first proposed by Donald F. Specht (Specht199117) in 

1990. It consists of four layers. Input layer comprises of one neuron for every input variable. The yields of this layer 

are sustained to all the hidden layer neurons. The hidden layer has the same number of neurons as there are lines in 

the training set. Hidden neurons find the Euclidean distance of the input from the center of the neuron and afterward 

apply the RBF kernel function. Then, the result obtained from this is given to the pattern layer, which has two 

neurons, namely the numerator summation unit and the denominator summation unit. Results obtained from all the 

hidden layer neurons are summed up and given to the denominator summation unit. For the numerator summation 

unit, the yields from hidden layer neurons are multiplied by the actual effort and after that summed up. The last layer 

(Decision layer) divides the estimation of the numerator summation unit by the estimation of the denominator 

summation unit. This value is the estimated effort value for that input. For improving the accuracy, unnecessary 

Normalization of data set 

Partitioning the data set 

Predict the Effort Value  

Performance Evaluation 

Collection of total number of Story Points, 
Project Velocity and Actual Effort 
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neurons are removed from the network and then the network is retrained (called model optimization and 

simplification). Three different criteria can be used for carrying out this i.e., Minimize error, Minimize number of 

neurons, Fixed number of neurons. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.  Effort estimation model using GRNN 

 

Figure 2 shows the deviation of predicted effort value from actual effort for General Regression Neural Networks. 
Nearer the points to the actual = predicted line in the figure, better is the prediction accuracy. In this study, the 
following values are used: 

 Type of Kernel function: Reciprocal 

 Minimum Sigma: 0.001 

 Maximum Sigma: 0.5 

 Model optimization and simplification Criteria: Minimize the error 
 

The minimum and maximum values of sigma were chosen by taking the suitable combinations of values to generate 
best possible result. The values which gave the best results were chosen for testing. The network is trained using 
different sigma values (from 0.001 to 0.5) and the value of sigma which gives the best accuracy and least error is 
chosen as the final sigma value. 
 

5.2 Model design using probabilistic neural networks 

 

Probabilistic networks are mostly used for classification (Specht199018). For regression analysis i.e. employing PNN 

for prediction, first of all the number of classes in the dataset need to be found out. This can be done using any 

clustering mechanism. In this paper, k-means clustering technique is used. After finding out the number of classes 

and the inputs included under each class, some input vectors from each class are taken as example vectors and the 

dot product of example vectors and input vectors is found out. Then after applying the function mentioned above in 

section 3, the class node's activations were found out. The class node with highest activation was considered to be 

the predicted class for the current input and the numerical value (activation value) was used for performance 

evaluation. Figure 3 shows the deviation of predicted effort value from actual effort for PNN. The points nearer to 

the ideal prediction line shows more accurate prediction of effort. The lower prediction accuracy is reflected by the 

points scattered away from actual = predicted line.  
 
It employs a supervised learning algorithm, which is bit different from back propagation algorithm. It has a feed 
forward architecture. There are no weights in its hidden layer. An example vector is associated with each hidden 
node, which acts as the weights to that hidden node. A PNN is comprised of an input layer, which is basically the 
input vector. This input layer is entirely connected with the hidden layer. Finally, an output layer depicts each of the 
conceivable classes for which the input data may be grouped. The hidden layer is not so much associated with this 
output layer. The example nodes for a specific class are joined with just that class's output node. For every class 
node, the sum of example vector (E) activations is figured out. Each hidden node's activation is the product of E and 
the input vector (F). 
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  (6) 

 
The class output activation is found out as: 
 

  (7) 

 
where N is the number of example vectors for this class, Hi is the hidden node activation and gamma is the 
smoothing parameter. The class, for which the input layer fits is dead set through a winner-takes-all methodology 
(i.e., the winning class is the output class node having the maximum class node activation). 

 

 

 
 
 

 
 
 

 

 
 
 

 
 

Fig. 3.  Effort estimation model using PNN 

 

In this study, the following values are used: 

 Type of Kernel function: Reciprocal 

 Minimum Sigma: 0.001 

 Maximum Sigma: 0.5 

 Model optimization and simplification Criteria: Minimize the error. 
 

The minimum and maximum values of sigma were chosen by taking the suitable combinations of values to generate 
best possible result. The values which gave the best results were chosen for testing. The network is trained using 
different sigma values (from 0.001 to 0.5) and the value of sigma which gives the best accuracy and least error is 
chosen as the final sigma value. 
 

5.3 Model design using GMDH polynomial neural networks 

 

GMDH networks date back to 1968 (first originated by Prof Alexey G. Ivakhnenko in Ivakhnenko11). They are 

self-organizing networks i.e., the network's connections are not defined initially; instead, they are determined when 

the network is trained, with the objective of optimizing the network. Maximal accuracy is obtained by restricting the 

number of layers to be added to the network. This also helps prevent over-fitting. Initially a GMDH network starts 

with input layer only. This layer contains one unit for each input variable. The successive layer neurons derive their 

inputs from any two units of the previous layer. The final layer i.e., the output layer derives two of it's inputs from 

the previous layer and gives rise to one value (output of the network). Neurons in any layer can take input(s) from 

any of the previous layers. Two variable-quadratic polynomials are used as transfer functions in the neurons. These 

polynomials have the form:  

 

 (8) 

 

The training data is partitioned into two parts: training data and control data. Latter is used to halt the training 

process as soon as over-fitting starts. The algorithm adopted in this network works as follows:  The transfer 

functions are used for defining all possible functions by combining inputs from the previous layer. Then, least 
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squares regression is applied for calculating ideal parameters for the transfer function in every neuron of the 

candidate list so that it best fits the training data. Then for every neuron, the MSE value is ascertained by employing 

it to the control data. Finally, the candidate neurons are arranged in ascending order of error and neurons with least 

error are picked up to be used in the next layer. In this work, following values are used for network parameters:  

 Maximum no. of layers = 5 

 Number of neurons per layer = 10 (fixed) 

 Control data amount = 20\% of training data 

 Network layer connections: Connections from the former layer as well as the input layer are allowed. 

 

The parameters are self-explanatory. Values for parameters in this as well as the next model are fixed by taking 

the suitable combinations of values to generate best possible result,  i.e. values which yield best results are chosen 

for testing. The following functions are used: 

 Linear:  

 

 (9) 

 

 Quadratic: 

 

 (10) 

 
Figure 4 shows the deviation of predicted effort value from actual effort for GMDH polynomial neural network. 
Nearer the points to the actual = predicted line in the figure, better is the prediction accuracy. 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.  Effort estimation model using GMDH Polynomial NN 
 

5.4 Model design using Cascade Correlation neural networks 

 

Cascade correlation neural networks (fahlman19) are also “self-organizing”. These networks initially have only an 
input layer and an output layer. While training the network, neurons are chosen from a list of neurons and included 

in the hidden layer. The new neurons get their inputs from all the existing neurons of the network, hence it is called 

cascade. The training algorithm attempts to increase the amount of correlation between the newly added and the 

network's residual error (which has to be minimized). In this study, Gaussian kernel function is applied. The 

following network training parameters are used: 

 Minimum neurons = 1 

 Maximum neurons = 8 

 Candidate Neurons = 8 

 Maximum steps without improvement = 10 

 Over-fitting  protection control = 3-fold cross validation 

 

Candidate neurons are the list of neurons from which hidden units are successively chosen and added to the 

network. Minimum number of neurons show how many hidden neurons must be added to the network. Maximum 
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number of neurons shows the maximum number of hidden neurons that can be added to the network. It is same as 

the number of candidate neurons, we can add one or more (even all) the candidate neurons to the network. The 

training process is continued till the results don't improve for a certain number of times, denoted by the maximum 

steps without improvement parameter. Cascade-correlation networks have this disadvantage of over-fitting the 

training data. Due to this, the accuracy values are quite high in case of training data, but low in testing data. So, for 

preventing this, the model is validated as it grows (3-fold cross validation is used). As stated earlier, the values 

which yield the best results are taken for testing. 

 

Figure 5 shows the deviation of predicted effort value from actual effort for cascade correlation neural network. 

Nearer the points to the actual = predicted line in the figure, better is the prediction accuracy. 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5.  Effort estimation model using Cascade Correlation NN 

6. Comparison 

On comparing the results, it is observed that cascade correlation network performs better (gives better values of 

MSE, R2, MMRE and PRED) than other networks. Cascade correlation network is the best among the proposed 

models and GRNN is the worst. 

 

Table. 1. Comparison of our results with Existing work 

Name of Technique  Cascade Correlation NN General Regression NN Regression\cite{Zia} 

PRED (%) 94.76 85.92 57.14 

 

Table. 2. Comparison of Results obtained using three different types of neural networks 

Name of metric MSE R2 MMRE PRED (%) 

General Regression Neural Networks 0.0244 0.7125 0.3581 85.9182 

Probabilistic Neural Networks 0.0276 0.6614 1.5776 87.6561 

GMDH Polynomial Neural Network 0.0317 0.6259 0.1563 89.6689 

Cascade Correlation Neural Network 0.0059 0.9303 0.1486 94.7649 

 

Table 2 demonstrates the comparison of MSE, R$^2$, MMRE and PRED values for four different types of neural 

networks. Probabilistic neural network solves the optimization problem in an off line manner, hence it has low 

accuracy of prediction. GRNN also performs the prediction in an off line manner i.e. there is no real training of the 

network. The network parameters don't get optimal values, so the accuracy of prediction is lower than others. The 

self-organizing networks perform well because proper training is done for obtaining optimal network configuration 

with the objective of achieving maximum accuracy. Thus, the network built at the end of training best fits the data 

set and yields high values of accuracy when used on testing. Among the two self-organizing networks, Cascade-

Correlation network performs better. The learning process in Cascade-Correlation network is quick. The size and 

topology of the network are decided by the network itself. Moreover, error signals need not be back-propagated 
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through the network connections and the training is quite robust. The main advantage of GMDH networks is that 

they find weights using least squares fitting, which guarantees locally good weights. Back-propagation may be 

applied for obtaining globally-optimal weights. GMDH networks have this demerit of searching a polynomial 

network structure by only exploiting small neighborhoods. Alternative nodes are discarded when growing the 

network and not considered later in the learning process, which leaves chance for sub-optimal network structure, and 

hence the lesser prediction accuracy. But this particular problem doesn't exist in cascade-correlation networks. 

7. Threats to validity 

There are some areas which still remain un-addressed. This section aims to highlight those. 

 

 All the effort estimation models proposed in this work have been developed by assuming that the initial 

project velocity value is given. This value is taken from the past projects developed by the same team in 

similar working conditions. But when a team is new, the company won't be having any past record for it. In 

that case, no clear assignment to initial project velocity can be done. However, the average velocity value 

of all the teams working in similar conditions can be taken and with nearly same size and assign it to initial 

project velocity and then proceed to use different neural network models to estimate the effort. 

 

 In this study, data from Zia9 is used for implementation. It has records of twenty-one projects developed by 

six software houses. One shortcoming is there is no information about the type of projects taken for study. 

For our results to be valid for the general software engineering paradigm, the work should be based on data 

which covers all categories of software developed by agile methods. If it contains data of only one type of 

software, then the results of this work also apply to that particular type of software. Due to unavailability of 

details, this problem arises. However, since the data is about software developed by companies, it can be 

counted among the various effort estimation models developed so far. 

 

 Due to small size of dataset, the testing data is very small in size. The data set size is 21 * 3, hence not 

much data is left for testing. Only six data points are used for testing. Thus optimal accuracy of the model's 

performance cannot be guaranteed. 

8. Conclusion 

The story point approach is one of the methods that can be used for developing mathematical models for agile 

software effort estimation. In this study, first the total number of story points and velocity of the project are 

considered in order to estimate the effort required during development of agile software. The resultant values are 

then optimized using various neural networks such as GRNN, PNN, GMDH networks and cascade networks. 

Toward the end of the study, the results obtained from various neural network models are empirically validated and 

compared in order to measure their performance. It is seen that cascade network outperformed other networks. The 

computations for above methodologies were executed, and results were obtained using MATLAB. Extension to this 

procedure might be made by implementing other machine learning techniques such as Stochastic Gradient Boosting 

(SGB), Random Forest etc. along with SPA. 
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