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This paper provides a comprehensive review of various error compensation techniques for fixed-
width multiplier design along with its applications. In this paper, we have studied different error
compensation circuits and their complexities in the fixed-width multipliers. Further, we present
the experimental results of error metrics, including normalized maximum absolute error (€., ),
normalized mean error (&pe,,) and normalized mean-square error (g,.) to evaluate the accu-
racy of fixed-width multipliers. This survey is intended to serve as a suitable guideline and
reference for future work in fixed-width multiplier design and its related research.
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1. Introduction

Multimedia applications are widely used in many embedded and portable devices
such as latest smart phones, tablets, MP3 players, digital camera and personal
digital assistant (PDA), which require low power consumption within high perfor-
mance constraints. It is expected that in the coming decade, the amount of infor-
mation to be processed through multimedia and communication systems will grow
enormously which demands power efficient VLSI architectures. The practical im-
plementation of algorithms used in many of the communication and digital signal
processing (DSP) systems, such as filtering," convolution, fast Fourier transform
(FFT), discrete cosine transform (DCT),” and hardware implementation of math-
ematical functions® ® maintain fixed-width operations to avoid the excessive growth
in the word length.

*This paper was recommended by Regional Editor Tongquan Wei.

1730003-1



J CIRCUIT SYST COMP Downloaded from www.worldscientific.com
by MONASH UNIVERSITY on 09/29/16. For personal use only

S. Balamurugan € P. S. Mallick

Parallel multipliers™ are fundamental building blocks in most of the multimedia
and DSP applications and are repetitive, but they require large computational ca-
pability to calculate. Many of the multimedia applications maintain the fixed-width
operations and in most of the cases these results can be interpreted by human
assumptions even if they not perfect. This helps to eliminate the need of true product
in the multiplier output. The promising solution for this kind of application is fixed-
width multipliers, which receives an n-bit multiplier operand as well as an n-bit
multiplicand operand and computes n-bits output as a product.

The most obvious choice to design a fixed-width multiplier is by using full-width
multiplier (n x n multiplier with 2n bits output), whose output is rounded to n bits.
This method is also known as post-truncation (PT) method. This method gives best
results in terms of errors and it is a baseline for evaluation of fixed-width multipliers.
On the other hand, fixed-width multiplier can be achieved by directly eliminating the
partial products of the n least significant column but huge truncation error is in-
troduced. This method is also known as direct-truncation (DT) method. Fixed-width
multipliers rely on the optimal trade-off of computational accuracy for power and/or
circuit complexity/chip-area.

In this survey, we have followed a practical approach to study various error
compensation circuits for fixed-width multipliers with low hardware cost. The major
two techniques used to reduce the error in the fixed-width multipliers are constant
correction techniques (CCM) and variable correction techniques (VCM). These
techniques introduce suitable compensation circuits, and estimated carries are added
to the carry inputs of the retained adder cells that partly compensates the dropped
terms, which significantly reduce the truncation error. In this review, an attempt has
also been made to compare array based fixed-width multipliers experimentally on the
basis of error metrics, including normalized maximum absolute error (,,,,), nor-
malized mean error (€,,,,) and normalized mean-square error (£,,,) to evaluate the
accuracy of fixed-width multipliers. This review shows distinct advantages, com-
plexities and hardware implementation of various fixed-width multipliers available
in the literature.

2. Full-Width Multiplier

A full-width parallel multiplier receives two n-bit binary numbers and computes the
2n bits output as a weighted sum of partial products. Two different parallel multi-
plier architectures have been proposed in the Literature, namely tree based multi-
pliers,'®!! and array based multipliers.'?'* These exploit a structure composed of full
adder and half adder which reduces the entire matrix of the partial products to two
rows, which will be input to the final adder or vector merging adder (VMA). Array
based multiplier is a very common type of parallel multiplier due to its regular
structure’® and it is being a subject of investigation in this paper.
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An n X n unsigned Braun array multiplier which computes a 2n-bit product P as

follows:
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Fig. 1. Subdivision of the matrix of partial products, for unsigned multiplier, n = 8 with h = 0.

The partial product matrix is subdivided into several regions as shown in Fig. 1.
The most significant part (MSP) includes the leftmost n columns of the partial
product matrix. The input correction (IC) vector is the (n + h + 1)th column, where
h is the trade-off parameter between accuracy and area complexity, that varies from
0 to n. When h increases, the error introduced by the multiplier decreases while the
power consumption, delay, and area occupation increase. The remaining columns
constitute the least significant part (LSP). This can be expressed as

Prun_wiash = (Smsp + Sic + Sisp) (1)
where
Smsp = ((ap—1bn_1) X 2272) + ((a,_1by_s +a,_ob, 1) x 22279)
+--+ ((anflblfh + a“n72beh +--+ alfhbnfl) X 2211_11_11) 9 (2)

n—1

SIC = Z (anflfibifh) X 2n7h71 ) (3)

i=h
Stsp = ((ay—o-nbg +ay 3 by + -+~ +agb,_5y) x 227271
+ ((An—g—nbo + an_g—p by + - +aghy 3 p,) x 20737h)
+ -+ ((abg +agby) x 21) + ((agho) x 2°). (4)
An n x n unsigned Braun array multiplier can be easily extended to the Baugh—
Wooley array multiplier. Considering two n-bit signed numbers that perform two’s
complement multiplication,'! the subdivision of partial products matrix are shown in
Fig. 2.
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Fig. 2. Subdivision of the matrix of partial products, for Baugh—-Wooley array multiplier, n = 8 with
h=0.

Recently, Booth multiplier'® design is popular due to the high speed computation.
The Booth multiplier is widely used in ASIC applications, where area and time is
most important. In Booth multiplier, the numbers of partial products are halved by
using modified Booth encoder (MBE). Consider the multiplication of two 2’s com-
plement n-bit number, the subdivision of partial product matrix is shown in Fig. 3,
where S; jrepresents the jth bit product of the ith row.
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Fig. 3. Subdivision of the matrix of partial products, for modified Booth multiplier, n = 8 with A = 0.
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2.1. Full-rounded (or) post-truncated multiplier

Conceptually, the full-rounded or post-truncated multiplier can be obtained by
forming all the partial products as in full-width multiplier, then a rounding constant
“1” added in the column immediately to the right of the final-product LSB. The LSB
is the least significant bit of the truncated multiplier output P. This ensures accurate
result of the n bit output, but requires almost the same area as a full-width multi-
plier. This can be expressed as

LSB

Ppost_Trunc = trunc, (SMSP + Sic + Sisp + T) . (5)

2.2. Direct truncated multiplier

The simplest method of obtaining a fixed-width multiplier is by removing (or not
forming) the partial product matrix of IC and LSP directly and only that the most
significant half needs to be calculated. This reduces area and power at the expense of
a large truncation error. This can be expressed as

PDirect_Trunc = SMSP . (6)

3. Fixed-Width Multiplier Design

The basic idea of a fixed-width multiplier is to calculate the result by only using the
n + h most significant column (MSP) and approximating the contribution of the less
significant part with a function of the input correction vector. The general scheme of
a fixed-width multiplier is shown in Fig. 4. In order to reduce truncation error
introduced by the direct truncation method, many approaches have been proposed in
the literature'®"%?3* to design error compensation circuits with less truncation
error and less area overhead. The compensation methods can be classified into two

categories: compensation with constant correction value'®'” and compensation with

variable correction value.'®7

Exact carry Approximate

¢—| carry

MSP IC LSP

Fig. 4. General scheme of a fixed-width multiplier.
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3.1. Constant correction methods

In constant correction methods (CCM), the authors'® ' estimate pre-determined
constant (K) of omitted partial products then added to the final product. The circuit
can be simpler than that of variable correction methods. In CCM, since the actual
data present in the input is not taken into account, large error is introduced into the
output. This can be expressed as

Peom = trunc, (Sysp + K) - (7)

In Ref. 17, Kidambi et al. simplified the multiplier by removing both input correction
vector and LSP part of the partial products and estimated constant value for a given
bit precision which is added to the final product. This technique reduces the area and
power consumption to halves for h = 0 with respect to the post truncated method,
but a high error in the output limits the uses in practical applications. This technique
is extended to h > 0 by Shuttle and Swartzlander,'® where rounding error is also
taken into account to estimate the total error.

3.2. Variable correction methods

In variable correction methods (VCM), the partial products in LSP are dropped, and
this is compensated with the introduction of a suitable function of IC partial pro-
ducts ((n + h + 1) column). The accuracy of fixed-width multiplier is significantly
improved in the variable correction fixed-width multiplier.'®°%3* The main chal-
lenge for fixed-width multiplier design is to find efficient compensation function to
improve the accuracy with less hardware cost. We consider the number of output bit
w(=n), while h is a design parameter which can be used to increase the accuracy
without changing the weight of the output LSB. For experimental error analysis, we
have considered the architectures with h = 0 only. However, this paper considers
both signed and unsigned topologies for A > 0 also. The variable correction function
can be expressed as

Pycm = trunc, (Sygp + f(IC)) . (8)

Variable correction method was introduced by King and Swartzlander for an un-
signed fixed-width multiplier, where partial product bits in the 2”1 (IC) column was
used as correction carries into the full adder cell of 2” column.'® This method reduces
the error metrics effectively at the same time with less hardware cost.

Jou et al.?* reported two different designs with variable correction method for
unsigned and two’s complement fixed-width multipliers, where they analyze the
source of errors generated by LSP part, and then designing carry-generating circuit
C,. Carry generation circuit manipulates the partial products in 27~ column with
circuit composed of AND-OR (AO) gates. For unsigned multiplier, the compensation
circuit has n input and n — 1 outputs which consists of (n — 2) AO cells and one 2-
input AND gate as shown in Fig. 5. Similarly, the compensation circuit for two’s
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Fig. 5. Jou 99 correction logic for unsigned multiplier, w =n and h = 0.

complement multiplier is shown in Fig. 6, which consists of (n — 2) OR cells and one
2-input NOR gates. This gives significant improvement in accuracy than that of
direct truncated (DT) signed multiplier. However, its ripple based error compensa-
tion circuit not only requires considerable amount of logic gates when n increases,
but also reduces the speed of the multiplier.

Van et al.?? proposed a new error compensation circuit by choosing proper gen-
eralized index to improve the error performance of signed fixed-width multipliers.
The error compensation circuit has n inputs and (n — 1) outputs which consist of
(n —2) AND cells and one NAND gate as shown in Fig. 7. The more generalized
method for family of low-error area-efficient signed fixed-width multiplier with A > 0
has been explained in Ref. 25. This extended work improves the error performances
with same area as compared to two’s complement (h = 0) fixed-width multiplier in
Ref. 21, but for A > 0, it improves both error performance and area as compared to
signed fixed-width multiplier.'® This error compensation circuit has n inputs and n
outputs, consists of (n — 1) OR cells and one NOR gate as shown in Fig. 8. Unfor-
tunately, the work proposed in Refs. 22 and 26 still suffers by ripple error compen-
sation circuits, which is not desirable for high speed applications.

Based on Ref. 21, Jou and Wang?® analyzed error correction circuits and found
that several assumptions considered for deriving C, is not true in real case. They
showed the best correction to add to the 2™ column is partial product bits of 271
column and it is most suitable for DSP applications due to fast circuitry. It can be
noted that this error correction method is same as King and Swartzlander.'®
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Fig. 6. Jou 99 correction logic for signed multiplier, w = n and h = 0.
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Fig. 7. Van 2000 correction logic for signed multiplier, w = n and h = 0.
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OR ap.1by
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Fig. 8. Van 2005 correction logic for signed multiplier, w = n and h = 0.

Curticapean and Niittylahti** presented a modified version of the correction
circuit of Jou et al.”" for a direct digital frequency synthesizer (DDFM) that uses
unsigned fixed-width multiplier. This technique provides good error performances,
but computation function is still based on slow ripple architecture. However, the
authors®* have not given any explanation to justify the improved error performances.
This error compensation circuit has n inputs and n — 1 outputs which consist of
(n —2) AO cells and one OR gate as shown in Fig. 9.

Stine and Duverne’s introduced the hybrid correction method (HCM) for fixed-
width multiplier,”® which takes the advantages of both constant correction'® and
variable correction.!? This HCM technique provides lower average error and maxi-
mum absolute error than both CCM and VCM for fixed-width multiplier.

New error correction circuits for unsigned fixed-width multipliers has been de-
scribed in Ref. 27 by Strollo et al., either to optimize the maximum absolute error or
the mean square error. Unlike the methods®!**??* used ripple structure to generate
the correction bias value, Strollo et al.’” used tree based compensation structure to
compensate the error. Strollo Type I error compensation circuit was used to optimize
the maximum absolute error and has n inputs and n outputs which consists of one
half-adder (HA), one n — 2 input NOR gate, and one AND gate as shown in Fig. 10.
Strollo Type II error compensation circuit was used to optimize the mean error which
has n inputs, n — 1 outputs and it consists of one full-adder (FA) and one HA as
shown in Fig. 11.
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Fig. 9. Curticapean 2001 correction logic for unsigned multiplier, w = n and h = 0.
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Fig. 10. Strollo Type I correction logic for unsigned multiplier, w = n and h = 0.
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Fig. 11. Strollo Type II correction logic for unsigned multiplier, w = n and h = 0.

Liao et al.?® attempted to explain the results obtained in Ref. 22 by analytical
method which proposed three carry estimation schemes based on the dependency
among the partial products and the inputs. However, proposed circuits are too
complex to implement in a practical multiplier and do not improve the performances
as compared to Van et al. in Ref. 22.

Kuang and Wang?® proposed two different configurable error compensation cir-
cuits for unsigned fixed-width multiplier with minimal modification of the technique
presented by Strollo et al. in Ref. 27. This correction reduces hardware complexity
with respect to Ref. 27. Kuang and Wang Type I error compensation circuit reduces
mean square error while increasing the mean error with respect to Type I error
compensation circuit in Ref. 27 and has n inputs and n — 2 outputs as shown in
Fig. 12. On the other hand, Kuang and Wang Type II error compensation circuit
obtains lower mean error, but a higher mean square error with respect to Type II
error compensation circuit in Ref. 27 and has n inputs and n — 3 outputs as shown in
Fig. 13. It can be noted that the error compensation circuits,?” generate less carry
signals to the retained adder cells as compared to the other compensation circuits,
which can help us to simplify the retained adder cell.
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Kuang and Wang Type I correction logic for unsigned multiplier, w = n and h = 0.
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Fig. 14. Wang and Kuang correction logic for signed multiplier, w =n and h = 0.

Wang and Kuang®® proposed a new error compensation circuit for signed fixed-
width multiplier to reduce maximum error, mean error, and mean-square error with
simple tree based compensation circuit as compared to ripple based error compen-
sation circuits in Refs. 21, 22 and 26. It has n inputs and n — 1 outputs that consist of
only one OR gate as shown in Fig. 14.

Petra et al.?' proposed the optimal compensation function that is analytically
derived to minimize the mean square error of the signed and unsigned fixed-width
multiplier. Since this optimal compensation function cannot be implemented effi-
ciently in hardware, they introduced a sub-optimal linear compensation function®? to
implement in hardware by performing a drastic quantization of its coefficients, which
are approximated by using only single bit.

Garofalo et al.*>* demonstrated closed form analytical calculation of the maximum
absolute error for the family of fixed-width multiplier proposed in Refs. 27, 31 and 32.
This calculation is valid for both signed and unsigned fixed-width multipliers and is
valid for every bit width of the multiplier.

The fixed-width multipliers studied in Refs. 27, 29 and 31 are the most precise
fixed-width multipliers among the previous fixed-width multipliers. Recently, Wey
and Wang>* proposed a new error compensation circuit by using dual group minor
input correction vector (MIC) for unsigned fixed-width multiplier by considering the
impact of the most significant column of the LSP part to further enhance the error
compensation precision. However, the hardware complexity and delay of the error
compensation circuit is increasing as the multiplier input bits increase because the
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proposed error compensation circuit mainly constructed by the “outer” partial
products.

De Caro et al.*® proposed fixed-width multipliers and multipliers-accumulators
with min-max approximation error for applications like function evaluation. In these
applications, reducing maximum absolute error is an important parameter than the
average error metrics (like mean-square error). Van and Tu*® introduced reconfi-
gurable and programmable structures in fixed-width multiplier, which allow hard-
ware multiplier architecture to operate in different modes.

Balamurugan et al.”> " proposed fixed-width multipliers with bypassing tech-
nique to further reduce the power consumption. In Ref. 55, dynamic power reduction
is achieved by reducing the switching activity of the adder cells at the cost of delay
and area. Extended work was presented to reduce the power and delay by using
decomposition logic.?57

The fixed-width techniques can also be applied to multiplexer based array mul-
tipliers,* CSD algorithm,’ and Booth array multiplier.*'** Bough—-Wooley array
based fixed-width multipliers have been widely studied since long time. Recently,
researchers are paying more attention to fixed-width modified Booth multipliers due
to its high speed computation and area saving as compared to the fixed-width
Bough—Wooley array multipliers. However, most of the variable correction methods
developed for fixed-width Bough—Wooley array multiplier cannot be applied for
fixed-width modified Booth array multipliers directly to reduce the truncation error.

To overcome this problem, fixed-width Booth multipliers*' °* with variable error
correction method have been proposed to effectively reduce the truncation errors.
The fixed-width Booth multipliers’® having less truncation error as compared to
fixed-width Baugh—Wooley array multipliers since a few partial products are trun-
cated after Booth encoding.

Jou et al.*? proposed a low cost compensation bias using linear regression analysis
to approximate truncation error part as a first order polynomial. This approach
significantly reduce the mean error, however maximum absolute error and mean
square error are still large. Cho et al.** proposed a simple error compensation circuit,
which utilizes more information from Booth encoded output to generate the error
compensation value. This circuit gives a better error performance with a huge area
penalty.

Juang and Hsiao®* proposed a condition probability based error compensation
function rather than time-consuming simulation method as presented in Refs. 42 and
43. However, Juang and Hsiao** compensation circuit cannot improve the perfor-
mance in accuracy as compared with Refs. 42 and 43. Huang et al.*” proposed a self-
compensation approach using conditional mean method derived from an exhaustive
simulation method, this approach reduces the hardware complexity as compared to
Ref. 42 with a slightly increased mean error and almost same hardware complexity as
in Ref. 43 with smaller mean error.
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Song et al.“® introduced the column information h to provide more choices be-
tween accuracy and area cost in fixed-width modified Booth multiplier. Nowadays, it
is obvious that trade-off occurs between area-cost and accuracy in low-error multi-
plier designs. Song et al. presented two types (Type-1 and Type-2) of binary
threshold derived from the simulation results and a little improvement in accuracy
and speed are observed in Type-1 with h = 0 as compared with Ref. 42.

Wang et al.*” proposed a high accuracy fixed-width modified Booth multiplier by
using an effective error compensation circuit, which is derived from the simulation
results. However, the area cost was increased. Li et al.*® proposed a probability
estimation bias (PEB) method to replace the time-consuming exhaustive simulation
methods. In this way, an area-efficient and low-error PEB circuit was derived based
on a simple and systematic procedure.

Chen et al.*” further improved the work of Li et al.*® by using a generalized
probabilistic estimation method (GPEB) known as expected probabilistic method.
Besides higher accuracy and lower area, the proposed GPEB circuit has more power-
efficient as compared with other methods. Chen et al.”” proposed an adaptive con-
ditional-probability estimator in fixed-width Booth multiplier to further improve the
accuracy by varying column information h. However, this was achieved at the cost of
increased area overhead.

Chen et al.’® proposed a more complex multi-level conditional probability
(MLCP) model that achieves higher accuracy with huge area penalty. Unlike other
studies, He et al.>* proposed a dynamic error-compensation circuit for a fixed-width
Booth multiplier based on probability as well as computer simulation (PACS).
Combining the advantages of the two methods the overall error performances can be
improved. The PACS method utilizes both expected as well as conditional proba-
bility to obtain the highest accuracy. However, there is again a trade-off between the
accuracy and area overhead.

This review presents the investigation based on Bough—Wooley array multipliers
as well as Booth array multipliers and intended to serve as a suitable reference
paper for future work in array based fixed-width multipliers and its related
research.

All literature does not cover all the error metrics (€, €yax and €,,5.) of fixed-width
multiplier for signed and unsigned topologies. In this paper, we have presented all the
state-of-the art architectures that have been proposed by various researchers in
recent years and compared based on novelty, correction method and applications in
the Tables 1 and 2. Table 1 describes history of various fixed-width Bough—Wooley
array multipliers. From the discussion, it is identified that the correction func-
tions®"?%3! for fixed-width Bough—-Wooley array based multipliers provides better
performance for DSP and multimedia applications, on the other hand correction
function® provides better performance for function evaluation than the other listed
methods.
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Fixed-width Booth array multipliers are ideal for high speed applications. Table 2
describes the history of various fixed-width modified Booth multipliers. From the
discussion, it is identified that the fixed-width modified Booth multipliers in Refs. 43
and 46 achieve better error performance in terms of the maximum absolute error and
the mean-square error when compared with the previous published multiplier in
Ref. 42. However, their mean errors are much larger than that of Jou et al.*> The
methods in Refs. 42, 46 and 47 improve accuracy; however, the establishment of the
compensation value requires excessive simulation time than the designs in Refs. 44,
48, 49 and 53. The highest accuracy is obtained either by using Wang’s multiplier*”
or He et al.”* In general, it is obvious that a trade-off occurs between the area-cost
and the accuracy in low-error multiplier designs.

It can be noted that every literature does not cover both signed and unsigned
topologies and can be applied to the general case h > 0, while h is a design parameter
that can be used to increase the accuracy without changing the weight of the output
LSB. In Tables 3-5, the comparisons of established compensation circuits are listed
by considering both signed and unsigned topologies with h > 0.

4. Error Performance of Different Fixed-Width Multipliers

In this paper, we have coded the state of the art fixed-width multipliers available in
the Literature by using Verilog HDL code and carried out exhaustive simulations to
evaluate the accuracy of the fixed-width multipliers. The accuracy of the fixed-width
multipliers are evaluated using error metrics including normalized maximum abso-
lute error (£,,y), normalized mean error (g,,), and normalized mean-square error
(Emse)- Let P be the output of the full-width multiplier and P, is the output of the
FWM, and then error terms are defined as

_ Max{|P — Py}
€max = T ) (9)
= W 7 (10)
Emse = W ’ (11)

where “Max” represents maximal operator and “Ave” represents average operator.
Note that the higher accuracy in multipliers, the smaller error values ¢,,, €., and
Emse are obtained. The error performances of different fixed-width multipliers with
h =0 are listed in Tables 6-9. As expected, the PT method is the most accurate
fixed-width multiplier and gives best error performance and DT multiplier gives
worst error performance in this comparison tables. All the error compensation cir-
cuits proposed in the literature for fixed-width multiplier have a goal of achieving PT
multiplier accuracy with less area and high speed.
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Table 6. Mean errors of fixed-width Bough-Wooley array multipliers (*S = Data apply to

signed multiplier only;

*U = Data apply to unsigned multiplier only; Remaining data are valid

for both signed and unsigned multipliers).

gmeau
Architecture n=23y n =10 n=12 n=14 n=16
h=0 PT 0.0078 0.0024 0.0007 0.0002 0.0001

DT (Braun) —1.7510  —2.2502  —2.7501  —3.2500  —3.7500
DT (BW) —2.2510  —2.7502  —3.2501  —3.7500  —4.2500
“UKing'® 0.2490 0.2498 0.2499 0.2500 0.2500
Jou™! —0.6509 —0.6939 —0.7184 —0.7322 —0.7400
*$Van®>? 0.2489 0.2497 0.2499 0.2500 0.2500
*UCurticapean® 0.0324 0.0185 0.0105 0.0059 0.0033
“UGtrollo?”

Type I —0.1217  —0.1502  —0.1664  —0.1756  —0.1808

Type II —0.0166  —0.0159  —0.0157  —0.0156  —0.0156
*UKuang wang”’

Type I 0.0537 0.0544 0.0546 0.0547 0.0547

Type II —0.0088 —0.0081 —0.0079 —0.0078 —0.0078
*Wang_Kuang™ 0.1865 0.1873 0.1874 0.1875 0.1875
Petra’ —0.0166 —0.0159 —0.0157 —0.0156 —0.0156
*UWey_Wang™ 0.0532 0.0885 0.1171 0.1388 0.1549
De Caro®™ (B=0) —0.1217  —0.1502  —0.1664  —0.1756  —0.1808

Table 7. Maximum errors of fixed-width Bough-Wooley array multipliers (

xS _

Data apply to signed multiplier only; *Y = Data apply to unsigned multiplier only;

Remaining data are

valid for both signed and unsigned multipliers).

Emax
Architecture n==~§ n =10 n=12 n=14 n =16
h=0 PT 0.5000  0.5000 0.5000 0.5000 0.5000

DT (Braun) 7.0039  9.0010  11.0002  13.0001  15.000
DT (BW) 7.0039  9.0010  11.0002  13.0001  15.000
*UKing'® 1.7227  2.0557 2.3889 2.7222 3.0556
Jou™! 20117  2.3467 2.6804 3.0139 3.3472
SVan?>* 1.7227  2.0557 2.3889 2.7222 3.0556
*UCurticapean® 1.5547  1.8887 2.2222 2.5555 2.8889
*UStrollo””

Type I 1.5117 1.8467  2.1804 2.5139  2.8472

Type II 1.7227  2.0557 2.3889 2.7222 3.0556

; 2
*UKuang_wang

)

Type I 1.7227  2.0557 2.3889 2.7222 3.0556
Type II 23164  2.6416 2.9729 3.3057 3.6389
*Wang_Kuang™ 1.5547  1.8887 2.2222 2.5555 2.8889
Petra”’ 1.7227  2.0557 2.3889 2.7222 3.0556
*UWey_Wang”* 1.5078  1.9600 2.2849 2.6098 2.9413
De Caro™ (B=10) 15117  1.8467 2.1804 2.5139 2.8472
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Table 8. Mean square errors of fixed-width Bough-Wooley array multipliers (*S =
Data apply to signed multiplier only; *Y = Data apply to unsigned multiplier only;

Remaining data are valid for both signed and unsigned multipliers).

6!]1S6
Architecture n=28 n =10 n=12 n=14 n =16
h=0 PT 0.0833  0.0833 0.0833 0.0833 0.0833

DT (Braun) 40183  6.3069 9.0976  12.3890  16.1806
DT (BW) 5.8052  8.6824  11.9727  15.7640  20.0556
“UKing'® 0.2634  0.3054 0.3472 0.3889 0.4306
Jou™! 0.5984  0.6995 0.7804 0.8473 0.9049
“SVan®»? 0.2634  0.3054 0.3472 0.3889 0.4306
*UCurticapean® 0.2338  0.2846 0.3331 0.3796 0.4246
“UStrollo””

Type I 0.2354  0.2950 0.3503 0.4017 0.4499

Type II 0.2160  0.2584 0.3003 0.3420 0.3837
*UKuang_wang”’

Type I 0.2127  0.2547 0.2964 0.3381 0.3798

Type II 0.2304  0.2715 0.3131 0.3547 0.3964
“Wang Kuang® ~ 0.2322  0.2742 0.3159 0.3576 0.3993
Petra’ 0.2160  0.2584 0.3003 0.3420 0.3837
“UWey_Wang** 0.1792 0.2275 0.2764  0.3250  0.3727

De Caro™ (B=10)  0.2322 0.2742 0.3159 0.3576 0.3993

From these circuits, Kuang and Wang?’ unsigned type II architectures have less
€,, than other circuits. However, Petra et al.>! architecture has less ¢,, for signed and
unsigned fixed-width multiplier than other circuits and it is shown in Table 6. The
maximum absolute error €., is the main parameter to be considered in several
practical applications such as function evaluation.® ® From the survey it has been
identified that Strollo et al.?” Type I architecture and De Caro et al.*> provide better
results than the other listed methods and it is shown in Table 7. In most of the DSP
and multimedia applications the mean-square error and mean error represents the
error metrics, which better describe the multiplier performances. As it can be seen
form Table 8, Wey and Wang?* unsigned fixed-width multipliers have less ¢,,,, than
other unsigned multipliers listed in the table. However, for signed fixed-width mul-
tiplier it has been identified that Stollo et al.?” Type II, Petra et al.,*' and De Caro
et al.,>> provide better results than other listed methods.

Table 9 shows a comparison of error performance of various fixed-width modified
Booth multipliers. All the works in Table 9 use exhaustive simulations to produce the
compensation fit function except Juang®* and Li et al.,*® where the compensation
functions generated mathematically. The compensation fit functions established
from exhaustive simulations that consume long time, especially for larger n, because
the simulation time increases exponentially. He et al.”* developed the compensation
function based on probability as well as computer simulation. Many multimedia and
DSP applications we have to maintain the error distribution not only be symmetric
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Table 9. Error performance of different fixed-width modified Booth array
multipliers.

Multiplier n=38 n =10 n=12 n=14 n =16

€mean P TM[Booth] 0.0078 0.0024 0.0007 0.0002 0.0001
DTM|[Booth] 1.5010 1.8752 2.2500 2.6250 3.0000

Jou™ 0.0010 0.0002 0.0001 0.0000 0.0000
Cho™ 0.1328 0.1211 0.1270 0.1240 0.1254
Juang™* —0.0825 —0.0799 —0.0767 —0.0753 —0.0739
Song™® 0.0207 0.0077 0.0029 0.0011 0.0003
Wang*” 0.0078  —0.0039 0.0019  —0.0009 0.0006
Li*® 0.0000 0.1875 —0.1248 0.0625  —0.2499
He™ 0.0078  —0.0039 0.0019  —0.0009 0.0006

emae  PTM[Booth] 05000  0.5000  0.5000  0.5000  0.5000
DTM[Booth] ~ 4.0000  5.0000  6.0000  7.0000  8.0000

Jou™ 1.7305 2.1299 2.5300 2.9300 3.3300
Cho™ 1.5000 1.5000 2.0000 2.0000 2.5000
Juang™* 1.9180 2.2607 3.0867 3.4201 3.9175
Song’ 1.7320 2.1027 24711 2.9300 3.3280
Wang’ 1.1680 1.5000 1.6667 2.0000 2.1667
Li* 1.5000 2.0000 2.0000 2.0000 2.5040
He™ 1.5000 2.0000 2.0000 2.0000 2.1667

eme  PTM[Booth]  0.0833  0.0833  0.0833 00833  0.0833
DTM[Booth]  2.6880  4.0563  5.7068  7.6390  9.8525

Jou™ 0.2715 0.3368 0.4019 0.4670 0.5321
Cho™® 0.1664 0.1713 0.1950 0.2088 0.2235
Juang™ 0.2767 0.3148 0.3589 0.4017 0.4477
Song™’ 0.2502 0.3285 0.3971 0.4642 0.5271
Wang"” 0.1367 0.1542 0.1671 0.1821 0.1961
Li*® 0.1831 0.2460 0.2500 0.2599 0.3462
He™ 0.1367 0.1542 0.1671 0.1821 0.1961

but also centralize in zero error as much as possible in order to achieve high accuracy.
As it can be seen from Table 9, both Wang et al.*” and He et al.”* have smaller mean
error as well as mean-square error, which is most desirable for any DSP applications.
However, Wang et al.*” method is limited to 32-bits.

5. Conclusion

Fixed-width multipliers can be utilized for DSP and multimedia applications to
minimize the power consumption by disabling or eliminating parts of the multiplier
which results in low switching activity, but introduces certain error in the multiplier
output.

Post-truncated multiplier is the most accurate approach but require large circuit
area. Direct-truncated multiplier is proposed to reduce area overhead, but causes
more error in the output. All these studies are done to find the reasonable balance
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between area overhead and accuracy. Two different correction techniques, namely
constant correction technique and variable correction technique are proposed to
compensate the error introduced in the fixed-width multipliers with minimal cor-
rection logic circuits. Unfortunately, constant correction techniques were inefficient
in terms of approximation error. On the other hand, the variable correction tech-
niques proposed to date, significantly improving accuracy.

As there are different variable correction methods are available for fixed-width
multipliers to optimize error performance, it is quite difficult to conclude that a
particular method is suitable for all the applications. In the fixed-width multipliers,
researchers introduces a design parameter h, which is varying from h = 0 to h = n, to
help the designer to trade-off between the accuracy and area. The main trade-off
effort for fixed-width multiplier design is finding a compensation function that is
efficiently implemented in hardware, and provides a correction value more close to
the PT method. The selection can be made based on circuit complexity, speed, error
performance and its applications as described in the Tables 1-9. In this paper, error
performances of all the analyzed fixed-width multipliers are experimentally com-
puted through exhaustive simulations for n < 16 and A = 0, since the simulation
time increases as O(22"), requiring an unreasonable amount of CPU time when n
increases. The observations listed in the table will serve as a guide for researchers to
select appropriate correction techniques for their applications.
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