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Abstract

The reported COVID‐19 cases in the United States of America have crossed over

10 million and a large number of infected cases are undetected whose estimation

can be done if country‐wide antibody testing is performed. In this study, we esti-

mate this undetected fraction of the population by a modeling and simulation

approach. We employ an epidemic model SIPHERD in which three categories of

infection carriers, symptomatic, purely asymptomatic, and exposed are considered

with different transmission rates that are taken dependent on the social distancing

conditions, and the detection rate of the infected carriers is taken dependent on the

tests done per day. The model is first validated for Germany and South Korea and

then applied for prediction of the total number of confirmed, active and dead, and

daily new positive cases in the United States. Our study predicts the possible

outcomes of the infection if social distancing conditions are relaxed or kept strin-

gent. We estimate that around 30.1 million people are already infected, and in the

absence of any vaccine, 66.2 million (range: 64.3–68.0) people, or 20% (range:

19.4–20.5) of the population will be infected by mid‐February 21 if social distancing

conditions are not made stringent. We find the infection‐to‐fatality ratio to be

0.65% (range: 0.63–0.67).
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1 | INTRODUCTION

The outbreak of pandemic Coronavirus disease 2019 (COVID‐19) has led

to more than 50 million total reported infections and 1.2 million deaths

worldwide (https://www.worldometers.info/coronavirus) and serious ef-

forts are needed for its containment. The Coronavirus SARS‐CoV‐2 has

affected not just public health but had a drastic impact on the economy

of the world as well, due to the lockdown situations in many countries,

including the United States of America. In the United States of America,

the first positive case of COVID‐19 was reported on January 20, 2020, in

a man who returned from Wuhan, China, where the outbreak was first

identified, and the first death took place in the first week of February.1 A

major control measure was announced on March 16, restricting the

gathering of more than ten people. However, the COVID‐19 spread to

almost 50 states throughout the country by March‐end (https://www.

worldometers.info/coronavirus).2 Now, the United States of America has

become the most affected country in terms of confirmed, active, and

death cases in the world (https://www.worldometers.info/coronavirus).

Pandemics have hit humanity many times in the past also,

and mathematical models are already available for infectious

diseases.3–6 Mathematical modeling of the epidemic has an un-

avoidable role in helping the healthcare sector by predicting the

hospital requirements in advance and for setting up the critical

care systems for the patients.7,8 To devise the lockdown strategy,



it is imperative that the prediction of the disease spread is

available to the policymakers. COVID‐19 is different from

the previously known SARS (severe acute respiratory syndrome)

infection, with features such as the existence of purely asymp-

tomatic cases9 and the spread of the infection from those as well

as from the exposed ones in the incubation period.10 Our

proposed mathematical model incorporates the above facts for

the COVID‐19 epidemic.

Many epidemiological models exist in the literature, and the

basic SIR model11 is the widely used one, which needs to be

modified to incorporate the peculiar features involved in Cor-

onavirus spread and control. An approximate mathematical model

of the COVID‐19 was initially reported in the literature12 based

on the Between‐Countries Disease Spread and the study shows

that the United States of America has the highest daily probability

of receiving one infected person from other infected countries. An

improved mathematical model for the spread of COVID‐19 is

proposed in Reference [13], by taking into account the infected

and undetected cases. But this study and forecast are particularly

based only on China. An extended susceptible–infected–recovered

(SIR) model is proposed in Reference [14], in which the entire

people in the country are divided into eight compartments.

Though it is an improved version of the SIR model, the study and

simulation results are done only for Italy, and the model does not

take into account purely asymptomatic cases and the role of tests

done per day (TPD). Another compartmental epidemic model SEIR

(susceptible–exposed–infectious–recovered)15 forecast for few

countries and the impact of the quarantine on the COVID‐19 is

investigated. A stochastic epidemic model is presented in Re-

ference [16], where the effect of clinical progression and trans-

mission network structure on the outcome of social distancing is

investigated. An adaptive and improved version of the SIR model is

illustrated in Reference [17]. In this method, the time dependency

of parameters used for the analysis makes it more robust than the

conventional SIR method. Curve fitting‐based methods have been

also employed for the forecast of COVID‐19 in References

[18–20]. Although these methods can track the available data

correctly, they are not developed based on the physical insights

that affect the rate of spreading of the disease, and also it is ex-

tremely sensitive to the initial conditions. In Reference [21],

Murray and his collaborators predicted the number of hospital

beds that will be needed, critical healthcare requirements like

intensive care units and ventilators based on the data of present

COVID‐19 patients, and the total number of deaths in the United

States and the European Economic Area.

In this paper, we formulate a mathematical model, named SI-

PHERD for the COVID‐19 epidemic and apply it for forecasting the

number of total active and confirmed cases, daily new positive and

death cases in the United States of America, according to the con-

ditions of the social distancing and the number of tests performed

per day. The model has been applied for the prediction of COVID‐19

spread in India.22

2 | METHODS

2.1 | Mathematical model SIPHERD

We model the dynamics of the COVID‐19 disease spread by dividing

the population into different categories, as listed below.

• S—Fraction of the total population that is healthy and has never

caught the infection

• E—Fraction of the total population that is exposed to infection,

transmit the infection and turn into either symptomatic or purely

asymptomatic, and not detected

• I—Fraction of the total population infected by the virus that

shows symptoms and undetected

• P—Fraction of the total population infected by the virus that

doesn't show symptoms even after the incubation period and

undetected. These are the purely asymptomatic cases

• H—Fraction of the total population that are found positive in the

test and either hospitalized or quarantined

• R—Fraction of the total population that has recovered from the

infection

• D—Fraction of the total population that is deceased due to the

infection.

The SIPHERD model equations are a set of coupled ordinary

differential Equation (1) for the defined entities (S, I, P, H, E, R, D). As

seen in Figure 1, the rates of transfer from one category to another

are the model parameters, and a set of differential equations for the

entity in each category is formed. We write the model equations that

are independent of the population of the country by considering the

fraction of the people in each category. The various rates listed in

Table 1 are the parameters of the problem which are not known, and

only the possible range is available and the initial conditions E(0), P

(0), and I(0) are also not exactly known. Some of the parameters such

as rates of infection (α, β, γ) change with time in steps, depending on

the lockdown and social distancing conditions, and the probability

F IGURE 1 Schematic of the SIPHERD Model: α, β, γ, δ are rates

of transmission of infection; ξI, ξP are rates of transfer from being

exposed to symptomatic and asymptomatic; ω, η, σ are recovery

rates; μ, ν are detection rates, and τ is the mortality rate
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rate of detection (ν) changes with time depending on TPD. The model

equations are written as
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where, tR and tD are the delay associated with the recovery and

death, respectively, with respect to active cases H. We have taken

into account this delay because the active cases are reported after

the testing and admission to healthcare or quarantine center, and the

number of recovery and death of the admitted will not immediately

follow the active or H category number and there will be a certain

average time delay between a COVID‐19 positive case detection and

the recovery or the death. We take the value of tR and tD to be

12 and 14 days respectively. All fractions add up to unity that can

also be seen from summing the above equations,

d

dt
S I P H E R D( ) 0.+ + + + + + = (2)

The probability of getting the infection is assumed uniform

among the susceptible people, although the disease spreads are lo-

calized in hot‐spots. Therefore, even though the disease has spread

very differently in different US states, the model considers the

“average effect” for the estimation of the infected and death cases.

The basic reproduction number (R0) can be written by observing

the inflow and outflow rates for each infectious category (E, I, P, H)

shown in Figure 1. The contribution of each of these categories for

the reproduction number can be written as the ratio of the sum of

inflow rates and the sum of outflow rates multiplied by the rate of

transmission of infection of that category,

( )R ,I P I P
0 α

ξ β
ν ω

ξ γ
μ η

δ
σ τ

μ
ξ ν
ν ω

ξ μ
μ η

Ω = + + + + + + + + + + (3)

where I Pμ ξ ξΩ = + + . As the existence of purely asymptomatic cases

are a distinct feature of COVID‐19, and it is crucial to identify the

proportion of such cases among the total infected to build a realistic

model. The Diamond Princess Cruise study is the key to identify the

proportion of Asymptomatic cases as all the susceptible people onboard

were tested. The asymptomatic proportion of the infected persons on

board the Diamond Princess Cruise is estimated in Reference [9]. Among

the 634 tested positive onboard, 328 were found asymptomatic, that is,

more than 50% of the confirmed cases were not showing any specific

symptoms of COVID‐19. The ratio of purely asymptomatic (P) to total

asymptomatic (E+P) cases is reported to be 0.35, and the ratio of purely

asymptomatic to the total infected (E+P+I) is 0.179.9

The above‐observed ratios can be written in terms of the entities

on the Cruise (with a bar) as all the people onboard were tested,

P

P E

P

P E I
0.35, 0.179.

↼↼ + ↼ = ↼↼ + ↼ + ↼ = (4)

This implies that P
↼
/ I
↼

= 0.36. These reported numbers are used

to fix the proportion between ξP and ξI as 0.36 and the proportion of

initial conditions E(0), I(0), and P(0) as well. In other words, out of

136 exposed cases, after the incubation, 36 will turn to be purely

asymptomatic, and 100 will have symptoms.

The detection of the asymptomatic and symptomatic cases can

be taken dependent on the number of tests done per day (TPD). For

the symptomatic cases, the detection is more probable as the in-

fected person can approach for the tests and more likely to be tes-

ted. The detection of symptomatic is taken in two parts, a constant

(ν0) and another part proportional to the TPD. This can be written in

terms of parameters as

T ,0 1 PDν ν ν= + (5)

T ,0 PDμ μ= (6)

where, µ0, ν0, and ν1 are positive constants. The total confirmed cases

are the addition of the active cases, extinct cases, and a part of the

recovered that were detected. This can be written as

C t H t D t H d( ) ( ) ( ) ( ) .
t
σ τ τ∫= + + ′ ′ (7)

Asymptomatic carriers of Coronavirus‐nCoV2 do transmit the

disease. Also, the infection can be transmitted from the person who

is not showing illness during the incubation period.10 This is included

in the model by considering E category people and their transmission

rate α. Hospitalized and quarantined cases can also transmit the

disease, and this low rate is taken as parameter δ. We model the

transmission rate of infection change with time in steps, depending

on the conditions of the lockdown. The transfer rate from E to I (ξI) is

the inverse of the incubation period, whose mean is reported 5.2

days.23 The recovery time of symptomatic cases is taken as 14 days.

The rate of transmission of infection from the asymptomatic carrier

(α, γ) for a country is typically taken higher than the symptomatic

ones (β) as the asymptomatic carrier may not be aware of his/her

TABLE 1 Parameters of the SIPHERD model

Parameter Description

α Rate of transmission of infection from E to S

β Rate of transmission of infection from I

γ Rate of transmission of infection from P to S

δ Rate of transmission of infection from H to S

ξI,p Rate of conversion from the E to I, P

σ Rate of recovery of H

ω Rate of home recovery of I

η Rate of home recovery of P

µ Probability of E and P being detected

ν Probability of I being detected

τ Mortality Rate
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infection, and Susceptible may not be keeping distance as no symp-

toms are seen. The mortality rate (τ) is taken differently for different

countries as it depends on the immunity and how effectively the

critical patients are taken care of by the hospitals.

2.2 | Optimization of the parameters

Some of the parameters namely, ω, η, ξP, ξI have a fixed value as those

represent the characteristics of the disease itself. The remaining para-

meters are to be obtained that generate the evolution of the dynamical

system close to the actual data. Manual tuning of the parameters for

the best fit is quite a tedious task. For this purpose, we write a cost

function in terms of the standard deviation from the actual data and

model data for the confirmed and the active cases as the following:

( )( )C C H HCOST ( ) ,j

i

i i i i1
data mod 2 data mod

2
ρ ∑= − + − (8)

where ρj are the different parameters that are to be obtained. For

estimation of the undetected infected cases for the United States of

America, we write another cost for the first 40 days from March

1, 2020,

( )E PCOST ( ) DNC ,j i
i I SI i t2

40 data
2

S
ρ ξ∑= − + (9)

where PSI is the probability of the daily new symptomatic cases

develop severe symptoms after a time delay of tS days and were

reported as daily new cases (DNC). The net cost function is the sum

of COST1 and COST2.

A MATLAB function “fmincon” is used to find the minimum of a

problem depending on a set of parameters that can have upper and

lower bounds. fmincon returns the set of parameters within the given

range, which minimizes the COST function defined above. As there

could be multiple sets of parameters giving out “good fit” to the real

data, other physical constraints on the parameter sets can be con-

sidered. One of them is a reasonable value of the reproduction

number. Second, the rate of transmission of infection before lock-

down has to be greater than after lockdown. The mortality rate (τ) is

not optimized but rather calculated directly by the daily number of

deaths data (DND) and the active data. The mortality rate for a

particular day can be obtained as follows:

i
i

H i t
( )

DND( )

( )
.

D

τ = − (10)

2.3 | Numerical implementation and simulation

The set of coupled equations for the model for a given set of

parameters and initial values is solved numerically by the dde23

solver routine of MATLAB for ordinary differential equations with a

time lag in functions. The nontrivial part is the accurate determi-

nation of the parameters that will mimic the situation on the

ground. The mathematical problem is to take into account the

actual data sets of the total number of confirmed cases, active cases

on a particular day, cumulative deaths, and TPD and find the set of

parameters that will provide the best possible match between the

data and model. The extraction of the parameters is automated so

that the model can be run on data for various countries. The

minimizer of the cost is found to obtain the optimized set of

parameters that best fit with the data available to date. The model

and the optimization scheme are implemented in MATLAB. The

parameters determined by our model are listed in Table 2 for the

countries we studied.

For the United States of America, the rate of transmission of in-

fection is taken to change in eight steps. This is done by plotting the total

number of cases on a log scale and seeing the changes in the slopes and

correlating with the government's regulations on social activities. As seen

in Figure S3b, we fit the actual mortality rate in steps. It can be seen that

the mortality rate improved with time. The mortality rate is expected to

improve further, as mild cases will also be reported with more tests

available. The probability PSI of symptomatic patients developing severe

TABLE 2 Parameters values for the countries studied

Parameters Germany

South

Korea

United States of

America

Population (N) 8.30E7 5.10E7 3.31E8

T0 Feb 21 Feb 15 Mar 1

TLD 29, 37 18 25, 36, 100, 140, 195,

210, 230

α (bf. LD) 0.35 0.45 0.38

α (af. LD) 0.23, 0.14 0.17 0.07, 0.08, 0.062, 0.077,

0.086, 0.095, 0.12

β (bf. LD) 0.19 0.16 0.25

β (af. LD) 0.18, 0.11 0.11 0.064, 0.053, 0.16, 0.08,

0.08, 0.11, 0.11

γ (bf. LD) 0.35 0.45 0.38

γ (af. LD) 0.23, 0.14 0.17 0.07, 0.08, 0.062, 0.077,

0.086, 0.095, 0.12

δ 9E−3 5.9E−3 6E−3

ξI 0.2 0.2 0.2

ξP 0.072 0.072 0.072

µ0 1.67E−6 2.05E−5 0

ν0 0.05 0.07 0.027

ν1 4.7E−6 9.7E−5 7.5E−8

ω 0.07 0.07 0.07

η 0.1 0.1 0.1

σ 0.065 0.034 0.017

tR 6 11 14

tD 6 1 12

Initially Infected 100 150 1000

Abbreviations: LD, lockdown; af., after; bf., before; TLD, number of days

lockdown or change in social distancing conditions occurred after T0; T0,

starting date for the simulation.
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symptoms such as breathlessness, high fever, and so forth, has definitely

approached the test and was tested in the initial phases. Data from cases

reported from 49 states, the District of Columbia, and three US terri-

tories to CDC from February 12–March 16 shows that 20.7 reported

cases were hospitalized (https://gis.cdc.gov/grasp/covidnet/COVID19_3.

html). COVID‐NET regions show it to be 21.4% till April 4 (https://

covid19.healthdata.org/united-states-ofamerica)24 and IHME data

(March 5–April 4) shows that to be 20.3% (https://covid19.healthdata.

org/united-states-ofamerica).20 The estimation of the total infected to

hospitalized is reported to be 3.6% in another study for France.25

Therefore, we estimate the total 17% (3.6/0.21) of the total infected

develop symptoms that are not mild and are tested and reported in the

initial days. In China, this number of non‐mild cases is reported to be

19%.26 For the first 40 days, we put a COST for the above condition that

every day, 20% (ξI) of the exposed develop symptoms, and 17% of them

are reported as daily new cases with an average delay of 5 days. It can be

seen from Figure S4d that this condition is indeed satisfied, as the model

curve and real data overlap for the first few days. Later, the gap between

the two curves widens as more tests were made available and mild cases

also tested.

The projection for the total infected persons is strongly depen-

dent on the value of PSI, which we estimate to be 17% as discussed

above. We simulate two more situations for the PSI value 15% and

19% and plot the time dependence of the Susceptible and Extinct

cases in Figure S4.

2.4 | Data collection

We collected the data from the following publicly available data

sources: The total number of cases, active cases, daily new cases, and

total and daily new deaths is collected from the worldometer

(https://www.worldometers.info/coronavirus). Test‐per‐day data is

collected from https://ourworldindata.org/grapher/full-list-covid19-

tests-per-day. Hospitalization data are collected from https://

covid19.healthdata.org/united-states-ofamerica,gis.cdc.gov/grasp/

covidnet/COVID19_3.html, and Reference [27].

The day on which lockdown is imposed or social distancing

conditions changed in a country is also taken into account as changes

in the slopes of the data for confirmed cases are observed according

to it.

3 | RESULTS AND DISCUSSION

We apply the SIPHERD model to South Korea and Germany for

testing the predictive capability of our model. We used the data only

for the first 20 and 40 days, respectively, that is, till March 5 and

March 31, 2020, and compared the future evolution generated by

the model with the actual data, as shown in the gray region in

Figure 2A for South Korea and in Figure 2B for Germany. Parameters

extracted by the model from the actual data for the countries stu-

died are listed in Table 2. These particular countries are chosen just

for validation of our model and not for comparison with the United

States of America.

3.1 | Effect of social distancing

The model, thus validated, is then applied to the existing data of the

United States of America for the prediction of the next 350 days,

that is, till February 13, 2021, as shown in Figure 2C. Three scenarios

are considered for social distancing conditions. One possible scenario

is that the conditions are kept the same, the second one is that they

are relaxed after November 26, and the third is if they are made

more stringent. TPD assumed to be increased by 5000 for all three

scenarios. The transmission rate for the relaxed social distancing

conditions is taken as 100%, 90% of the current value, and for the

mean case 90%, 80% of the current value, and for the stringent

conditions 80%, 70% of the current value, after 20 and 50 days from

November 6, respectively. The mortality rate is calculated from the

data and is improved in steps from an initial value of 2.8% on March

1 to 0.03% on November 6 as seen in Figure S3b.

The projection of the “Chris Murray”model is compared with the

SIPHERD model for the total number of deaths in Figure 2D. The

prediction range of the “Chris Murray” Model can be seen as large

compared to the SIPHERD model.

Two scenarios are demonstrated in Figure 3D in which social

distancing is made stringent for a month from November 26 such

that the rate of transmission decreases to 60% to current value and

then kept at 80% of the current value; whereas, in the other scenario

it is kept at 80% after November 26. It can be seen that strict con-

ditions on social distancing for a month can be an effective strategy.

We also report on a couple of additional scenarios for prediction in

the Supporting Information Material. If the social distancing is kept

the same for the month after November 26, then how fast the dis-

ease will spread for 5000 increase in TPD is also plotted in Figure S5.

If the conditions are made stricter only for 1 month and if it is

relaxed after 1 month, the evolution can be seen in Figure S6. The

reproduction number is seen to go beyond one in the month for the

current relaxed conditions.

3.2 | Estimation of the undetected cases

As only symptomatic cases were tested, the detection probability of

asymptomatic (µ) is taken zero. There can be many parameter sets,

including the probability rate of detection of symptomatic ν, that give

a good match between the simulation results and the actual data. It

is, therefore, not possible to know the exact number of undetected

infected people merely by fitting the model curves with the data. The

value of ν is fixed by the characteristics of the disease, which is the

ratio of severe and mild cases. Most of the COVID‐19 patients show

mild symptoms and the number of symptomatic patients that are

considered severe is taken as 17% of the total symptomatic. In the

initial days of the spread of the infection, due to the lack of test
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availability, only severe cases were tested. This fact can be used to

get an estimate of the undetected symptomatic cases. For illustra-

tion, out of 1000 exposed (E) cases, 20% (200) reach the sympto-

matic (I) category in a day as ξI 0.2, and out of those after an average

delay of 5 days, 17% (34) become severe cases and are reported as

daily new cases in the initial days. This relationship between the

available real data of daily new cases and exposed category number

in the initial days gives a constraint on the estimated exposed cases.

The application of this constraint in the model equations shows

that the peak number of undetected symptomatic infected people

goes up to 1 million. The time evolution of the totally unknown and

undetected part of the infected categories for the United States of

America is plotted in Figure 3A. As shown in Figure 3C, The total

number of susceptible can be around 264 million by mid‐February

2021, assuming that the conditions on lockdown and social distan-

cing remain the same and the vaccine is not introduced. Till February

13, 2020, 66.2 million, that is 20% of the USA population could be

infected according to the model projections.

The model calculations show that a total of 5.30% of the po-

pulation was infected in the second week of August which is close to

the seroprevalence data by Nationwide Commercial Laboratories

survey showing 5.9%.

3.3 | Effect of increase in testing

The factor by which an increase in testing can contain the infection is

estimated for a relaxed social distancing situation. If the rate of

transmission of infection remains the same as the current value due

to these relaxed conditions as described earlier, then how fast the

disease can be contained for a 20,000 increase in TPD is also plotted

in Figure 4A. The daily new positive cases data and the prediction for

the 5000 and 20,000 increase in TPD are plotted in Figure 4B. It can

be seen that increasing the tests has no significant impact on con-

taining the spread now as the number of tests has already reached

1 million.

F IGURE 2 Model predictions for South Korea, Germany, and the United States of America (USA). (A) South Korea data are given to the

simulator upto March 5, and thereafter, model comparison with the actual data for the confirmed, active cases and total deaths. (B) Model

prediction using the German data upto March 31 and comparison with the actual data for the confirmed, active cases and total deaths. (C)

Comparison of the model prediction for the USA if the social distancing and lockdown conditions kept same, made stringent, and relaxed after

November 26, while the tests increased by 5000 daily for both scenarios. (D) SIPHERD Model compared with the “Cris Murray Mode” for the

projection of the extinct cases
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F IGURE 3 Undetected cases and effect of social distancing (SD). (A) The evolution of the undetected number of Infected in the exposed (E),

symptomatic (I), and purely asymptomatic (P) category with SD conditions kept the same. (B) Model prediction for daily new cases for USA with

the increase of 5000 tests per day with lockdown and SD conditions kept the same till November 26. (C) The evolution of the Susceptible when

SD situations kept same and relaxed after November 26 with tests per day increase by 5000. (D) Prediction when SD situations relaxed and

kept stringent for a month after November 26 to the extent that rate of transmission of infection changes by 10%

F IGURE 4 Effect of increased tests and relaxed social distancing. (A) Effect of increased testing on the total, active and extinct cases,

comparison of 5000 and 20,000 increase in tests per day (TPD). (B) Model prediction for daily new cases with the increase of 5000 and

20,000 TPD with social distancing conditions relaxed after November 26
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The infection to fatality ratio (IFR) is difficult to estimate during

the course of the disease spread as the entities in the model are

dynamically changing with time. We make a rough estimate by as-

suming that there is an average delay of 14 days between a person

getting infected and becoming extinct.

The initial basic reproduction number for South Korea and

Germany turns out to be 3.18 and 3.5, respectively, and for the

United States of America, it is 4.8. The South Korea reproduction

number by our study is very close to 3.2 reported in Reference [28]

and the USA reproduction number is reported as 4.2 on March 16.2

The USA basic reproduction number appears higher than the mean

reported value.29,30 However, the IFR calculated with this high initial

rate of transmission turns out to be around 0.65%, which is close to

the reported value in Reference [25].

A sensitivity study is carried out for the different parameters, as

seen in Figures S7 and S8. The parameters are increased and decreased

by 10% from the optimized values to see the changes in the outcomes.

4 | CONCLUSION

Our findings show that reported cases in the United States of America

could only be 35% of the total infected by November 26. If the social

distancing is relaxed after November 26, it will lead to around a

47,000 increase in total deaths as compared to having stringent

conditions, and doubling the everyday increase in testing from 5000 to

20,000 can reduce this number by 6000. The model prediction shows

that in the absence of a vaccine, the infection can spread to around

20% of the total population, and the number of deaths could be

around 411,000 if the social distancing conditions remain the same.

Our simulation study predicts the future evolution of COVID‐19 in the

United States of America for various possible control measures in the

coming months, including social distancing conditions and the number

of TPD, and thereby provides helpful inputs for policymakers.
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