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a b s t r a c t

Grid embeddings are used not only to study the simulation capabilities of a parallel

architecture but also to design its VLSI layout. In addition to dilation and congestion,

wirelength is an important measure of an embedding. There are very few papers in

the literature which provide the exact wirelength of grid embedding. As far as the

most versatile architecture hypercube is concerned, only approximate estimates of the

wirelength of grid embedding are available. In this paper, we give an exact formula of

minimum wirelength of hypercube layout into grids and thereby we solve completely the

wirelength problem of hypercubes into grids.

We introduce a new technique to estimate the wirelength of a grid embedding. This

new technique is based on a Congestion Lemma and a Partition Lemma which we study in

this paper.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction and terminology

A parallel algorithm or a massively parallel computer can each be modeled by a graph, in which the vertices of the
graph represent the processes or processing elements, and the edges represent the communications among processes or
processors. Thus, the problem of efficiently executing a parallel algorithm A on a parallel computerM can be often reduced
to the problem of mapping the graph G, representing A, on the graph H , representingM , so that the mapping satisfies some
predefined constraints. This is called graph embedding [25], which is defined more precisely as follows:

Let G and H be finite graphs with n vertices. V (G) and V (H) denote the vertex sets of G and H respectively. E(G) and E(H)
denote the edge sets of G and H respectively. An embedding [4] f of G into H is defined as follows:

(i). f is a bijective map from V (G) → V (H);

(ii). f is a one-to-one map from E(G) to {Pf (f (u), f (v)) : Pf (f (u), f (v)) is a path in H between f (u) and f (v)}.

See Fig. 1. A set of edges of H is said to be an edge cut of H if the removal of these edges results in a disconnection of H .

If we think of G as representing the wiring diagram of an electronic circuit, with the vertices representing components
and the edges representing wires connecting them, then the edge congestion EC(G,H) is theminimum over all embeddings
f : V (G) → V (H), of the maximum number of wires that cross any edge of H . The vertex congestion VC(G,H) is the
minimum over all embeddings f : V (G) → V (H) of the maximum number of wires that pass any point of H [4].
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Fig. 1. Embedding of a hypercube onto a grid.

Fig. 2. For the embedding mentioned in Fig. 1, the edge congestions are marked on the respective edges of the grid.

The congestion of an embedding f of G into H is the maximum number of edges of the graph G that are embedded on any
single edge of H . Let ECf (G,H(e)) denote the number of edges (u, v) of G such that e is in the path Pf (f (u), f (v)) between
f (u) and f (v) in H . In other words,

ECf (G,H(e)) =
∣

∣

{

(u, v) ∈ E(G) : e ∈ Pf (f (u), f (v))
}
∣

∣

where Pf (f (u), f (v)) denotes the path between f (u) and f (v) in H with respect to f .

In the same way, let VCf (G,H(w)) denote the number of edges (u, v) of G such that w is a start vertex or an internal
vertex of the path Pf (f (u), f (v)) between f (u) and f (v) in H and w is not an end vertex of the path Pf (f (u), f (v)). In other
words,

VCf (G,H(w)) =
∣

∣

{

(u, v) ∈ E(G) : w ∈ Pf (f (u), f (v)) r {f (v)}
}
∣

∣ .

The edge congestion problem. The edge congestion [28] of an embedding f of G into H is given by

ECf (G,H) = max ECf (G,H(e))

where the maximum is taken over all edges e of H . Then, theminimum edge congestion of G into H is defined as

EC(G,H) = min ECf (G,H)

where the minimum is taken over all embeddings f of G into H . See Fig. 2. The edge congestion problem of a graph G into H

is to find an embedding of G into H that induces the minimum edge congestion EC(G,H).

The concept of cutwidth is a special case of edge congestion when H is a path or a cycle [5,9,23,27]. There are several
results on the congestion problem of various architectures such as trees into cycles [9], trees into hypercubes [24],
hypercubes into grids [4,5], complete binary trees into grids [25], ladders and caterpillars into hypercubes [6,8]. �

The vertex congestion problem. The vertex congestion of a vertex w [4,5,25] of an embedding f of G into H is given by

VCf (G,H) = max VCf (G,H(w))

where the maximum is taken over all vertices w of H . See Fig. 3. Then, theminimum vertex congestion of G into H is defined
as

VC(G,H) = min VCf (G,H)

where the minimum is taken over all embeddings f of G into H . The vertex congestion problem [4,5,9,25] of a graph G into H

is to find an embedding of G into H that induces the minimum vertex congestion VC(G,H). The vertex congestion problem
and the edge congestion problem are the same if H is a path or a cycle. �

The wirelength problem. The wirelength of an embedding f of G into H is given by

WLf (G,H) =
∑

(u,v)∈E(G)

dH(f (u), f (v))
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Fig. 3. For the embedding mentioned in Fig. 1, the vertex congestions are marked at the respective vertices of the Grid.

where dH(f (u), f (v)) denotes the length of the path Pf (f (u), f (v)) in H . Then, theminimumwirelength of G into H is defined
as

WL(G,H) = minWLf (G,H)

where the minimum is taken over all embeddings f of G into H . The wirelength problem [4,5,9,25,19] of a graph G into H is
to find an embedding of G into H that induces the minimum wirelength WL(G,H). The wirelength problem is studied for
binary trees into paths [22], hypercubes into paths [4,5], generalized wheels into arbitrary trees [19], and complete graphs
into hypercubes [21]. �

There are several ways one can calculate the wirelength of an embedding. Here we list two other equivalent ways
to compute the wirelength of an embedding, which are rather straightforward. The following result states that the edge
congestion and the vertex congestion of an embedding f of G into H contribute the same wirelength [5,9,19].

Lemma 1. For an embedding f of G into H, the wirelength of f is

WLf (G,H) =
∑

e∈E(H)

ECf (G,H(e)) =
∑

w∈V (H)

VCf (G,H(w)). �

2. Overview of the paper

The wirelength of a graph embedding arises from VLSI designs, data structures and data representations, networks for
parallel computer systems, biological models that deal with cloning and visual stimuli, parallel architecture, structural
engineering and so on [28]. Grid embedding plays an important role in computer architecture. VLSI Layout Problem [1],
Crossing Number Problem [12], Graph Drawing [11] and Edge Embedding Problem [10,15] are all a part of grid embedding.
Embedding problems have been considered for star networks into hypercubes [2], complete binary trees into hypercubes
[3], hypercubes into grids [4,5], generalized ladders into hypercubes [8], complete graphs into hypercubes [21], honeycomb
into hypercubes [13], grids into grids [26], and binary trees into grids [25].

Chavez and Trapp [9] have studied the embedding of hypercubes into cycles. They have conjectured that the cyclic
cutwidth of a hypercube isminimizedwith the Grey code numbering. This conjecture is called CT conjecture [14,16]. A team,
which has studied elaborately the embedding of hypercubes into grids, is Bezrukov et al. [4,5]. They [5] have completely
solved the vertex congestion problem of hypercubes into grids using a lexicographic labeling. According to our literature
survey, the wirelength problem is not solved for hypercubes into grids. Only tight estimates are available [4,5].

Even though there are numerous results and discussions on the wirelength problem, most of them deal with only
approximate results and the estimation of lower bounds [4,9]. The embeddings discussed in this paper produce an exact
wirelength. Our technique is different from the existing ones andwe apply themaximum subgraph problem to estimate the
edge congestion of each edge cut of a grid. �

3. Maximum subgraph problem

A maximum subgraph problem [15] of a graph G(V , E) is to find a maximum induced subgraph A of G on k vertices for
a given integer k. We extensively make use of the results related to the maximum subgraph problem of hypercubes. There
is a striking relationship between the maximum subgraph problem and the wirelength problem. The maximum subgraph
problem for hypercubes is well researched [7,18,20]. These results help us to estimate edge congestion of grid embedding of
hypercubes. Using Congestion Lemma and Partition Lemma, we construct a simple and elegant proof of correctness of the
algorithm which produces minimum edge congestion and minimum wirelength.

Definition 1 ([28]). For r ≥ 1 let Q r denote the graph of r-dimensional hypercube. The vertex set of Q r is formed by the
collection of all r-dimensional binary representations. Two vertices x, y ∈ V (Q r) are adjacent if and only if the corresponding
binary representations differ exactly in one bit. See Fig. 4(a). �
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Fig. 4. (a) Hypercube Q 5. (b) Composite subcube I526.

Definition 2 ([18]). Given an integer m and k = ⌈logm⌉, a set Ikm of m vertices of Q r is said to be a composite set if the

number of edges of the subgraph induced by Ikm is not less than the number of edges of a subgraph induced by any other set
Sm ofm vertices of Q r . A composite hypercube of Q r is defined to be a subgraph of Q r , which is induced by some composite
set of Q r . �

In other words, a set Ikm of m vertices of Q r is a composite set [7,17,18] if
∣

∣E(G
[

Ikm
]

)
∣

∣ ≥ |E(G [Sm])| for any set Sm of m
vertices of Q r . Here |E(G [Sm])| denotes the number of edges of the subgraph induced by Sm. The set {0, 1, 2, 3} of vertices
of Q 5 of Fig. 4(a) is a composite set whereas the set {0, 6, 8, 31} of vertices is not a composite set.

In this section we discuss a method [7,18] to construct Ikm of m vertices of Q r . A maximum k-dimensional composite

subgraph Ikm of Q r on m vertices with 2k−1 < m ≤ 2k comprises two components Q k−1 and I t
m−2k−1 where t =

⌈

log2(m − 2k−1)
⌉

with vertices in Q k−1 numbered from 0 to 2k−1 − 1 and vertices in I t
m−2k−1 numbered from 2k−1 tom− 1.

Thus Ikm comprises a set of complete cubes of dimensions k− 1 and below, and no two constituent cubes are of the same

size. For example, the composite hypercube I526 depicted in Fig. 4(b) comprises Q 4 and I410, which, in turn, contains Q 3 and

I22 = Q 1. In Fig. 4(b), m = 26 = 24 + 23 + 21. Moreover
∣

∣E(I526)
∣

∣ = 57. We infer two important results from the above
discussion and present them in a mathematical format. �

Definition 3 ([20]). An incomplete hypercube on i vertices of Q r is the subcube induced by {0, 1, . . . , i − 1} and is denoted
by Li. �

Theorem 1 ([7,17,18]). Let Q r be an r-dimensional hypercube. For i = 0, 1, . . . , 2r − 1, Li is a composite set. �

Definition 4. Let Q s denote an s-dimensional subcube of Q r . Two subcubes Q s1 and Q s2 of Q rare said to be adjacent if they
satisfy the following condition: If s1 ≤ s2, then for every vertex u of Q s1 , there is a unique vertex v of Q s2 such that u and v
are adjacent and if s2 ≤ s1, then for every vertex u of Q s2 , there is a unique vertex v of Q s1 such that u and v are adjacent.

�

Theorem 2. Let Q r be an r-dimensional hypercube. Let m = 2k1 + 2k2 + · · · + 2kl such that k1 > k2 > · · · > kl and

k1 + 1 = ⌈logm⌉. Then
∣

∣

(

E
[

Ik1+1
m

])
∣

∣ = k12
k1−1 + (k2 + 2)2k2−1 + (k3 + 4)2k3−1 + · · · + (kl + 2(l − 1))2kl−1.

Proof. Let us revisit the structure of I
k1+1
m where m = 2k1 + 2k2 + · · · + 2kl . According to the discussion in the

preceding paragraph [7,18], I
k1+1
m contains subcubes Q k1 ,Q k2 , . . . ,Q kl such that Q ki is adjacent to Q k1 ,Q k2 , . . . ,Q ki−1 for

i = 2, 3, . . . , l. This means that there are 2ki edges between Q ki and Q kj for all j = 1, 2, . . . , i − 1. Thus there are (i − 1)2ki

edges fromQ ki toQ kj , for all j = 1, 2, . . . , i−1. Also,Q ki has ki2
ki−1 edgeswithin itself. ThusQ ki contributes ki2

ki−1+(i−1)2ki

edges to I
k1+1
m . In other words, each Q ki contributes (ki + 2(i − 1))2ki−1 edges to I

k1+1
m . Hence the theorem. �

4. A few basic results

Here onwards, for the sake of simplicity, ECf (G,H(e)) will be represented by ECf (e).

Notation. For any set S of edges of H , ECf (S) =
∑

e∈S ECf (e). �

The following lemma is a generalization of the Fundamental Lemma [19] and it will be used throughout this paper. We
apply this result to estimate the edge congestion and wirelength.

Lemma 2 (Congestion Lemma). Let G be an r-regular graph and f be an embedding of G into H. Let S be an edge cut of H such

that the removal of edges of S leaves H into 2 components H1 and H2 and let G1 = f −1(H1) and G2 = f −1(H2). Also S satisfies
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Fig. 5. S is an edge cut of H and f : G → H is an embedding.

Fig. 6. Labels of rows and columns of 4 × 8 grid.

the following conditions:

(i) For every edge (a, b) ∈ Gi, i = 1, 2, Pf (f (a), f (b)) has no edges in S.
(ii) For every edge (a, b) in Gwith a ∈ G1 and b ∈ G2, Pf (f (a), f (b)) has exactly one edge in S.
(iii) G1 is a maximum subgraph on k vertices where k = |V (G1)|.

Then ECf (S) is minimum, that is, ECf (S) ≤ ECg(S) for any other embedding g of G into H.

Proof. We have S = {(u, v) ∈ E(H) : u ∈ H1, v ∈ H2}. Let R = {(a, b) ∈ E(G) : a ∈ G1, b ∈ G2}. By condition (i), an edge of
Gi, i = 1, 2, contributes nothing to ECf (S). By condition (ii), every edge (a, b) of R increments ECf (S) by 1. Therefore, ECf (S) =

|R|. It is straightforward to compute that |R| = r |V (G1)|−2 |E(G1)|, sinceG is r-regular. Hence ECf (S) = r |V (G1)|−2 |E(G1)|.
By condition (iii), |E(G1)| is maximum. Since |E(G1)| is maximum and ECf (S) = r |V (G1)| − 2 |E(G1)|, ECf (S) is minimum.
See Fig. 5. �

The next Lemma follows immediately from Lemma 1.

Lemma 3 (Partition Lemma). Let f : G → H be an embedding. Let {S1, S2, . . . , Sp} be a partition of E(H). Then

WLf (G,H) =

p
∑

i=1

ECf (Si).

The following lemma is an application of Lemma 3.

Lemma 4. Let
{

S1, S2, . . . , Sp
}

be a partition of E(H). Let f : G → H and g : G → H be two embeddings such that

ECf (Si) ≤ ECg(Si) for all i. Then WLf (G,H) ≤ WLg(G,H). �

Notation. An n×m grid with n rows andm columns is represented byM[n×m] where the rows are labeled 0, 1, . . . , n− 1
and the columns are labeled 0, 1, . . . ,m − 1. See Fig. 6. �

Here is our strategy. We partition the grid into vertical and horizontal edge cuts S1, S2, . . . , Sp, and apply the Partition

Lemma to compute thewirelengthWL(Q r ,M[2⌊r/2⌋×2⌈r/2⌉]). For each Si, we have the option tomaximize any one of |E(G1)|

and |E(G2)|, for any regular graph G. While maximizing one of |E(G1)| and |E(G2)|, we always choose one of G1 and G2 which
has vertices less than or equal to (1/2) |V (G)|. We apply Congestion Lemma to minimize ECf (Si).

5. The wirelength problem of Q r into M[2⌊r/2⌋ × 2⌈r/2⌉]

Bezrukov et al. [4,5] have solved the vertex congestion problem of Q r into grids. They define a lexicographic embedding
and show that it induces minimum vertex congestion of Q r into M[2⌊r/2⌋ × 2⌈r/2⌉]. In this section, we show that this
lexicographic embedding also solves the wirelength problem of Q r intoM[2⌊r/2⌋ × 2⌈r/2⌉].
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Fig. 7. Lexicographic embedding of Q 5 into M[22 × 23] grid.

Fig. 8. (a) GridM[23 ×23]with lexicographic labeling and Rlex
i denotes the set of vertices of the first i rows. (b) GridM[23 ×23]with lexicographic labeling

and C lex
j denotes the set of vertices of the first j columns.

Lexicographic embedding ([4]). The lexicographic embedding of Q r with the labeling 0 to 2r − 1 intoM[2⌊r/2⌋ × 2⌈r/2⌉] is
an assignment of labels to the nodes ofM[2⌊r/2⌋ × 2⌈r/2⌉] as follows: The 0th row is labeled 0 to 2⌈r/2⌉ − 1 from left to right.
The (i − 1)th row is labeled (i − 1)2⌈r/2⌉, (i − 1)2⌈r/2⌉ + 1, . . . , i2⌈r/2⌉ − 1 from left to right where i = 0, 1, . . . , 2⌊r/2⌋ − 1.
See Figs. 7 and 9. This lexicographic embedding is denoted by lex. �

Nowwe shall prove that the lexicographic embedding solves the edge congestion problem and thewirelength problemof
hypercubes into grids. There are two important observations about the lexicographic embedding of hypercubes into grids,
which help us to build an elegant proof of correctness of the embedding algorithm. Let us first discuss these two results
before we analyze the proof of correctness.

Notation. Rlex
i = {0, 1, . . . , i2⌈r/2⌉ − 1} for i = 0, 1, . . . , 2⌊r/2⌋ − 1. �

Readersmay observe that Rlex
i is the set of vertices of the first i rows ofM[2⌊r/2⌋×2⌈r/2⌉]with the lexicographic embedding

of Q r intoM[2⌊r/2⌋ × 2⌈r/2⌉]. See Fig. 8(a). Also, it may be observed that Rlex
i = Li2⌈r/2⌉ . �

We shall prove that the inverse image of a component formed by the deletion of a horizontal or vertical edge cut of
M[2⌊r/2⌋ × 2⌈r/2⌉] corresponding to lex from Q r to M[2⌊r/2⌋ × 2⌈r/2⌉] is a composite set. The following result is a particular
case of Theorem 1 and hence it requires no proof.

Lemma 5. Rlex
i is a composite set in Q r for i = 0, 1, . . . , 2⌊r/2⌋ − 1. �

Notation.

C lex
j = {

0, 1 × 2⌈r/2⌉, 2 × 2⌈r/2⌉ · · · (2⌊r/2⌋ − 1) × 2⌈r/2⌉,

1, 1 × 2⌈r/2⌉ + 1, 2 × 2⌈r/2⌉ + 1 · · · (2⌊r/2⌋ − 1) × 2⌈r/2⌉ + 1,
· · · · · · · · · · · · · · ·

j − 1, 1 × 2⌈r/2⌉ + j − 1, 2 × 2⌈r/2⌉ + j − 1 · · · (2⌊r/2⌋ − 1) × 2⌈r/2⌉ + j − 1

}

for j = 0, 1, . . . , 2⌈r/2⌉ − 1. �
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Fig. 9. Grid M[2⌊r/2⌋ × 2⌈r/2⌉] with lexicographic labeling.

It may be observed that C lex
j is the set of vertices of the first j columns of M[2⌊r/2⌋ × 2⌈r/2⌉] with the lexicographic

embedding lex of Q r intoM[2⌊r/2⌋ × 2⌈r/2⌉]. See Fig. 8(b).

Lemma 6. The subgraphs of Q r induced by C lex
j and Lj2⌊r/2⌋ are isomorphic.

Proof. Here in this proof, we make use of the binary representations of Q r .
Define φ : C lex

j → Lj2⌊r/2⌋ such that

φ(k × 2⌈r/2⌉ + l) =

{

l × 2⌈r/2⌉ + k if r is even

l × 2⌊r/2⌋ + k if r is odd.

It is enough to prove that φ is an isomorphism. The binary representations of integers k× 2⌈r/2⌉ + l and l× 2⌈r/2⌉ + k (or
l×2⌊r/2⌋+k) have somenice relationship. If the binary representation of k×2⌈r/2⌉+l is (α1, α2, . . . , α⌈r/2⌉, β1, β2, . . . , β⌊r/2⌋)

then the binary representation of l × 2⌈r/2⌉ + k (or l × 2⌊r/2⌋ + k) is (β1, β2, . . . , β⌊r/2⌋, α1, α2, . . . , α⌈r/2⌉). Thus the binary
representation of two numbers x and y differ in exactly 1 bit if and only if the binary representation of φ(x) and φ(y) differ
in the same bit. Therefore (x, y) is an edge in Q r if and only if (φ(x), φ(y)) is an edge in Q r . In other words, (x, y) is an edge
in C lex

j if and only if (φ(x), φ(y)) is an edge in Lj2⌊r/2⌋ . Hence C lex
j and Lj2⌊r/2⌋ are isomorphic. �

Lemma 7. C lex
j is a composite set in Q r for j = 0, 1, . . . , 2⌈r/2⌉ − 1.

Proof. By Theorem 1, Li = {0, 1, . . . , i − 1} is a composite set of Q r for every i. This implies that C lex
j is a composite set in

Q r by Lemma 6. �

Theorem 3. The lexicographic embedding lex of Q r into M[2⌊r/2⌋ × 2⌈r/2⌉] induces a minimum wirelength WL(Q r ,M[2⌊r/2⌋ ×

2⌈r/2⌉]).

Proof. Let Ai be an edge cut of the grid M[2⌊r/2⌋ × 2⌈r/2⌉] such that Ai disconnects M[2⌊r/2⌋ × 2⌈r/2⌉] into two components
Xi and Xi′ where V (Xi) is Rlex

i . See Fig. 10(a). Let Bj be an edge cut of the grid M[2⌊r/2⌋ × 2⌈r/2⌉] such that Bj disconnects

M[2⌊r/2⌋ × 2⌈r/2⌉] into two components Yj and Yj′ where V (Yj) is C
lex
j . See Fig. 10(b). Let Gi and Gi′ be the inverse images of Xi

and Xi′ under lex respectively. The edge cuts Ai and Bj of the partition, satisfy conditions (i) and (ii) of the Congestion Lemma.
In order to show that EClex(Ai) is minimum, by condition (iii), it is enough to show that |E(Gi)| is maximum.

We know that Gi is a subcube induced by the vertices of Rlex
i . By Lemma 5, it is true that Gi is a composite hypercube. Thus

by the Congestion Lemma, EClex(Ai) is minimum for i = 0, 1, . . . , 2⌊r/2⌋ − 1.
Similarly, let Gj and Gj′ be inverse images of Yj and Yj′ under lex respectively. By Lemma 7, it is true that Gj is a composite

hypercube induced by the vertices of C lex
j . Thus by Congestion Lemma, EClex(Bj) is minimum for j = 0, 1, . . . , 2⌈r/2⌉ − 1.

Thus by Partition Lemma,WLlex(Q
r ,M[2⌊r/2⌋ × 2⌈r/2⌉]) is minimum. �

6. Derivation of wirelengthWL(Q r,M[2⌊r/2⌋ × 2⌈r/2⌉])

So farwehave demonstrated that the lexicographic embedding lexofQ r into the gridM[2⌊r/2⌋×2⌈r/2⌉]providesminimum
wirelength. Let Pk denote a path on k vertices. Here we provide a mathematical formula for WL(Q r , P2r ) which is more
straightforward.

Theorem 4. WL(Q r , P2r ) = 22r−1 − 2r−1.
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Fig. 10. (a) Each Ai is an edge cut ofM
[

2⌊r/2⌋ × 2⌈r/2⌉
]

which disconnectsM
[

2⌊r/2⌋ × 2⌈r/2⌉
]

into two components Xi and Xi′ where Xi is R
lex
i . Ai is called a

horizontal edge cut. (b) Each Bj is an edge cut of M
[

2⌊r/2⌋ × 2⌈r/2⌉
]

which disconnects M
[

2⌊r/2⌋ × 2⌈r/2⌉
]

into two components Yj and Yj′ where Yj is C
lex
j .

Bj is called a vertical edge cut.

Fig. 11. The edge congestion of the edges ofM
[

22 × 23
]

induced by the lexicographic embedding of Q 5 intoM
[

22 × 23
]

.

Proof. Bezrukov et al. [4,5] have proved that the lexicographic embedding lex of Q r into P2r induces aminimumwirelength.
In other words, WL(Q r , P2r ) = WLlex(Q

r , P2r ). Thus it is enough to show that WLlex(Q
r , P2r ) = 22r−1 − 2r−1. We prove the

result by induction on r . The base case is trivial. Assume that the result is true forWLlex(Q
k−1, P2k−1). Then

WLlex(Q
k, P2k) = 2WLlex(Q

k−1, P2k−1) + 2k−1 × 2k−1

= 2(22(k−1)−1 − 2(k−1)−1) + 2k−1 × 2k−1

= 22k−1 − 2k−1. �

Now we derive a similar expression forWL(Q r ,M[2⌊r/2⌋ × 2⌈r/2⌉]).

Theorem 5. The wirelength of Q r into M[2⌊r/2⌋ × 2⌈r/2⌉] is given by

WL(Q r ,M[2⌊r/2⌋ × 2⌈r/2⌉]) = 2⌊r/2⌋(22⌈r/2⌉−1 − 2⌈r/2⌉−1) + 2⌈r/2⌉(22⌊r/2⌋−1 − 2⌊r/2⌋−1).

Proof. The lexicographic embedding has a nice symmetric property. The edges of Q r are stretched in the grid M[2⌊r/2⌋ ×

2⌈r/2⌉] either vertically or horizontally. Moreover each edge of Bj (vertical edge cut) has the same edge congestion. In the
same way, each edge of Ai (horizontal edge cut) has the same edge congestion. Thus the wirelength of each row is the
same. The same holds for columns of M[2⌊r/2⌋ × 2⌈r/2⌉]. See Fig. 11. The wirelength of each row of M[2⌊r/2⌋ × 2⌈r/2⌉] is
22⌈r/2⌉−1 − 2⌈r/2⌉−1 by Theorem 4 and there are 2⌊r/2⌋ rows in M[2⌊r/2⌋ × 2⌈r/2⌉]. In the same way the wirelength along the
columns is 2⌈r/2⌉(22⌊r/2⌋−1 − 2⌊r/2⌋−1). Hence the theorem. �

As a by product of this work, we observe a solution to the edge congestion problem of Q r into M[2⌊r/2⌋ × 2⌈r/2⌉]. It is
known that [5]

EC(Q r , P2r ) =



















2r+1 − 2

3
if r is even

2r+1 − 1

3
if r is odd.
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From the proof of Theorem 5, we observe that

EClex(Q
r ,M[2⌊r/2⌋ × 2⌈r/2⌉]) =











2⌈r/2⌉+1 − 2

3
if ⌈r/2⌉ is even

2⌈r/2⌉+1 − 1

3
if ⌈r/2⌉ is odd.

Since EC(Q r ,M[2⌊r/2⌋ × 2⌈r/2⌉]) = EClex(Q
r ,M[2⌊r/2⌋ × 2⌈r/2⌉]), we have

EC(Q r ,M[2⌊r/2⌋ × 2⌈r/2⌉]) =











2⌈r/2⌉+1 − 2

3
if ⌈r/2⌉ is even

2⌈r/2⌉+1 − 1

3
if ⌈r/2⌉ is odd.

7. Further research

The hypercube has many desirable and attractive properties. However it has its own intrinsic drawbacks; for instance its
diameter is large. As a result, several enhancements of the hypercube have been proposed to improve some properties such
as diameter. These include crossed cubes, folded hypercubes and enhanced hypercubes [28]. Folded hypercube is one of the
interesting variants of the hypercube.

Definition 5. The r-dimensional folded hypercube, denoted by FQ r is an undirected graph obtained from Q r by adding all
complementary edges. For two vertices x = x1x2, . . . , xr and y = y1y2, . . . , yr of FQ

r , (x, y) is a complementary edge if and
only if their bits are complements of each other. �

The authors leave the following results as conjectures for further research.
Conjecture 1:WL(FQ r , P2r ) = 3 × 22r−2 − 2r−1.
Conjecture 2: The wirelength of FQ r into M[2⌊r/2⌋ × 2⌈r/2⌉] is given by

WL(FQ r ,M[2⌊r/2⌋ × 2⌈r/2⌉]) = 2⌊r/2⌋(3 × 22⌈r/2⌉−1 − 2⌈r/2⌉−1) + 2⌈r/2⌉(3 × 22⌊r/2⌋−1 − 2⌊r/2⌋−1). �

8. Conclusion

We identify an exact layout of hypercubes and folded hypercubes on a grid. This layout solves the wirelength problem
and edge congestion problem of hypercubes into grids. We also provide formulae for WL(Q r ,M[2⌊r/2⌋ × 2⌈r/2⌉]) and
WL(FQ r ,M[2⌊r/2⌋ × 2⌈r/2⌉]). Apart from these results, there are other interesting results in this paper. We analyze the
maximum subgraph problem of hypercubes. Another significant result is the Congestion Lemma and Partition Lemmawhich
yield a new technique to estimate the lower bound of wirelength. The interested readers will observe that it is not easy to
extend these results further to other hypercube-like topologies such as crossed cubes, enhanced cubes, augmented cubes,
and Fibonacci cubes. It is also an interesting research topic to verify whether this technique can be employed to solve the
wirelength problem for architectures such as butterfly, torus, star, and pancake. �
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