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Abstract. A graph G is said to be  – stable if  ( Gxy ) =  ( G ), for all x, y  V ( G ), x not 

adjacent to y, where Gxy denotes the graph obtained by identifying the vertices x, y. In this 

paper we have obtained conditions under which a graph G is  - stable and very excellent. We 

have proved that if G is  - stable and very excellent, then it is domination subdivision stable. 

We have obtained method of generating  - stable graphs when G is  - stable and just 

excellent. Properties satisfied by a  - stable graph having cut vertices are proved.    

1.  Introduction 

We consider only simple connected undirected graphs G = ( V, E ). We say that H is a subgraph of G, 

if V ( H )  V ( G ) and (uv ) E( H ) implies ( uv ) E( G ). If a subgraph H satisfies the added 

property that for every pair u, v of vertices, ( uv ) E ( H ) if and only if ( uv ) E( G ), then H is 

called an induced subgraph of G and is denoted by < H >. The open neighborhood of vertex v V ( G 

) is denoted by N ( v ) = { u  V ( G ) / ( uv )  E ( G ) } while its closed neighborhood is the setN [ v 

] = N ( v )  { v }. A cut vertex of a graph G is a vertex whose deletion increases the number of 

components. We write G – v or G – S for the subgraph obtained by deleting a vertex v or set of 

vertices S. We indicate that u is adjacent to v by writing u  v. For details on graph properties we refer 

to [1].  

A set of vertices D in a graph G = ( V, E ) is a dominating set if every vertex of V – D is adjacent to 

some vertex of D. If D has the smallest possible cardinality of any dominating set of G, then D is 

called a minimum dominating set – abbreviated MDS. The cardinality of any MDS for G is called the 

domination number of G and it is denoted by ( G ).  - set denotes a dominating set for G with 

minimum cardinality. A set of vertices D in a graph G is called a clique dominating set if every two 

vertices in D are adjacent.  

The private neighborhood of v  D is defined by pn[ v, D ] = N [ v ] – N [ D − { v }]. The open 
private neighborhood of v  D is denoted by pn( v, D ), is defined by pn( v, D ) = N ( v ) – N ( D − { v 
} ). A vertex v is said to be a, level vertex if γ ( G – v ) = γ ( G ), up vertex if γ ( G – v ) > γ ( G ) and 

down vertex if γ ( G – v ) <  γ ( G ). A vertex v is said to be selfish in the γ- set D, if v is needed only 

to dominate itself. A vertex in V – D is k – dominated if it is dominated by at least k – vertices in D 

that is | N ( v ) ∩ D | ≥ k. If every vertex in V – D is k – dominated then D is called k – dominating set. 

For details of on domination we refer to [2, 3]. 

2.  Materials and methods 

A vertex v is said to be good if there is a γ – set of G containing v. If there is no γ – set of G containing 

v, then v is said to be a bad vertex. A graph G is said to be excellent if given any vertex v then there is 

a  - set of G containing v. In [4], Yamuna and Sridharan have introduced the concept of very 
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excellent graphs. An excellent graph G is said to be very excellent ( VE ), if there is a  - set D of G 

such that to each vertex u  V – D there is a vertex v  D such that D – { v }  { u } is a  - set of G. 

A  - set D of G satisfying this property is called a very excellent  - set of G. In this case we say that u 

and v are vertex exchangeable. 

In all the figures encircled vertices denote a  - set for G. 

Example  

 
Figure 1. 

In Fig. 1, D = { u, v } is a  - set for G.  D – { u }  { 1 }, D – { u }  { 2 }, D – { u }  { 3 }, D – { u 

}  { 6 }, D – { v}  { 4 }, D – { v }  { 5 }, are  - sets for G.  In this figure u is exchangeable with 

1, 2, 3 and v is exchangeable with 6, 4 and 5 respectively. 

In [4], they have proved the following result 

R1. A graph G is VE if and if only there exist a  - set D of G such that to each u  D, there is any v  

D such that pn[ v, D ]  N [ u ]. 

For a given non – adjacent pair { x, y } in a graph G, we denote by Gxy the graph obtained by 

deleting x and y and adding a new vertex xy adjacent to precisely those vertices of G –{ x, y } which 

were adjacent to at least one of x or y in G. We say that Gxyis obtained by contracting on {x, y} [5]. 

In [6], Yamuna and Karthika have introduced the  - stable graphs. A  - set D  V is said to graph 

domination set if D is a clique dominating set for G, that is  ( Gxy ) =  ( G ).  

Example 

 
Figure 2. 

In Fig. 2,  ( G ) =  ( Guv ) = 2, this is true for all x, y  V ( G ), where x is not adjacent to y. 

In [6], they have proved the following results 

R2. A graph G is  - stable if and only if every  - set D of G is clique dominating. 

R3. If G is  - stable, then | pn[ u, D ] | ≥ 2, for all u  V ( G ). 

3.  Results and discussion 

In this section we have obtained results when a  - stable graph is very excellent. We have given a 

procedure of generating  - stable graphs, when a  - stable is just excellent. Also properties satisfied 

by a  - stable graph with cut vertices are discussed.  
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Theorem 1 

Let G be a  – stable graph. G is VE if and if only there exists a  – set D of G such that to each v  D, 

there is any u  D such that pn [ u, D ]  N [ v ] and v is adjacent to D – { u }. 

Proof 

Let G be a VE graph. Then by R1, pn[ u, D ]  N [ v ]. Since G is  – stable,  D – { u } { v }  is a 

clique, implies v is adjacent to D – { u }.  

Conversely, if the conditions of the Theorem are satisfied, then D is a VE  – set for G ( by R1 ), 

implies G is VE.                                                                              

Theorem 2 

If G is  – stable, then there is no v pn( u, D ) such that v is adjacent to all w pn ( u, D ), w  v. 

Proof 

Let G be a  – stable graph. Let D be a  – set for G. Suppose there exist one v pn ( u, D ) such that v 

is adjacent to all w pn ( u, D ), w  v, then D' = D – { u }  { v } is a  – set for G. This implies D'  
is not a clique for G ( since v pn ( u, D ), v is not adjacent any other vertex in D except u ). Hence 

there is no v pn ( u, D ) such that v adjacent to all w pn ( u, D ), w  v, that is pn ( u, D )  N [ v ], 

for all v pn ( u, D ).                                                                                                                

Remark 

If G is  - stable and VE, then by Theorem 2 we observe that for any v pn( u, D ), D' = D – { u }  { 

v } is not a  - set, that is v cannot be exchanged with u.  

Theorem 3 

There is no graph G that is  - stable VE such that ( G ) ≥ 3. 
Proof 

If possible assume that there is a  - stable VE graph such that ( G ) ≥ 3. Let D = { v1, v2, …, vk } be a 

 - set for G, where k ≥ 3. Since G is  - stable, by R3 we know that | pn[ vi, D ] |  2, for all vi D, i = 

1, 2, …, k. Let u pn[ vi, D ] for some vi D. Since G is VE, there is one vj D such that D' = D – { vj 

}  { u } is a  - set for G. By Remark of Theorem 2, we know that vj vi, that is there is one vj D 

such that D' is a  - set for G and vj vi. Since G is  - stable and u  D', D D' = { v1, v2, …, v j – 1, v j 

+ 1, …, vk }. By Theorem 1, we know that u adjacent to every vertex in D D'. Since ( G ) ≥ 3, | D 
D' | ≥ 2. This means that u is atleast 2 – dominated, which implies u pn[ vi, D ], a contradiction. 

This is true for all u pn[ vi, D ]. This implies | pn[ vi, D ] | = , which is not possible as G is a  – 

stable graph. Hence there is no graph G, which is  - stable VE such that ( G ) ≥ 3. 
Conclusion  

From the above discussion we conclude that if G is VE and  - stable, then ( G )  2.  

If ( G ) = 1, Kn is the only possible graph. 

Example 

 
Figure 3. 

In Fig. 3,  ( G ) = 2, D – { v }  { 1 }, D – { v }  { 2 }, D – { v }  { 6 }, D – { u }  { 4 }, D – { u 

}  { 5 } and D – { u }  { 3 } are  - sets for G and every  - set is a clique, implies G is  - stable 

and VE with  ( G ) = 2. 

Observation 1 
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A  – stable graph does not have a down vertex. 

Proof 

If u  V ( G ) is a down vertex, then there is a  – set D for G such that | pn [ u, D ] | = , which is not 

possible by R3.                                                                                       

Theorem 4 

If G is VE and  - stable, then every vertex of G is a level vertex. 

Proof 

Let G be a VE and  – stable graph. By Observation 1 we know that G does not have any down vertex. 

By Theorem 3, we know that if G is VE and  – stable, ( G )  2. Let D = { u, v } be a VE  – set for 

G such that | D | = 2.  Let V1 = { u1, u2, …, up } be the set of vertices in V – D such that D – { u }  { 

ui } are  – sets for G, i = 1, 2, …, p. Let V2 = { v1, v2, …, vq } be the set of vertices in V – D such that 

D – { v }  { vj } are  – sets for G, j = 1, 2, …, q, p, q  2 ( by R3 ). 

Let D' = { ui, v }, D'' = { u, vj }, i = 1, 2, …, p, j = 1, 2, …, q. D' are  – sets for G not containing u, v1, 

v2, …, vp. D'' are  – sets for G not containing v, u1, u2, …,uq. For every v in G, there is a  – set not 

containing v, implies G has no up vertices [2]. 

Let D = { u } be a VE  – set for G such that | D | = 1.  Since ( G ) = 1 and G is VE, any vertex is a  – 

set for G. For all v V( G ), there is a  – set not containing v, implies G has no up vertices [2].                                          

In [8], Yamuna and Karthika have introduced the concept of domination subdivision stable graphs. A 

graph G is said to be domination subdivision stable ( DSS ) if the  - value of G does not change by 

subdividing any edge of G. We shall denote the graph obtained by subdividing any edge e = ( uv ) of a 

graph G, by Gsduv. Let w be a vertex introduced by subdividing ( uv ). We shall denote this by Gsduv = 

w. 

In [9], they have proved the following results 

R4. A graph G is DSS if and only if for every u, v V( G ), either  

i. There is a  - set containing u and v or  there is a  - set D such that 

ii. pn[ u, D ]  = { v }, or  

iii. v is atleast 2 – dominated. 

Example 

 

 
Figure 4. 
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In Fig. 4, D = γ ( G ) = { u, v } = 2. In Fig. 4 ( b ), there is a  - set containing v, y and Gsdvy = 2. In 

Fig. 4 ( c ), x pn [ u, D  ] and Gsdux = 2. In Fig. 4 ( d ), y is 2 - dominated and Gsduy = 2. This is true 

for all e = ( a b )  E ( G ), which implies that G is a DSS graph. 

Theorem 5 

Let G be any  - stable VE graph. Then G is DSS. 

Proof 

If G is VE and  – stable, we know that  ( G )  2. Let D = { u, v } be a VE  – set for G. Let V1 = { 

u1, u2, …, up } be a set of vertices in V – D such that D – { u }  { ui } are  – sets for G, i = 1, 2, …, 
p. Let V2 = { v1, v2, …, vq } be the set of vertices in V – D such that D – { v }  { vj } are  – sets for 

G, j = 1, 2, …, q.  
D' = { ui, v } and D'' = { u, vj } are  – sets for G, for all i = 1, 2, …, p, j = 1, 2, …, q. 
Claim  

For all uipn [ v, D ], vjpn [ u, D ], 2  i  p, 2  j  q, { ui, vj } is a  – set for G, if ui adjacent to vj. 

Proof 

ui dominates private neighbors of u, vj dominates private neighbors of v. Let x  V ( G ) such that x is 

2 – dominated with respect to D. Since G is VE, either D – { u }  { x } or D – { v }  { x } is a  – 

set for G. Assume that D''' = D – { u }  { x } is a  – set for G. Since vj is a private neighbor of u, vj 

can be dominated only by x. If x was exchangeable with v, then by similar arguments ui can be 

dominated by x only. So, every k – dominated vertex is adjacent to either ui or vj. So { ui, vj } is a  – 

set for G, whenever uivj. 

Let D
iv
 = { ui, vj }, for all uipn [ v, D ], vjpn [ u, D ], uivj. 

D = { u, v }, D' = { ui, v }, D'' = { u, vj }, D
iv
 = { ui, vj } are  – sets for G, for all i =1, 2, …, p and j = 

1, 2, …, q. 
To prove that, G is DSS we consider all possible edges of G. The possible edges of G are ( ui u ), ( ui v 

), ( uiuj ), ( vi v), ( vi u ), ( vivj ), ( uivj ), ( u v ).    

We prove that G is DSS, by showing that for all ( u, v )  V ( G ), u  v, atleast one of the conditions 

of R4 is satisfied. 

1. D' is a  – set for Gsduiu, since u is 2 – dominated by ( ui, v ), implies  ( Gsduiu ) =  ( G ).   

2. D' is a  – set for Gsduiv, since ui, v  D, for all i = 1, 2, …, p, implies  ( Gsduiv ) =  ( G ).   

3. D' is a  – set for Gsduiuj, i  j, i, j = 1, 2, …, p, since every uj is dominated by ( ui, v ),  that is 

each uj is a 2 – dominated vertex, implies  ( Gsduiuj ) =  ( G ).   

4.    a)   D
iv
 is a  – set for Gsduivj, for all uipn [ v, D ], vjpn [ u, D ], uivj,     

                i  j, i = 1, 2, …, p, j = 1, 2, …, q. 
b) D'' is a  – set for Gsduivj, if ui is 2 – dominated. 

c) D' is a  – set for Gsduivj, if vj is 2 – dominated. 

d) D' and D'' are  – sets for Gsduivj, if ui and vj are both 2 – dominated. 

In all cases a – d,  ( Gsduivj ) =  ( G ). 

5. D is a  – set for Gsduv, since u, v  D, implies  ( Gsduv ) =  ( G ).  

6. D'' is a  – set for Gsdvjv, since v is 2 – dominated by ( vj, u ), implies  ( Gsdvjv ) =  ( G ).  

7. D'' is a  – set for Gsdvju, since vj, u  D, for all j = 1, 2, …, q, implies  ( Gsdvju ) =  ( G ). 

8. D'' is a  – set for Gsdvivj, i  j, i, j = 1, 2, …, q, since every vi is dominated by ( vj, u ), that is 

each vi is a 2 – dominated vertex, implies  ( Gsdvivj ) =  ( G ).   

So we conclude that, for all ( u, v )  V ( G ), u  v, atleast one of the conditions of R4 is satisfied, 

implies G is DSS.                                                                   

In [10], Yamuna and Sridharan had defined a graph G to be Just excellent ( JE ), if  to each u  V, 

there is a unique  - set of G containing u.  
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Example 

 
Figure 5. 

In Fig. 5, G is a JE graph and { 1, 4 }, { 2, 5 }, { 3, 6 }, { 7, 8 } are the distinct  - sets for G. 

In [10], they have proved the following results 

R5. A graph G is JE if and only if, 

i.  ( G ) divides n. 

ii. d ( G ) = n /  (G ), where d ( G ) denotes the domatic partition of G. 

iii. G has exactly n /  ( G ) distinct  - sets. 

R6..  In a JE graph, G ≠  
n

K  every vertex u is a level vertex, and also ( G – u ) =   ( G ). 

Theorem 6 

If G is a JE and  - stable graph, then G – u is  - stable for every u  V( G ). 

Proof  

If G is JE, we know that every u  V ( G ) is a level vertex by R6.  Let d ( G ) = | { V1 }, { V2 }, …, { 
Vk } |. By second condition in R5 we know that k = n /  ( G ). Let u  Vi. Consider G – u. By third 

condition in R5, we know that { V1, V2, …, V i – 1, V i + 1, …, Vk } are  - sets for G – u also. We claim 

that these are the only possible  - sets for G – u. If possible assume that D is a  - set for G – u but not 

for G. Let v be any vertex in D. Since G is JE there is a unique  - set for G containing v, say v Vj. 

Since D ≠ Vj, D and Vj are two  - sets for G containing v, a contradiction as every  - set of G is 

unique. This means that  { V1, V2, …, V i – 1,  V i + 1, …, Vk } are the only possible  - sets for G – u. 

This implies G –  u is  - stable, for all u V ( G ). 

Remark 

By Theorem 6 we can generate  - stable graphs from G, if G is a JE  - stable graph with n vertices. 

We can generate a maximum of n -  - stable graphs if G – u is distinct, for all u  V ( G ). 

 

 

Example 

 
Figure 6. 
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In Fig. 6,  ( G ) =  ( G – 7  ) = { 6, 7 } and G – 7 is also  – stable. ( G – u ) is isomorphic to ( G – 

7 ), for all u  V ( G ). 
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