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A B S T R A C T

In the present study, we have constructed an interaction network of 29 antibiotic resistant genes along with 777
interactions in E. coli O157:H7. Gene ontology analysis reveals that 94, 89 and 67 genes have roles in the cellular
process, biological process and molecular function respectively. Gene complexes related to tripartite efflux
pumps mdtEF-tolC and ABC family efflux pump macAB-tolC play key roles in multidrug efflux systems. It is
noteworthy to mention that, 19 genes are involved in multi-efflux pumps and they play a significant role in
multidrug resistance (MDR); while 18 genes are vital for fatty acid synthesis. Interestingly, we found that the
four genes arnABCD are involved in both MDR and in fatty acid synthesis. Hence these genes could be targeted
for new drug discovery. On the whole, our results provide a detailed understanding of the mode of MDR me-
chanisms in E.coli O157:H7.

1. Introduction

Escherichia coli (E. coli) is a Gram-negative, rod-shaped bacterium
and a well-known gut microbial flora. The pathogenicity attained by the
non-pathogenic E. coli strains is due to the gene transfers or external
plasmid insertions [1, 2]. The E. coli O157:H7, a Shiga-toxin producing
Entero-hemorrhagic strain is the causative pathogen of the hemolytic
uremic syndrome (HUS) in humans. It transmits mainly through the
contamination of meat while butchering and packaging. The HUS
symptoms include bloody diarrhoea and severe abdominal pain that
leads to the formation of clots in capillaries and causes hemolytic an-
emia, thrombocytopenia and renal failure. The treatment is limited to
rehydration, medication for fever and pain [3–5]. E. coli O157:H7 strain
has much higher intrinsic levels of resistance to different antibiotics due
to the effectiveness of the outer membrane (OM) as a barrier and
through multidrug efflux pumps. Efflux pumps (EP's) helps in reducing
OM permeability and thus reduces antibiotic uptake which results in
drug resistance [6]. EP's affects almost all classes of antibiotics in-
cluding Macrolides, Tetracyclines, and Fluoroquinolones. These anti-
biotics act on inhibition of DNA or protein biosynthesis and hence they
need to penetrate into the cell to exert the effect. Some EP's are drug
specific but most of them are multidrug transporters and capable of
expelling a huge spectrum of structurally unrelated drugs [7]. Unlike

the targeting of single pathway, a multi-targeted approach is necessary
to establish successful treatment for HUS caused by E. coli O157:H7.
Thus the better understanding of the pathogenesis and drug resistance
mechanisms is important to identify better targets and to develop novel
drugs to treat HUS [8].

The gene network based approaches becomes essential to determine
the impact of genes or proteins on biological functions [9]. The inter-
action network analysis helps to explore the useful biological in-
formation of AMR mechanisms which in return helps to identify the key
target genes or proteins in cascade and to design novel drugs to control
the infections caused by the AMR pathogenic strains [10–13]. Previous
work using computational approaches from our lab has reported the
regulation of genes on ampC beta-lactamase synthesis, multidrug-re-
sistant gene interaction networks in A. baumannii and S. aureus [14–16].
The present study includes the extraction of AMR genes, construction
and analysis of interactome in pathogenic E. coli O157:H7 strain
(Fig. 1). The molecular interactions and the molecular mechanisms of
the AMR genes are presented which will be very much-needed for the
discovery of the novel and potent drugs for the successful treatment of
the disease. We have used the clustering approach and topology ap-
proaches to identify the biologically important genes which play an
important role in drug resistance mechanisms. The gene interaction
network approach is one of the promising ways of studying the
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functions of gene or protein and the associated partners. Highly inter-
connected genes are clustered and share a similar functional annota-
tions and pathways. By using the topological approach we have mea-
sured the centrality in the network to study the global structure. The
shortest path length describes the length of edge between the nodes.
Simultaneously we have calculated the shortest path length between
antibiotic resistant genes or proteins to find the correlation in gene
expression levels. Similarly, the connecting edges of genes or proteins
within the clusters which are exhibiting high edge betweenness cen-
trality are considered as connecting bridges of the network [17–19].

2. Results

2.1. Data collection and network construction

We have collected resistance genes in E. coli from Antibiotic
Resistance gene Database (ARDB). Out of 472 collected resistance genes
92 entries are found to be unique. We have used two well-known da-
tabases for interaction data, STRING and GeneMania (GM) for col-
lecting interaction data. STRING and GM databases have returned in-
teractions for 25 AMR genes out of 92 unique genes. We further verified
for the redundancy in obtained interacting pairs from both the

databases. Out of 50 genes only 29 genes are unique and the interac-
tions were collected from the two databases. We have collected inter-
actions from each database separately. STRING database has given hits
related to various E. coli strains and we have chosen E. coli O157:H7
strain for the study because of its severe impact on humans. The
STRING database has 90 interactions between 25 AMR genes. The genes
include accA, acrAB, ampC, arnA, bcr, emrD, macAB, mdfAEFGHKLM-
NOP, pldA, tolC, upk and Z1870. As we have found there is less con-
nectivity between the AMR genes found in STRING database, we have
modified our search criteria from medium confidence (0.4–0.6) to low
confidence (0.1–0.3) to capture a maximum number of interactions. We
further extended the network with the interactors of AMR genes and
returned with 45 nodes and 254 edges. GeneMania has 1226 interac-
tions between 42 genes, out of which 25 genes are AMR genes. The set
of 25 AMR genes collected from GeneMania includes acrAB, ampC,
arnA, bacA, bcr, emrDE, macAB, mdfAEFGHKLMNOP, tolC and tetAC.
The interaction data collected from both databases has many repeti-
tions, to reduce the redundancy we have combined the interaction data
and removed the duplicate values. The final interaction data is left over
with 777 interactions between 85 interactors. We have used Cytoscape
3.5.1 to construct the interaction network of 29 AMR genes.

Fig. 1. A systematic workflow of AMR gene interaction network analysis of E. coli O157:H7 strain. The list of AMR genes collected from the interaction
databases GeneMania and STRING. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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2.2. Clustering analysis

We have used a Cytoscape plug-in called MCODE for clustering the
genes based on the connectivity scores and marked the five clusters
(C1–C5). The clustering analysis was performed using default para-
meter of MCODE tool to ensure the efficiency of functional partners
towards AMR genes. We have identified five efficient clusters based on
the interactions between the genes. Around 60 functional partners were
found to be present in five clusters. Among the clusters, the first cluster
possessed 30 nodes with a score 25.517 while the second cluster con-
tained 13 nodes with score 12.833. Subsequently, the third, fourth and
fifth clusters contained 10 nodes, 4 nodes and 3 nodes with the scores
10, 6 and 3 respectively (Table 1).

2.3. Functional enrichment analysis

Functional enrichment analysis using STRING tool has resulted the
enriched GO terms such as cellular process (CC), molecular function
(MF) and biological process (BP) for 29 resistance genes and for their
777 interacting functional partners. Further, the significant GO terms
were selected based on the p-value less than 0.05. Out of 777 functional
interactions, the corresponding GO terms were extracted, in which 89
genes are found to have role in biological processes, 67 genes in

molecular function and 94 genes for cellular process from the STRING.

2.4. Shortest path length and closeness centrality analysis

The shortest path lengths and closeness centrality of the nodes in
clusters are calculated by using NetworkAnalyzer. We have computed
the pairwise betweenness of each functional partner in the network.
The genes along with the calculated average shortest path length,
cluster coefficient and high closeness centrality of the genes has been
provided as Supplementary file 1.

3. Discussion

AMR genes in pathogenic bacteria play a very crucial role in at-
taining resistance to various drugs used against the disease. There are
multiple ways adopted in order to resist the entry of antibiotics inside
the cell by different efflux mechanisms. In our study the gene network,
clustering analysis and functional enrichment analysis of AMR genes
and their functional partners has provided valuable information on
drug efflux pumps and tripartite efflux systems. The enriched GO terms
such as cellular components, biological processes and molecular func-
tions, gene complexes, signalling pathways related to the multidrug
efflux systems have provided the complete profile of AMR genes in-
teractions, functional partners and the role of their association towards
the drug resistance.

For each pair of functional partners in clusters the average shortest
path length, cluster coefficient and closeness centralities are calculated
by using NetworkAnalyzer. The average shortest path length gives the
expected distance between the two connected nodes. Genes with
shortest path length and high closeness centrality are considered as the
controlling point of molecular communication. The clustering coeffi-
cient of each is calculated based on the number of neighbours it is
connected. The nodes with less than two neighbours are assumed to
have a clustering coefficient of 0. The clustering coefficient values
normally lie in between 0 and 1 (Table 2). The interaction network of
the genes obtained from STRING and GeneMania has shown the dense
interactions between AMR genes and the functional interactors. We
further carried out the functional enrichment analysis of all the inter-
actors using STRING tool, it has shown that the genes in network play a
major role in biological processes related to lipid metabolism and fatty
acid synthesis (Supplementary file 2; GO enrichment). The processes
lipid metabolic process (GO.0006629), lipopolysaccharide biosynthetic
process (GO.0009103), biosynthetic process (GO.0008610), fatty acid
biosynthetic process (GO.0006633), cellular lipid metabolism process
(GO.0044255) are highly enriched in our results. Along with the pro-
cesses related to drug response and drug transportation such as re-
sponse to the chemical (GO.0042221), response to an antibiotic
(GO.0046677), drug transport (GO.0015893), response to the drug
(GO.0042493) has been enriched. Molecular functions such as trans-
porter activity (GO.0005215), drug transporter activity (GO.0090484),
drug transmembrane transporter activity (GO.0015238), fatty acid

Table 1
Clustering analysis using Cytoscape-MCODE tool.

Cluster Score
(density)

Nodes Edges Gene name AMR genes

1 25.517 30 397 aaeB, acrA, acrD, acrE, acrF, ampC, arnA, bacA, bcr, cusC, emrA, emrD, emrK, macA,
macB, mdfA, mdtB, mdtC, mdtE, mdtF, mdtH mdtI, mdtJ, mdtL, mdtN, mdtP, sugE, tolC,
ydhJ, ydhK

mdtN, mdtE, emrD, mdtL, mdfA, macA, macB,
ampC, mdtF, acrA, bacA, mdtP, bcr, mdtH, arnA,
tolC

2 12.833 13 77 Z4863, Z4866, accB, fabD, accD, accA, fabH, fabF, ECs3207, Z1549, ECs1472, fabG,
accC

accA

3 10 10 45 betI, envR, slmA, ybjK, ycfQ, acrR, ybiH, uidR, tetC, bdcR tetC
4 4 4 6 arnC, arnD, arnT, arnB –
5 3 3 3 acrB, cusA, mdtK acrB, mdtK

List of genes involved in clusters along with the MCODE scores. AMR genes from each cluster are given in separate column.

Table 2
Network analysis by using NetworkAnalyzer.

Gene
name

MCODE
cluster

Average shortest
path length

Cluster
coefficient

Closeness
centrality

fabG Cluster 2 1 0.492424 1
fabD Cluster 2 1 0.461538 1
fabH Cluster 2 1 0.406593 1
Z1549 Cluster 2 1 0.352564 1
mdtG NIC 1 0.30303 1
msyB NIC 1.5 0.3 0.666667
ydhJ Cluster 1 1.555556 0.421371 0.642857
aaeB Cluster 1 1.629032 0.366667 0.613861
arnB Cluster 4 1.666667 0.238095 0.6
sugE Cluster 1 1.83871 0.398551 0.54386
mdtI Cluster 1 1.967742 0.353846 0.508197
acrE Cluster 1 2.016129 0.413306 0.496
ydhK Cluster 1 2.145161 0.438095 0.466165
acrF Cluster 1 2.209677 0.375223 0.452555
acrD Cluster 1 2.258065 0.393048 0.442857
yeeO NIC 2.274194 0.428947 0.439716
tolC Cluster 1 2.274194 0.296154 0.439716
ampC Cluster 1 2.306452 0.362698 0.433566
cusC Cluster 1 2.322581 0.414773 0.430556
mdtF Cluster 1 2.322581 0.330014 0.430556

The top 20 genes with the shortest path length and high closeness centrality are
listed here. The average shortest path length gives the expected distance be-
tween the two connected nodes and genes with shortest path length and high
closeness centrality are considered as the controlling points of molecular
communication. The cluster coefficient value lies in between 0 and 1. The value
0 indicates the node with less than 2 neighbours. (Note: NIC -Not in cluster).
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synthase activity (GO.0004312). Enriched KEGG pathways include fatty
acid biosynthesis, fatty acid metabolism, biotin metabolism, pyruvate
metabolism and beta-lactam resistance.

From the enriched GO terms we have identified the genes re-
sponsible for fatty acid synthesis and MDR efflux related genes. The

AMR genes acrA, arnA, arnB, arnC, arnD, macA, macB, mdfA, mdtE,
mdtF, mdtG, mdtH, mdtK, mdtL, mdtM, mdtN, mdtO, mdtP and Upk are
found to be related to MDR and the genes accA, accB, accC, accD, arnA,
arnB, arnC, arnD, arnT, ECs1472, ECs3207, fabD, fabF, fabG, fabH, pldA,
Z4863 and Z4866 are responsible for fatty acid synthesis or lipid me-
tabolism (Table 3). The genes arnA, arnB, arnC and arnD have roles in
both fatty acid synthesis and also in MDR (Fig. 2).

The clustering analysis between 85 interactors and 777 unique in-
teractions by using MCODE has given the local dense graph of the gene
complexes. Based on the connectivity score obtained from MCODE we
have selected 5 clusters (C1-C5) with 60 functional partners (Fig. 3).
Among the five clusters the C1 and C5 has enriched with GO terms
related to response to antibiotics and drug transport activity, whereas
the C2, C4 clusters are enriched with the lipid and fatty acid synthesis
(Fig. 4). The functional enrichment analysis of 30 interacting genes in
C1 cluster has shown the top enriched biological process, molecular
function, cellular components and KEGG pathways. Cluster C2 has
genes responsible for fatty acid synthesis and lipid metabolism and it is
also shown to have highly dense interactions with C4, whereas the
cluster C3 has no significant interactions with other clusters. The genes
in cluster 3 are observed that they have the role in biological processes
such as negative regulation of cellular process and transcription. Genes
in cluster 3 contain PFAM protein domains belonging to tetR family
related bacterial regulatory proteins (Supplementary file 2; MCODE
cluster analysis).

In the cluster C1, out of 30 genes 12 genes (acrA, arnA, macA, macB,
mdfA, mdtE, mdtF, mdtH, mdtL, mdtN, mdtP and upk) are associated to
the antibiotics response and drug transport. The transport systems or
efflux pumps in bacteria involves in transporting various compounds
into or outside of the cell. The genes acrA, macB, mdfA and mdtN are
responsible for biological processes such as drug transport
(GO.0015893), drug response (GO.0042493), drug transporter me-
chanism (GO.0090484) and molecular function drug transporter ac-
tivity (GO.0090484), drug transmembrane transporter activity
(GO.0015238). The cluster C5 has densely connected with cluster C1
and enriched with the molecular functions like drug transmembrane
transport and response to the drug. Enrichment of response to

Table 3
Functional assessment of genes within the five clusters.

AMR genes Genes related to fatty acid
synthesis

Genes responsible for Multi Drug
resistance

accA accA acrA
acrA accB arnA
acrB accC arnB
ampC accD arnC
arnA arnA arnD
bacA arnB macA
bcr arnC macB
emrD arnD mdfA
emrE arnT mdtE
ksgA ECs1472 mdtF
macA ECs3207 mdtG
macB fabD mdtH
mdfA fabF mdtK
mdtE fabG mdtL
mdtF fabH mdtM
mdtG pldA mdtN
mdtH Z4863 mdtO
mdtK Z4866 mdtP
mdtL Upk
mdtM
mdtN
mdtO
mdtP
pldA
tetA
tetC
tolC
upk
Z1870

List of AMR genes and functional partners responsible for fatty acid synthesis
and multi drug resistance in E.coli O157:H7. The genes arnABCD are involved in
both fatty acid synthesis and MDR.

Fig. 2. Functional assessment analysis of AMR genes. The AMR genes along with their functional partners are mainly involved in fatty acid synthesis and multi
drug resistance (MDR). The MDR related genes are highlighted with red colour. The genes related to fatty acid synthesis are highlighted with blue colour. Genes that
share both the functionality (MDR and fatty acid synthesis) are given yellow colour. The other functional partners which are not involving in any of these functions
are given in light blue colour. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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antibiotics and transport of drugs shows the role of AMR genes in MDR
mechanisms. The genes in clusters C2 (Ecs1472, accA, accB, accC, accD,
fabD, fabF and fabH) and C4 (arnB, arnC, arnD and arnT) has been in-
volved in enriched biological processes such as fatty acid biosynthesis,
lipid-A biosynthetic process and lipo-polysaccharides biosynthesis
process; molecular functions like fatty acid synthase activity, acetyl-
CoA carboxylase activity and pathways related to fatty acid biosynth-
esis, fatty acid metabolism. Our enrichment results show that the AMR
genes and associated functional partners play a major role in fatty acid
biosynthesis which is considered to be one of the significant potential
targets for the development of antibacterial compounds [19]. Our work
may support the earlier studies carried out on Gram-negative bacteria
[20, 21] and it has been reported the need to concentrate on bacterial
fatty acid synthesis mechanism for novel antibacterial targets.

Another notable result includes the enrichment of gene complexes
related to tripartite efflux pumps. The outer membrane of the Gram-
negative bacteria acts as a barrier and will not permit substances like
antibiotics, antiseptics, dyes, and detergents to enter into the cell thus
the Gram-negative bacteria shows much intrinsic levels of resistance
than Gram-positive bacteria [22, 23]. The porin channels permit the
small molecules like nutrients and slow down the influx of antibiotics or

effluxes the large compounds. Usually, the antibiotics are larger than
the nutrients. Along with the outer membrane, certain Resistance-No-
dulation-Division (RND) efflux pumps contribute in generating intrinsic
resistance by forming a tripartite complex with periplasmic proteins
and outer membrane channels. All the three components are important
for RND pumps function; the absence of a single component may cause
the complex non-functional [24]. In our results, we have noticed the
enrichment of multidrug efflux pumps, along with the fatty acid
synthesis pathways which infer the contribution of the AMR genes in
the tripartite complex.

In our gene network, out of 85 interacting genes, 22 genes are
specifically related to various drug efflux pumps. We have calculated
the number of interactions for each gene (Supplementary file 2;
Functional annotation) and the top five genes which have the highest
number of interactions are macA, tolC, mdtF, acrA and mdtE with 45, 45,
45, 44 and 42 edges respectively. macA gene is a macrolide transporter
subunit and it is a part of macAB-tolC system. The genes mdtE, mdtF are
the components of mdtEF-tolC tripartite efflux system [25]. AcrA gene
plays important role in acrABZ-tolC drug efflux system [26, 27]. The
macB gene with 37 edges is a macrolide transporter ATP binding per-
mease and part of tripartite efflux system macAB-tolC, ABC family efflux

Fig. 3. Clustering analysis of AMR gene interaction network: Gene clusters obtained from MCODE are isolated and marked as C1 - C5. For easy identification
AMR genes in the network are highlighted with red colour and the other functional partners are given light blue colour. The cluster C1 has 16 AMR genes and the
cluster C5 has 2 AMR genes. The clusters C2, C3 has only one AMR gene each and there are no AMR genes in Cluster C4. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)
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pump. The gene tolC, responsible for outer membrane channel protein
has been found to have a key role in many well known multidrug efflux
systems [28,29]. Our results provide a clear understanding of the mo-
lecular mechanism works in attaining MDR in E. coli O157:H7 strain.
The interaction network of AMR genes has shown functional partners
which are responsible for drug efflux system, the functional annotations
of all the interacting partners are provided. Thus our results show the
complete profile of drug resistance mechanisms through the tripartite
efflux systems by AMR genes along with the functional partners in-
volved in the interaction network.

4. Conclusion

MDR in pathogenic bacteria is a major concern worldwide.
Therefore there is an urgent need to explore the interactions between
AMR genes and their functional partners for better understanding of the
AMR mechanisms. We have presented an approach to identify MDR
mechanisms along with the functional enrichment of GO terms. The
resistance attained by the pathogenic bacteria E. coli O157:H7 strain is
mainly through drug efflux mechanisms by the active efflux pumps and
exploited to improve the treatments by developing new potent drugs.
Our results provide a detailed information on the interactions of major
efflux pumps which plays an active role in drug efflux in E. coli

O157:H7. The interaction network generated in the present study helps
us to understand the various mechanisms and their associated gene/
protein interactions of AMR genes. These observations will be helpful
for better understanding the AMR mechanisms in E. coli O157:H7 and
the interactions between the resistance genes and their functional
partners.

5. Materials and methods

5.1. Antibiotic resistant genes database (ARDB)

ARDB (http://ardb.cbcb.umd.edu/) is a manually curated database
of publically available information on antibiotic resistance genes. The
annotation of each AMR gene includes resistance profile, mechanism of
action, ontology, and Cluster of Orthologous Groups (COG) along with
the external links to sequence and protein databases. The database has
information of 23,137 genes from 632 genomes of 1737 species [30].

5.2. STRING network analysis

STRING (https://string-db.org/) is a protein interaction database
which consists of pre-computed gene or protein interactions. The in-
teractions includes direct (through physical contact) and indirect

Fig. 4. Functional similarity between the clusters. The five gene clusters are compared using the functional enrichment analysis. The clusters C1 and cluster C5
share the genes that are involved in MDR by efflux pumps. Clusters C2 and C4 has genes related to fatty acid synthesis. Whereas the cluster C3 has no significant
enrichment of fatty acid synthesis or MDR. As shown in the figure cluster C3 has very few interactions with other clusters. The MDR related genes are highlighted
with red colour. The genes related to fatty acid synthesis are highlighted with blue colour. Genes that share both the functionality (MDR and fatty acid synthesis) are
given yellow colour and the other functional partners are given light blue colour. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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(functional similarity). Data can be retrieved by using the raw amino
acid sequence or the unique protein identifier. The functional partners
involved in the interactions are ranked by estimated confidence scores
obtained from prediction algorithms based on the genomic information.
The interactions are categorised in four classes based on the confidence
scores, such as highest confidence (0.9–1), high confidence (0.7–0.8),
medium confidence (0.4–0.6) and low confidence (0.1–0.3). These
probabilistic confidence scores were scored based on a special scoring
framework by STRING and it is based on the association in a common
reference set. The interactions are integrated with the sources like
genomic context, high throughput experimental data, literature survey,
co-expressed gene analysis and database data mining. The current
STRING version 10.5 consists of 1,380,838,440 interactions of
9,643,763 proteins from 2031 organisms [31–33].

5.3. GeneMANIA

GeneMANIA (http://www.genemania.org) is a user-friendly web
interface used for generating hypothesis about gene function, analyzing
gene lists and prioritizing genes for functional assays. A query of gene
list results with the functionally similar genes which are identified using
genomics and proteomics data. The weights assigned to the interactions
indicate the prediction value of each selected data set. Currently the
database supports with nine organisms including A. thaliana, C. elegans,
D. rerio, D. melanogaster, E. coli, M. musculus, H. sapiens, R. novergicus,
and S. cerevisiae. The data is collected from different databases such as
GEO, BioGRID, Pathway commons, I2D and the organism-specific
functional genomics datasets [34–36].

5.4. Gene interaction network construction

Cytoscape (http://www.cytoscape.org/) is one of the popular tools
available as open source software and is used for visualization, analysis
of molecular and genetic interaction networks. Cytoscape is compatible
with all operating systems such as Windows, Linux and Mac OS [37,
38].

5.5. Clustering analysis

MCODE is a Cytoscape app used for clustering analysis. It is based
on MCODE (Molecular Complex Detection) algorithm. It is used to
identify clusters of nodes which are highly interconnected. The algo-
rithm operates mainly in three stages, vertex weighting, complex pre-
diction and optionally post-processing. The network of interacting
molecules is modelled as a graph where every vertex is a molecule and
the edge as a molecular interaction. Directed graph is used for known
cell signalling and known pathways, otherwise undirected graph is used
[39].

5.6. Shortest path length and closeness centrality analysis

NetworkAnalyzer is a user friendly and versatile Cytoscape plugin,
used to compute and display topological parameters such as number of
nodes, connecting edges, the network diameter, density, radius, cen-
tralization, heterogeneity, clustering coefficient, the characteristic path
length, the distribution of node degrees, neighbourhood connectivity,
average clustering coefficients and the shortest path lengths. It can be
used to analyze both directed and undirected networks also allow
constructing the intersection or union of two networks [17].

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.ygeno.2018.06.002.
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