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Abstract

In data mining, frequent itemsets plays an important role which is used to identify the correlations among the fields of
database.In this paper, we propose a new association rule mining algorithm called Double Hashing Based Frequent
Itemsets, (DHBFI) in which hashing technology is used to store the database in vertical data format. This double
hashing technique is mainly preferred for avoiding the major issues of hash collision and secondary clustering
problem in frequent itemset generation. Hence this proposed hashing technique makes the computation easier, faster
and more efficient.Also this algorithm eliminates unnecessary redundant scans in the database and candidate itemset
generation which leads to less space and time complexity.
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1. Introduction

Data mining, the extraction of hidden predictive information from large databases, is a powerful new
technology with great potential to help companies focusing on the most important information in their
data warehouses. Data mining tools predict future trends and behaviours, allowing businesses to make
proactive, knowledge-driven decisions. The automated prospective analysis, offered by data mining move
beyond the analysis of past events provided by retrospective tools, typically of decision support systems.
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Data mining tools can answer business questions that traditionally were too time consuming to resolve.
They scour databases for hidden patterns, finding predictive information that experts may miss because it
lies outside their expectations.

1.1 Frequent ItemSets

The problem of association rule mining is defined as: Let 1= {i, i2...1,} be a set of /I binary attributes
called items. Let D= {t;,t,...t,,} be a set of transactions called the database. Each transaction in D has a
unique transaction ID and contains a subset of the items in I A rule is defined as an implication of the
form X->Y where %, ' = fand. & 1% = @, The sets of items (itemsets) X and Y are called antecedent
and consequent. Association rules are usually required to satisfy a user-specified minimum support and a
user-specified minimum confidence at the same time. Association rule generation is usually involving
two steps:

e  First, minimum support is applied to find all frequent itemsets in database.
e  Second, these frequent itemsets and the minimum confidence constraint are used to form rules.

To find the frequent item sets, efficient algorithm such as Apriori Algorithm is used.Apriori uses a
"bottom up" approach, where frequent subsets are extended one item at a time (a step known as candidate
generation), and groups of candidates are tested against the data. The algorithm terminates when no
further successful extensions are found. Apriori uses breadth-first search and a tree structure to count
candidate item sets efficiently. It generates candidate item sets of length & from item sets of length £ — 1.
Then it prunes the candidates which have an infrequent sub pattern.

Sequential pattern mining is essential in many applications, including computational biology, consumer
behaviour analysis, web log analysis, etc. Although sequential patterns can tell what items are frequently
to be purchased together and in what order, they cannot provide information about the time span between
items for decision support. Previous studies dealing with this problem either set time constraints to restrict
the patterns discovered or define time-intervals between two successive items to provide time
information. Accordingly, the first approach falls short in providing clear time-interval information while
the second cannot discover time-interval information between two non-successive items in a sequential
pattern. To provide more time-related knowledge, Ya-Han Hu et al (2009) defined a new variant of time
interval sequential patterns, called multi-time-interval sequential patterns, which can reveal the time-
intervals between all pairs of items in a pattern. They developed two efficient algorithms, called the MI
Apriori and MI-Prefix Span algorithms, to solve this problem. The experimental results show that the MI
Prefix Span algorithm is faster than the MI-Apriori algorithm, but the MI-Apriori algorithm has better
scalability in long sequence data.

In this paper, a new Double Hashing Based Frequent Itemset (DHBFI) generation algorithm of the
vertical data format for the transactional database is proposed. In this,first the data is represented as an
item and Transaction id set (Tidset) format. To avoid collision and primary clustering problem, quadratic
probing technique is used. Primary clustering occurs with linear probing because the same linear pattern,
if a bin is inside a cluster, then the next bin must also be in that cluster, or expand the cluster. Instead of
searching forward in a linear fashion, searching forward using a quadratic function is done.
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2 Literature Survey

There are many works in the literature that discuss about Association rules, hash based technique and
Frequent Itemsets. The Association Rule mining raised by R. Agrawal is an important research in data
mining field. His Apriori algorithm can discover meaningful itemsets and build association rules.
However, a large number of candidate sets are generated and the database needs repeated scanning. In
order to reduce the database scanning various studies were undergone. Further studies in data mining
have presented many efficient algorithms for discovering association rules.

The discovery of association rules has been discussed in the past using two steps namely: Finding out
all the frequent itemsets which are greater than or equal to user-specified minimum support threshold,
generating association rules from frequent itemsets[8].The GRA (Gradational Reduction
Approach)algorithm uses a hash based technique, which is similar to Hash Table to increase the access
efficiency. This algorithm uses an infrequent item sets filtering mechanism to avoid generating a great
deal of infrequent sub-itemsets of transaction records. It uses gradational reduction mechanism to reduce
the database size which uses the frequent itemsets as the information of filtration mechanisms to erase the
infrequent items from database at every phase. GRA algorithm can decrease a large number of non-
frequent itemsets and increase the utility rate of memory [5].

The transaction-marked DHP algorithm (TMDHP) is used in mining frequent itemsets in pervasive
computing. Each element of the itemsets and the transactions ID will be stored together in the hash table.
We need to access database once and avoids producing a candidate itemsets[10]. Many algorithms focus
on how to find the frequent itemsets quickly such as the Pincer-Search [6], FP-growth [3], ICI [4] and R.
Agrawal and R. Srikant [2] . Among those algorithms, Pincer-Search combines both the bottom-up and
top-down directions to reduce the number of candidate sets, and then increases the efficiency.

In addition, because FP-growth uses the structure of FP-tree to store the items of database, the
algorithm only needs to scan the database two times without generating any candidate sets in mining
frequent itemsets. Thus FP-growth can quickly finish the mining task. The HBMFI-LP method used
hashing technology to store the database in vertical data format. To avoid hash collisions, linear probing
technique was used. It generates the exact set of maximal frequent itemsets directly by removing all
nonmaximal itemsets. In each level, maximal frequent itemsets is generated by using the frequent
itemsets [9].

The hash based algorithm is used for candidate set generation. Here, a candidate 2-itemsets is
generated.By using that, the next level candidates are generated and the drawback is the item which is not
frequent is removed in the first level of candidate generation but it is not updated in the database.
[7].Association rule mining algorithm is used for generating frequent itemsets in a single pass and it has
two steps of partitioning and merging. Within each portion the Apriori approach is utilized to find the
frequent itemset and at last the partitions are merged. The time taken for database scan is more than the
time taken for candidate generation when the database size is large [1].

The SMM (Sparse-Matrix Mining) is used to find the frequent itemsets from sparse matrix. It uses a
special linked list unit and two strategies to store data in matrix. It maps the database to binary sparse
matrix (the binary form is Os and 1s, here the data are stored in the form of binary only) and stores the
compressed data into a linked list. When the transactions increases, its relative speed decreases. The
reason is, after SMM produces frequent k-itemsets, all frequent k-itemsets and related transactions need
to be kept in memory. When support is small, frequent 1-itemsets and frequent 2- itemsetss numbers are
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very large, accessing these data will cause many times of page faults, and thus the calculating speed
decreases [11].

An improved algorithm is used for mining the association rules in generating frequent k-itemsets. This
new algorithm finds frequent itemsets directly and removes the subset that is not frequent, which based on
the classical Apriori [12] instead of checking whether these candidates are frequent itemsets after
generating new candidates. Many algorithms now focus on how to reduce the number of scanning
database or the number of candidate sets.

3 Paper Organization

Section 1V presents the different hashing techniques used for frequent itemset.Section V presents the
proposed work for the system with the algorithm. Section VI deals with an example of the proposed work.
Section VII deals with an experimental results and Section VIII provides the conclusions.

4 Hashing Techniques

4.1 Apriori Algorithm using Hashing

In Apriori algorithm, candidate item sets are generated to find the frequent itemsets. When candidate
sets are generated, the algorithm needs to test their occurrence frequencies. This testing result in high
frequency in querying, so tremendous amounts of resources will be utilized both in time and in space. An
improved algorithm was proposed for generating frequent k-itemsets. Instead of judging whether these
candidates are frequent item sets after generating new candidates, this new algorithm finds frequent
itemsets based on the property that all subsets of a frequent item set must also be frequent. Through
pruning candidate itemsets by the infrequent itemsets, we reduce the number of scanning and the
redundancy. Hash data structures can be maintained to store databases. This makes easy in performing
several tasks. As vertical data format is followed, support also need not be calculated separately.
Minimum support threshold must be properly chosen such that it is not too high where we may lose some
interesting itemsets or too low where unimportant itemsets are generated. It can be taken by the number
of transactions in the tidset which is available as a count value in header node.

4.2 Hashing Techniques

A hash table or hash map is a data structure that uses a hash function to map identifying values, known
as keys (e.g., a person's name), to their associated values (e.g., their telephone number). Thus, a hash table
implements an associative array. The hash function is used to transform the key into the index (the Aash)
of an array element (the slot or bucket) where the corresponding value is to be sought. Ideally, the hash
function should map each possible key to a unique slot index, but this ideal is rarely achievable in practice
(unless the hash keys are fixed; i.e. new entries are never added to the table after it is created). Instead,
most hash table designs assume that hash collisions—different keys that map to the same hash value—
will occur and must be accommodated in some way. In a well-dimensioned hash table, the average cost
(number of instructions) for each lookup is independent of the number of elements stored in the table.
Many hash table designs also allow arbitrary insertions and deletions of key-value pairs, at constant
average cost per operation.

4.2.1 Separate Chaining

In the strategy known as separate chaining, direct chaining, or simply chaining, each slot of the bucket
array is a pointer to a linked list that contains the key-value pairs that hashed to the same location.
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Lookup requires scanning the list for an entry with the given key. Insertion requires adding a new entry
record to either end of the list belonging to the hashed slot. Deletion requires searching the list and
removing the element.

4.2.2 Open Addressing

In another strategy, called open addressing, all entry records are stored in the bucket array itself. When
a new entry has to be inserted, the buckets are examined, starting with the hashed to slot and proceeding
in some probe sequence, until an unoccupied slot is found. When searching for an entry, the buckets are
scanned in the same sequence, until either the target record is found, or an unused array slot is found,
which indicates that there is no such key in the table. The name "open addressing" refers to the fact that
the location ("address") of the item is not determined by its hash value. This method is also called closed
hashing. Well-known probe sequences include:

e Linear probing, in which the interval between probes is fixed.

e Quadratic probing, in which the interval between probes is increased by adding the successive
outputs of a quadratic polynomial to the starting value given by the original hash computation.

e Double hashing, in which the interval between probes is computed by another hash function.

4.2.3 Linear Probing

The linear hashing algorithm performs splits in a deterministic order, rather than splitting at a bucket
that overflowed. The splits are performed in linear order (bucket O first, then bucket 1, then 2 ...), and a
split is performed when any bucket overflows. If the bucket that overflows is not the bucket that is split
(which is the common case), overflow techniques such as chaining are used, but the common case is that
few overflow buckets are needed.

Using linear hashing, the address space (number of buckets) increases linearly and is exactly as large as
is needed. For any number of insertions, most of the overflow records are moved into primary buckets by
splits, and thus the number of overflow records is small. Thus, we expect to find our data in one access
most of the time.

4.2.4 Quadratic Probing

It is an open addressing method to handle overflows after a collision takes in some bucket of a hash
table. Quadratic probing operates by taking the original hash value and adding successive values of an
arbitrary quadratic polynomial to the starting value.

It is named quadratic probing because of the function it uses to resolve the collisions. The form of the
equation is generally /' (k) = ¢ik* + cok + ¢3. The function used might even be f (k) = ¢,k* if ¢, and ¢5 are
taken as zero. Suppose a cell H is reached but is occupied, then the next sequence of cells to be examined
wouldbe H+ 1%, H+ 2%, H+ 3% H+ 4., H+ k. Linear Probing, instead, would examine the sequence
H+1,H+2,H+3,H+4.., H+ k. This would result in primary clustering and the larger the cluster
grows, lesser will be the search efficiency for those items. Quadratic probing can be a more efficient
algorithm in a closed hash table. Quadratic probing provides good memory caching because it preserves
some locality of reference.
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4.2.5 Double Hashing

Double hashing is a computer programming technique used in hash tables to resolve hash collisions,
cases when two different values to be searched for producing the same hash key. It is a popular collision-
resolution technique in open-addressed hash tables.

Like linear probing, it uses one hash value as a starting point and then repeatedly steps forward an
interval until the desired value is located, an empty location is reached, or the entire table has been
searched; but this interval is decided using a second, independent hash function (hence the name double
hashing). Unlike linear probing and quadratic probing, the interval depends on the data, so that even
values mapping to the same location have different bucket sequences; this minimizes repeated collisions
and the effects of clustering. In other words, given independent hash functions %, and 4,, the jth location
in the bucket sequence for value £ in a hash table of size m is: h (k, j) = [h1 (k) +j*h2 (k)] mod m.

5 Proposed Work

Quadratic probing does indeed eliminate the primary clustering problem, it also places a restriction on
the number of items that can be put in the table-the table must be less than half full. Double hashing is
yet another method of generating a probing sequence. It requires two distinct hash functions (i) =i*g(k)
where g is a second hash function .Probe sequence is,

0Oth probe = h (k) mod TableSize

1th probe = (h (k) + g(k)) mod TableSize
2th probe = (h(k) + 2*g(k)) mod TableSize
3th probe = (h(k) + 3*g(k)) mod TableSize

ith probe = (h(k) + i*g(k)) mod TableSize (1)

where h(k)=k mod TableSize and g(k)=1+(k mod (TableSize-1) ) and TableSize should be prime.

5.1 Proposed System Architecture

—

Fig 1 DHBFI Architecture
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5.2 DHBFI Algorithm
Input: All transaction from the vertical hash table

Process logic: Finding the frequent itemsets
Output: Generating the frequent itemsets
begin
m=0; k=0;
Get the minimum support, min_sup;
Generate the new database in (Items,Tidset) format
For all Items I € D do
Increment m.
n=2*m + 1
Dk:D;
do
begin
Make a hash table of size n.
Map items to the buckets if collision
occurs then use double hashing technique.
Create a linked list for the k™ level to
maintain the transaction from the databse D,.
for all Items I € Dy do
begin
for all Items I € Dy do
Generate a subset of items.
end
Find common transaction between subsets in the k™ level.
Eliminate the subset <= min_sup.
Dy = Items >=min_sup.
Increment k.
end until frequent itemset found
end

6 Example of the Proposed Work

Table 1.Initial Transaction Database

Tidset Itemset
T Benoquin, Dialyte, Ibuprofen, Nutradrops
T2 Dialyte, Nutradrops
T3 Benoquin, Veetids
T4 Benoquin, Dialyte, Ibuprofen
T5 Benoquin, Nutradrops
T6 Dialyte, Ibuprofen
T7 Benoquin, Ibuprofen
T8 Dialyte, Nutradrops
T9 Benoquin, Dialyte

T10 Ibuprofen, Nutradrops
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For our convenience, Let us replace these real time items Benoquin, Dialyte, Ibuprofen,Nutradrops and
Veetids with I1, 12, 13, 14 and I5 respectively in tables.

Table 2 Transactional Database.

Tidset Ttemset
T 11,12, 13, 14
™ 2,14
T3 11,15
T4 I1,12,13
T5 11,14
T6 12,13
T7 11,13
T8 2,14
T9 I, 12
T10 13,14

By taking minimum support count = 3, the following table shows transaction set (Tidset) for all 5
items.

Table 3 Vertical Format of the Transactional Database

Tidset Itemset
11 T1, T3, T4, TS5, T7, T9
2 T1, T2, T4, T6, T8, T9
3 T1, T4, T6, T7, T10
14 T1, T2, TS5, T8, T10
5 T2, T3

The items in the transaction are hashed based on the hash function: h (k) = (order of item k) mod n. The
n value is determined by using the formula 2m + 1 where m is the number of items in the database. The
transaction in which I1 is present is connected in the form of linked list and the first node denotes the
number of occurrences of the item in the transactions. It can be observed from Fig.2 that I1 is hashed to
Ist location and it is determined using the hash function. Similarly all items are hashed into the hash
table.

The cross symbol indicates the end of the items in the list. Here, the linked list is created based on the
item set and not on the transactions because the transactions are more so that it occupies more memory
and it is very difficult to access the items. There is a link between transactions in each itemsets.

The linked list is created for all levels of frequent itemset generation. In the next higher level, the item
subsets become low and it is easy to find frequent itemsets of that level. The process continues until the
exact frequent itemset is found.
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Fig.2 Hash table including links for the transactional database in the first level.

Table 4 Vertical Format of the Transactional Database in the Second Level.

Itemset Tidset
{I1, 12} T1, T4, T9
{I1, 13} T1, T4, T7
{I1, 14} T1,T5
{12, 13} T1,T4,T6
{12, 14} T1,T2, T8
{13, 14} T1, TI10

The itemset in the second level are hashed based on the hash function, h (k) = ((order of X)*10 +order
of Y) mod n. Here, the itemsets are mapped to 1, 2, 3, 1, 2, 1. Here, there is a collision for {I1, 12} {I2, I3}
are mapped to 1 and {I1, 12} {I3, 14} are mapped to 1 and {I1, I13}{I2, 14} are mapped to 2. Double
Hashing technique is used to overcome collision.

Let h (k) be a hash function that maps an element & to an integer in [0, m-1], where m is the size of the
table. Let the ith probe position for a value k be given by the function % (k, i)= (h(k)+i*h,(k)) mod
m,where h,(k) refers to second hash function called probing hash function. Then using DH technique, {12,
13} is mapped to location 5,{I3, 14} is mapped to location 7,{12, 14} is mapped to location 8. It better
avoids the secondary clustering problem that occurs with quadratic probing.
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Fig.3 Hash table including links for the transactional database in the second level.
In the second level, itemsets {I1, 12}, {Il, 13}, {12, 13},{12, 14},{I3, 14} whose support counts are
greater than or equal to 3 are said to be frequent itemsets are observed from the Table 4 and Fig.3. The 3-

itemsets are generated from the frequent itemsets of second level.

Table 5 Vertical Format of the Transactional Database in the Third Level

Itemset Tidset
(11,12, 13} T1, T4
{11, 12, 14} Tl
{12, 13, 14} T1

The itemsets in the third level are hashed based upon the hash function h(k)=((order of X)*100+(order
of Y)*10+order of z)mod n). Using the hash function, {I1, 12, 13},{I1, 12, 14},{12, 13,14} are mapped to
location 2,3,3. Here there is a collision for {I1, 12, I4} and {I2, I3, I4}. Then using quadratic probing
technique, {12, 13, 14} is mapped to location 4. The hash table for third level is in Fig 4.
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The proposed algorithm (DHBFI) performs better because FI is calculated in an efficient way. The
structure of transactional database is in vertical data format. This makes easy to perform several tasks. In
this format, support also need not be calculated separately. In this case, support is directly given by the
number of transactions in the Tidset list of each FI or it can be obtained from the count value in the
header node of the corresponding linked list. It is about 2 to 3 times faster than other hash based
technique. It quickly finds an empty location in the hash table to map the items. The DHBFI performs
better with large number of transactions and long itemsets.

7 Experimental Results

Fig.5 shows a comparison of results of HBFI - QP and DHBFTI for various values of minimum support
count thresholds. From the diagram it can be seen that the time taken for DHBFI is considerably reduced.
In this method the time taken to hash itemsets in the vertical hash table is comparatively low. For various
support counts, the time taken to find a frequent item set is less compared with quadratic probing.
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Fig.5 Time Comparison between HBFI-QP and DHBFI
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8 Conclusion

Our experimental results demonstrate that DHBFI is better than HBFI-QP and other hash based
methods because it efficiently maps the itemsets in the hash table and it also avoids both primary and
secondary clustering problem. The vertical data format representation of the database makes easy
manipulations on hash data structure. DHBFI does not use all the bins and hence the phenomenon of
secondary clustering will not occur with double hashing technique.
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