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ABSTRACT
We consider a light wave propagation in tapered photonic crystal fibres (PCFs) wherein the wave
propagation is described by the variable coefficient nonlinear Schrödinger equation. We solve it
directly by means of the theta function identities and Hirota bilinear method in order to obtain
the exact periodic waves of sn, cn and dn types. These chirped period waves demand exponential
variations in both dispersion and nonlinearity. Besides, we analytically demonstrate the generation
of a train of ultrashort pulses using the periodicwaves by exploiting the exponentially varying optical
properties of the tapered PCFs. As a special case, we discuss the chirped solitary pulses under long
wave limit of these periodic waves. In addition, we derive these types of periodic waves using the
self-similar analysis and compare the results.
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1. Introduction

The dynamical balance experienced by group velocity
dispersion (GVD)with the self-phasemodulation (SPM),
a nonlinear effect, is regarded to be a notable achievement
in soliton communication systems since these effects,
respectively, broaden the pulse in both temporal and
spectral domains (1, 2). With this stabilization resulting
from the combined effects of the SPM and GVD, the
optical solitons can travel over a long distance with-
out considerable loss and shape change. The nonlinear
Schrödinger equation (NLSE) was modeled to describe
the propagation of optical pulses in a high speed, long-
distance optical fibre system (1, 2). Later,Mollenauer and
his co-workers demonstrated the generation of optical
solitons experimentally in optical fibres (3, 4).

Recently, high repetition-rate ultrashort pulses (USPs)
have found wide applications, especially in optical coher-
ence tomography, material processing, and instrumen-
tation (5). A pulse train of femtosecond range with a
repetition rate as high as 1GHz has been produced by
passive mode locked lasers (5). Although by using active
mode locked lasers, it is possible to produce a pulse
train with a high repetition rate exceeding 40GHz, it
still continues to be a challenging issue owing to the
presence of modulator within the cavity of such laser
systems. Besides, the existing opto-electronic directmod-
ulation techniques cannot cope with such high bit rates.

CONTACT K. Senthilnathan senthilnathan.k@vit.ac.in

As an alternative idea, the nonlinear conversion of a dual-
frequency optical signal throughmodulational instability
was proposed (6). A train of high-energy pulses with ad-
justable separations has been produced using Michelson
interferometers (7). But this is proven to be impracti-
cal for operations involving more number of pulses (8).
Eventually, pulse compression turns out to be one of
the best techniques for generating USPs (5). The most
successful fibre based pulse compression schemes are
fibre-grating compression, soliton-effect compression
and adiabatic soliton compression (5, 9–13).

The NLSE has been found to be an adequate model to
describe the evolution of the nonlinear envelope pulses
in the ultrashort pulse regime (from ps to sub-ps). The
time domain approach is widely usedmethod to solve the
NLSE directly (14). By numerically solving NLSE with
input being continuous wave (CW), it has been shown
that the CW beam evolves into a narrow pulse train (6).
The fibre length needed to produce this train of narrow
pulses relies on the initial modulation depth. On further
propagation, the multipeak structure cripples out and
subsequently returns to the original form (15). This char-
acteristic is generic when the NLSE is solved by taking
steady state of its arbitrary periodicmodulation (16). This
suggests that the NLSE should possess the periodic so-
lutions whose particular form changes with propagation.
These periodic solutions can be expressed in their generic
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2 S. O. ATUBA ET AL.

Figure 1. Structure of the proposed single mode tapered
octagonal PCF with d/� = 0.4 and� = 3.35µm.

and compact form as Jacobian elliptic functions (15).
The present NLSE model differs from other similar vari-
able coefficient NLSE as the inhomogeneous parameters
involve both spatial and time coordinates (17). Several
research groups have successfully employed the inverse
scattering transform as well as Bäcklund transform to
obtain the exact solutions for completely integrable vari-
able coefficient (18–22). In this paper, the Hirota bilinear
transformation (HBT), a simple but powerful method, is
deployed to obtain a set of new periodic wave solutions
for variable coefficientNLSE system. Its uniqueness lies in
the fact that periodic and solitary wave solutions are ob-
tained even for non-integrable systems (23, 24). Besides,
we make use of these periodic waves and compress them
into a train of USPs by exploiting the optical properties
of tapered PCFs.

This paper is presented as follows. In Section 2, we
discuss the required theoretical model wherein we delve
into the light propagation in tapered PCFs using NLSE.
In Section 3, we solve the NLSE using HBT method and
discuss the generation of periodic waves of sn, cn
and dn types in the exponentially decreasing dispersion
and nonlinearity increasing tapered PCF. Further, in
Section 4, we explore the different combinations of expo-
nential variations of dispersion and nonlinearity for the
existence of above mentioned chirped periodic waves.
In Section 5, based on these analytical results, we de-
sign the required tapered PCFs for achieving the var-
ious exponential variations. Then, by exploiting these
optical properties, we discuss the generation of a train
of USPs. Further, we present the solitary type pulses in
the long wave limit in Section 6. In Section 7, we delin-
eate the generation of chirped periodic waves using the

Figure 2. Mode field distribution of the proposed single mode
tapered octagonal PCF with d/� = 0.4 and� = 3.35µm.

self-similar analysis and compare the results with the
HBT method. Finally, the conclusion of the research
findings is presented in Section 8.

2. Light propagation in tapered photonic
crystal fibres

The wave propagation in tapered PCFs is governed by
the following NLSE and is given by

i
∂A
∂z

+ p(z)
∂2A
∂t2

+ q(z)|A|2A + ig(z)A = 0. (1)

Here, A is the axial electric field of the complex envelope.
The distance is denoted as z and the retarded time as
t. Further, p(z), q(z) and g(z) represent the dispersion,
nonlinearity and linear gain/loss, respectively (15). This
NLSE model not only applicable in optical fibres, but
also in Bose–Einstein condensation, superconductivity,
superfluidity, etc (25). The coefficients in Equation (1)
represent the different physical situations and their cor-
responding applications in various domains. Recently,
the periodic waves have been studied when p is real and
q is complex (24).

Various exact solutions, namely, holes, fronts, bright
and dark solitons for complex case of p and q have been
reported using a modified form of the basic Hirota
method (26). A family of variable coefficient NLSEs has
been solved exactly by means of bilinear approach which
is an extension of the basic Hirota method. It has been
shown by inverse scattering transform that the
variable coefficient NLS Equation (1) is integrable when
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(a) (b)

Figure 3. (a) Variation of PCF design parameters d/� and� along the propagation distance, z. (b) Variation of GVD, p(z), and nonlinearity,
q(z), as a function of propagation distance, z.

g(z) = W[q(z), p(z)]/p(z)q(z), where W[q(z), p(z)] is
the usual Wronskian (17 , 27). Further, this equation can
be mapped into a constant coefficient NLS type equation
and the details can be found in (28).

3. Chirped periodic waves using Hirota bilinear
method

The procedure for solving such special evolution equa-
tions with variable coefficients includes two basic steps:
(a) First, an appropriate chirp factor is factorized out,
and (b) Hirota method with space-(or time-) dependent
wave numbers is applied. The Hirota method is also used
to handle the variable coefficient NLSE with nonlinear
gain/loss. In this paper, we discuss the various types of
periodic waves and solitary type pulses in the long wave
limit by analytically solving Equation (1) usingHBT tech-
nique. ThemodifiedHirotamethod has the following key
features. First, the pulse chirp is accounted for by adding
the chirp factor,

A = exp
(
iβt2

2

)
ψ , β = β(z). (2)

We substitute Equation (2) in Equation (1) and identify
the following condition for β(z),

βz

2
+ pβ2 = 0, (3)

where, βz denotes the partial derivative with respect to z.
Since the dispersion p is real, the expression for function
ψ from Equation (2) is

iψz +pψtt +2iβptψt + iβpψ+q|ψ |2ψ+ iγψ = 0. (4)

Light waves of special modes can be obtained by express-
ing the wave patterns as

ψ = g exp (− i�0)

f
. (5)

The constraint here is that f is real and for the bilinear
process, both g and f are dependent variables. Typically
exponential functions are chosen to derive the solitary
pulses. On the other hand, elliptic functions are to be
chosen for deriving the periodic patterns. The phase fac-
tor �0 is a function depending on the space only. It
has its derivatives determined in the bilinear equation,
and hence is easily regained by quadrature. The bilinear
expressions are then,

(
iDz + pD2

t + 2iβptDt + ∂�0

∂z
+ iβp + iγ − C

)
g • f ,

(pD2
t − C)f • f = qgg∗, (6)

where D is the Hirota bilinear operator and C is spatially
dependent in the case of dark soliton. When it operates
on a set of two functions a(x) and b(x), it is defined by
(23),

Dn
xa • b ≡

(
∂

∂x
− ∂

∂y

)n
a(x)b(y)

×
∣∣∣∣
y=x

= ∂n

∂yn
a(x + y)b(x − y)

∣∣∣∣
y=0
. (7)

To realise periodic waves of various types, we now work
with theta functions (14, 26). The dispersion and nonlin-
earity profiles are given by

p(z) = p0 exp (− σ z), (8)
q(z) = q0 exp (2γ z), (9)
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4 S. O. ATUBA ET AL.

Figure 4. Intensity profile of initial (dashed lines) and compressed
output (solid lines) of the sn- periodic wave through a PCF. The
physical parameters are p0 = −0.0553713 ps2/m, q0 = 0.006794
W−1m−1, γ = 0.00132022 m−1, σ = 0.092686 m−1, LD = 3.7187
m and k = 0.7.

Figure 5. Intensity profile of initial (dashed lines) and compressed
output (solid lines) of the cn- periodic wave through a PCF. The
physical parameters are p0 = −0.0553713 ps2/m, q0 = 0.006794
W−1m−1, γ = 0.00132022 m−1, σ = 0.092686 m−1, LD = 3.7187
m and k = 0.7.

where σ and γ are real parameters. Equation (1) now
becomes

i
∂A
∂z

+ p0e−σ z
∂2A
∂t2

+ q0e2γ z |A|2A + iγA = 0. (10)

To get a dn-wave, g and f are chosen as theta functions
given by (14, 29),

g = A0θ3(t[h1(z)]), f = θ4(t[h1(z)]). (11)

Here, A0, the amplitude parameter is spatial dependent
and it has tomatch the loss/gain factor. Combining Equa-
tion (6) and Equation (11) gives,

θ4
{
i(A0e−i�0)zθ3θ4 + iA0e−i�0Dz(θ3 • θ4)

Figure 6. Intensity profile of initial (dashed lines) and compressed
output (solid lines) of the dn- periodic wave through a PCF. The
physical parameters are p0 = −0.0553713 ps2/m, q0 = 0.006794
W−1m−1, γ = 0.00132022 m−1, σ = 0.092686 m−1, LD = 3.7187
m and k = 0.7.

+ p0e−σ zA0e−i�0D2
t (θ3 • θ4)+ 2iβp0e−σ ztA0e−i�0•

Dt(θ3 • θ4)+ i(βp0e−σ z + γ )A0e−i�0θ3θ4
}

+ A0e−i�0θ3[−p0e−σ zD2
t (θ4 • θ4)+ q0e2γ zA2

0θ
2
3 ]

= 0. (12)

The wave number, h1(z) is also spatial dependent. Its
exact expression is realised by equating the odd order
Hirota derivatives in Equation (12) to zero. Hence,

h1 = h00eσ z . (13)

Solving the real terms of Equation (12) gives

θ4[A0�0zθ3θ4e−i�0 + pA0e−i�0D2
t (θ3 • θ4)]+

A0e−i�0θ3[−pD2
t (θ4 • θ4)+ qA2

0θ
2
3 ] = 0. (14)

Upon introducing theta identities, we get,

∂�0

∂z
+ p(2 − k2)e2σ z = 0. (15)

For the dispersion decreasing case, we substitute Equa-
tion (8) in Equation (15). The resulting solution is,

�0 = −p0eσ z(2 − k2)
σ

. (16)

Solving the imaginary terms in Equation (12) and substi-
tuting Equation (8) in Equation (15), we have,

A0 = η exp
[
−
(
γ − σ

2

)
z
]
. (17)

Here, η is a constant. Here, we adopt the theta identities
(14, 29). Substituting Equation (17) in Equation (12) and
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(a) (b)

Figure 7. (a) Variation of PCF design parameters d and� along the propagation distance, z. (b) Variation of GVD, p(z), and nonlinearity,
q(z), as a function of propagation distance, z.

equating the like terms results in the following expres-
sion for nonlinear coefficient in the case of decreasing
dispersion:

q = 2p0h200θ
2
3 (0)θ

2
4 (0)

η2
exp (2γ z). (18)

Theta identities are used in obtaining this expression for
q. For increasing nonlinearity, by using Equation (9),
Equation (17) takes the form

A0 =
(
2p0h200θ

2
3 (0)θ

2
4 (0)

q0

) 1
2

exp
[
−
(
γ − σ

2

)
z
]
.

(19)
We substitute the above equations in Equation (2) and
introduce the elliptic function identites for generating
the periodic waves. The periodic wave of dn type is thus
derived as,

A =
√
2p0
q0

dn[t exp (σ z)]

× exp
{(σ

2
− γ

)
z + ip0eσ z(2 − k2)

σ
− iσ eσ zt2

4p0

}
,

(20)

where k represents the elliptic modulus function. Here,
p0 and q0 are the dispersion and nonlinearity parame-
ters, respectively, at z = 0. Similarly, the periodic wave
expressed in terms of cn is derived as,

A = k

√
2p0
q0

cn[t exp (σ z)]

× exp
{(σ

2
− γ

)
z + ip0eσ z(2k2 − 1)

σ
− iσ eσ zt2

4p0

}
.

(21)

Further, we find another type of periodic wave in terms
of sn as,

A = k

√
2p0
q0

sn[t exp (σ z)]

× exp
{(σ

2
− γ

)
z − ip0eσ z(1 + k2)

σ
− iσ eσ zt2

4p0

}
.

(22)

The exact solutions Equations (20)–(22) are called
chirped periodic waves. In contrast to the conventional
periodic waves, the abovementioned periodic waves pos-
sess a linear chirp. These chirped periodic waves facilitate
two-stage dynamics of wave evolution. In the initial stage
of evolution, linear effect is predominant compared to the
nonlinearity. Hence this process results in quasi-linear
compression. On the other hand, in the final stage, the
nonlinear effect turns much pronounced compared to
the linear effect. Therefore, these chirped periodic waves
do undergo nonlinear compression.

It may be recalled that there exists a physical con-
straint that does not allow the simultaneous variation
of all the three distributed parameters, namely, disper-
sion, nonlinearity and gain/loss. Nonetheless, it is
possible to vary any two of the three parameters by keep-
ing the third one a constant. Hence, it is necessary to
identify the most physically valid system wherein the
dispersion and the nonlinearity vary along the prop-
agation direction with the loss remaining a constant.
In addition, there is another physical constraint which
dictates that the loss coefficient is the same as the ex-
ponential growth rate of the nonlinearity i.e. g(z) = γ .
Thus, these crucial physical conditions have to be satisfied
for the formation of the chirped periodic waves in the
PCFs.
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6 S. O. ATUBA ET AL.

Figure 8. Intensity profile of initial (dashed lines) and compressed
output (solid lines) of the sn- periodic wave through a PCF. The
physical parameters are p0 = −0.0553713 ps2/m, q0 = 0.006794
W−1m−1, γ = 0.00398355 m−1, σ = 0.058056 m−1, LD = 3.7187
m and k = 0.7.

Figure 9. Intensity profile of initial (dashed lines) and compressed
output (solid lines) of the cn- periodic wave through a PCF. The
physical parameters are p0 = −0.0553713 ps2/m, q0 = 0.006794
W−1m−1, γ = 0.00398355 m−1, σ = 0.058056 m−1, LD = 3.7187
m and k = 0.7.

4. Existence of periodic waves for various
physical conditions

In this section, we explore if there are any other pos-
sibilities of generating the chirped periodic waves for
various choices of positive and negative exponentially
varying dispersion and nonlinearity. The following are
the possible exponential variations.

(1) GVD decreases and nonlinearity increases:

p(z) = p0 exp (− σ z)
q(z) = q0 exp (2γ z) (23)

Figure 10. Intensity profile of initial (dashed lines) and
compressed output (solid lines) of the dn- periodic wave through
a PCF. The physical parameters are p0 = −0.0553713 ps2/m,
q0 = 0.006794W−1m−1, γ =0.00398355m−1,σ =0.058056m−1,
LD = 3.7187 m and k = 0.7.

(2) Both GVD and nonlinearity decrease:

p(z) = p0 exp (− σ z)
q(z) = q0 exp (− 2γ z) (24)

(3) Both GVD and nonlinearity increase:

p(z) = p0 exp (σ z)
q(z) = q0 exp (2γ z) (25)

(4) GVD increases and nonlinearity decreases:

p(z) = p0 exp (σ z)
q(z) = q0 exp (− 2γ z) (26)

These physically realistic conditions are not only merely
mathematical conditions for the existence of chirped
periodic waves but also they represent the different fiber
media. Therefore, we design four distinct PCFs that sat-
isfy their corresponding mathematical conditions. In
what follows, we investigate the evolutions of these
chirped periodic waves by suitably designing various ta-
pered PCFs.

5. Designing tapered PCFs through HBT
conditions

In this section, we explore the various designs of PCFs
by suitably varying the design parameters, namely, the
pitch and relative air-hole diameter. We infer that the
pitch and the diameter of air holes have to be varied
exponentially by tapering the PCFs in order to meet
the above mentioned conditions. We deal with the four
designs of PCFs in what follows.

Case I: GVD decreases and nonlinearity increases
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(a) (b)

Figure 11. (a) Variation of PCF design parameters d/� and d along the propagation distance, z. (b) Variation of GVD, p(z), and nonlinearity,
q(z), as a function of propagation distance, z.

First, on the basis of the analytical results, we design a
PCF at 1550 nmwith an exponentially decreasing disper-
sion profile as well as exponentially increasing nonlin-
earity profile. Here, we decrease the diameter of air holes
and the pitches exponentially when the PCF is tapered.
To look for a train of USPs at 1550 nm, we design the
PCF with large dispersion to realize a compact com-
pressor for which the dispersion length LD(=τ 20 /p0) be-
comes smaller. Here, τ0 and p0 represent pulse width and
dispersion, respectively. Figure 1 illustrates the geom-
etrical structure of the proposed tapered PCF. The mode
field distribution of this fibre is depicted in Figure 2. We
find the initial GVD as−55.37 ps2/km by adopting finite
element method with the PCF parameters of d/� = 0.4
and�=3.35µm.Next, we keep the PCFof length 7.44m,
a value two times the dispersion length (L = 2LD) where
LD is 3.72 m for a pulse width of 0.8 ps. Here, the relative
air hole diameter, d/�, is varied from 0.4 to 0.399352 and
the� from 3.35490 to 3.35373 µm.

Figure 3(a) shows the variation of design parameters,
namely, relative air hole diameter and pitch with re-
spect to propagation distance, z. The variations of GVD
and nonlinearity against distance are illustrated in Figure
3(b). The cumulative dispersion, p(z), at the end of the
PCF is computed to be−43.21 ps2/km.Next, we calculate
the effective nonlinearity using effective mode area, Aeff .
The nonlinearity in this tapered PCF increases from 6.79
to 7.34 W−1km−1.

Having designed the desired tapered PCF of exponen-
tially decreasing dispersion and exponentially increasing
nonlinearity profiles, we proceed to investigate the gen-
eration of a train of USPs using various periodic waves
of sn, cn and dn discussed above. In order to understand
the dynamics of the chirped periodic waves in the tapered
PCF, it is essential to compute the important physical pa-
rameters of these waves, namely, amplitude, pulse width
and chirp. In a tapered PCF with exponentially decreas-

ing dispersion and exponentially increasing nonlinearity,
the amplitude, A, and pulse width, τ , of these chirped
periodic waves are given by

A = k

√
2p0
q0

1
τ0

exp
[(σ

2
− γ

)
z
]

τ = τ0 exp (− σ z), (27)

where k represents the modulus of the elliptic function.
From the above expressions, it is obvious that the in-
tensity and chirp increase exponentially while the pulse
width decreases exponentially. These physical parame-
ters of the chirped waves signify compression during
the course of propagation in this tapered PCF. At this
juncture, it is necessary to compute the width of the
compressed pulses in order to determine the compres-
sion factor (CF) which is defined by the ratio between
input pulse width and output pulse width, i.e. CF = τ0

τ(z)
= exp (σ z). Thus, we find that the compression factor
increases exponentially. Further, we also emphasize that
the the decay rate, σ , of the dispersion influences the
self-similar pulse compression process. Besdies, one can
also optimize the length of the compressor with the help
of following relation, z = 1

σ
ln(CF). Figures 4–6 depict

the evolution of the periodic waves of sn, cn and dn
types, respectively. In these figures, the periodic waves
depicted as dashed lines represent the intensity of the
input chirped waves and the waves in solid lines imply
the intensity of the compressed pulses. Thus, one can
achieve a train of USPs using the tapered PCF for all the
types of periodic waves.

Case II: Both GVD and nonlinearity decrease
Next, we design a PCF to meet the requirements of

both decreasing dispersion and decreasing nonlinearity
to satisfy the physical constraints of Equation (24). Here,
we reduce the diameter of air hole without varying the
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8 S. O. ATUBA ET AL.

pitch.We choose aPCFof length 7.44mas in the previous
case. The relative air hole diameter is kept at 0.4 and the
diameters of the air holes vary from 1.342 to 2.8 µm and
the pitch is kept at 3.35 µm. Figure 7(a) and (b) show the
variations of design parameters and computed optical
properties with respect to the propagation distance.

With these designs of PCF, we theoretically demon-
strate the generation of a train of USPs for the three types
of chirped periodic waves. The dn, cn and sn waves for
this case are,

A =
√
2p0
q0

dn[t exp (σ z)]

× exp
{(σ

2
+ γ

)
z + ip0eσ z(2 − k2)

σ
− iσ eσ zt2

4p0

}
,

(28)

A = k

√
2p0
q0

cn[t exp (σ z)]

× exp
{(σ

2
+ γ

)
z + ip0eσ z(2k2 − 1)

σ
− iσ eσ zt2

4p0

}
,

(29)

A = k

√
2p0
q0

sn[t exp (σ z)]

× exp
{(σ

2
+ γ

)
z − ip0eσ z(1 + k2)

σ
− iσ eσ zt2

4p0

}
.

(30)

The amplitude and pulse width of these chirped peri-
odic waves are given by

A = k

√
2p0
q0

1
τ0

exp
[(σ

2
+ γ

)
z
]
,

τ = τ0 exp (−σ z). (31)

The previous expressions imply that the intensity in-
creases exponentially whereas the pulse width decreases
exponentially. These variations clearly indicate that the
three types of chirped waves do undergo compression in
this tapered PCF. The compression of chirped periodic
waves of sn, cn and dn types is depicted in Figures 8–10.
In these figures, the dashed curves represent the intensity
of the input chirped periodic waves and the solid curves
correspond to the intensity of the compressed pulses. A
train of USPs is thus possible using a tapered PCF for all
the types of periodic waves.

Case III: Both GVD and nonlinearity increase
Tomeet with the above mentioned profiles, we reduce

the diameter of air hole and keep the pitch a constant. A
PCF length of 19.64m which is two times the dispersion

length is considered. In this case, the relative air hole
diameter is varied exponentially from 0.27537 to 0.39994,
the air hole diameter from 0.967 to 1.342 µm and the
pitch is kept at 3.35 µm. Figure 11(a) and (b) represent
the variations of design parameters and optical properties
against the propagation distance.

Now, we study the dynamics of the chirped waves
in the designed tapered PCF wherein the dispersion in-
creases and nonlinearity decreases. In this case the dn, cn
and sn waves are,

A =
√
2p0
q0

dn[t exp (− σ z)]

× exp
{(

−σ
2

+ γ
)
z − ip0e−σ z(2 − k2)

σ
+ iσ e−σ zt2

4p0

}
,

(32)

A = k

√
2p0
q0

cn[t exp (− σ z)]

× exp
{(

−σ
2

+ γ
)
z− ip0e−σ z(2k2 − 1)

σ
+ iσ e−σ zt2

4p0

}
,

(33)

A = k

√
2p0
q0

sn[t exp (− σ z)]

× exp
{(

−σ
2

+ γ
)
z + ip0e−σ z(1 + k2)

σ
+ iσ e−σ zt2

4p0

}
.

(34)

The amplitude and pulse width of these chirped peri-
odic waves are given by

A = k

√
2p0
q0

1
τ0

exp
((

−σ
2

+ γ
)
z
)

τ = τ0 eσ z . (35)

In contrast to the two previous cases, we find that the
intensity decreases exponentially whereas the pulsewidth
increases exponentially. This process clearly indicates
that the three types of chirpedwaves undergo broadening
in this tapered PCF.

Figures 12–14 represent the dynamics of the three
types of chirped waves. These waves undergo
broadeningwhen they propagate in this taperedPCF.The
outputwaveswhich are stretched in the temporal domain
are depicted as solid wave lines. Thus, this tapered PCF
acts as a pulse stretcher which plays a vital role in the
chirped pulse amplification.

Case IV: GVD increases and nonlinearity decreases
In this case, a PCF of the same length as in the previ-

ous case is considered. We increase the relative air hole
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diameter from 0.39994 to 0.275367 and pitch from 1.342
to 0.964 µm with the air hole diameter fixed at 3.35 µm.
The corresponding variations are reflected inFigure 15(a)
and (b), respectively.

The dn, cn and sn – waves for this case are,

A =
√
2p0
q0

dn[t exp (− σ z)]

× exp
{
−
(σ
2

+γ
)
z − ip0e−σ z(2 − k2)

σ
+ iσ e−σ zt2

4p0

}
,

(36)

A = k

√
2p0
q0

cn[t exp (− σ z)]

× exp
{
−
(σ
2

+γ
)
z− ip0e−σ z(2k2 − 1)

σ
+ iσ e−σ zt2

4p0

}
,

(37)

A = k

√
2p0
q0

sn[t exp (− σ z)]

× exp
{
−
(σ
2

+ γ
)
z+ ip0e−σ z(1 + k2)

σ
+ iσ e−σ zt2

4p0

}
.

(38)

The amplitude and pulse width of the three types of
chirped periodic waves are given by

A = k

√
2p0
q0

1
τ0

exp
(
−
(σ
2

+ γ
)
z
)
,

τ = τ0 eσ z . (39)

Like in the previous case, this process also clearly signifies
the broadening of the three types of chirped waves in this
tapered PCF.

Figure 12. Intensity profile of initial (dashed lines) and
compressed output (solid lines) of the sn- periodic wave through
a PCF. The physical parameters are p0 = −0.020963 ps2/m, q0 =
0.005112636W−1m−1, γ = 0.0013677738 m−1, σ = 0.0161538
m−1, LD = 9.822 m and k = 0.7.

Figure 13. Intensity profile of initial (dashed lines) and
compressed output (solid lines) of the cn- periodic wave through
a PCF. The physical parameters are p0 = −0.020963 ps2/m, q0 =
0.005112636W−1m−1, γ = 0.0013677738m−1, σ = 0.0161538
m−1, LD = 9.822 m and k = 0.7.

Figure 14. Intensity profile of initial (dashed lines) and
compressed output (solid lines) of the dn- periodic wave through
a PCF. The physical parameters are p0 = −0.0209631 ps2/m, q0
= 0.005112636W−1m−1, γ = 0.0013677738m−1, σ = 0.0161538
m−1, LD = 9.822 m and k = 0.7.

From Figures 16–18, one can observe the broadening
of these chirped periodic waves when they propagate in
this tapered PCF. Hence, this tapered PCF also can act as
a pulse stretcher.

From these detailed analytical and numerical results,
we corroborate that the PCF acts as a pulse compressor
only when the dispersion decreases exponentially irre-
spective of the nonlinear profile variation. On the other
hand, if the dispersion increases exponentially irrespec-
tive of the nonlinear profile variation, then the tapered
PCF acts as a pulse stretcher which is an essential com-
ponent in the chirped pulse amplification system. Thus,
there is a freedom in choosing the type of medium based
on the requirements. From the literature survey, it is very
clear that the soliton based pulse compression has been
studied widely in dispersion decreasing nonlinear media.
However, there are a few pulse compression studies in
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10 S. O. ATUBA ET AL.

(a) (b)

Figure 15. (a) Variation of PCF design parameters d/� and d along the propagation distance, z.(b) Variation of GVD, p(z), and nonlinearity,
q(z), as a function of propagation distance, z.

dispersion increasing nonlinearmediawhich are yet to be
explored. Thus these physical conditions result in various
optical media, which, in turn, open several avenues for
generating the high quality USPs.

At this juncture, we intend to record that the stabil-
ity of the compressed pulses has already been reported
in detail (30). That is, the robustness of the proposed
silica core PCF pulse compressor has already been thor-
oughly studied by considering various perturbations such
as variation in loss coefficient (increasing and decreasing
values of loss) for a single pulse as well as a train of
pulses of hyperbolic and raised-cosine profiles. In order
to evaluate the robustness of the proposed compressors,
deviations in the pedestal energy and final compression
factor have been computed. It has been found that the
train of pulses are stable against the perturbations. Based
on this previous experience, we anticipate that the train
of pulses studied in this paper may also be stable against
perturbations.

Very recently, high power pulse trains excited bymod-
ulated CWs have been investigated (31) wherein pulse
trains were theoretically demonstrated under the influ-
ence of higher order linear and nonlinear effects. How-
ever, in this paper, the pulse trains have been achieved
by various chirped periodic waves of sn, cn and dn types,
which are the exact solutions of the governing equation.
Further, in Ref. (31), the pulse train was discussed in the
homogeneous fiber medium wherein the dispersion and
nonlinear properties do not vary along the propagation
direction. On the other hand, in this paper, the trains
of short pulses have been achieved owing to variation of
above mentioned optical properties along the propaga-
tion direction.

6. Dynamics of soliton: long wave limit

It is obvious that the periodic waves are converted
into solitary type pulses under long wave limit. We also
discuss the formation of chirped bright solitary pulse for
Equation (1) at the long wave limit. When k → 1 and cn,
dn → sech, we get the following solitary type pulse from
Equations (20) and (21).

A =
√
2p0
q0

sech[t exp (σ z)]

× exp
{(σ

2
− γ

)
z + ip0eσ z

σ
− iσ eσ zt2

4p0

}
. (40)

Similarly, the dark soliton is obtained fromEquation (22)
when k → 1 and sn → tanh,

A =
√
2p0
q0

tanh[t exp (σ z)]

× exp
{(σ

2
− γ

)
z − 2ip0eσ z

σ
− iσ eσ zt2

4p0

}
. (41)

Here, we emphasize that the USPs can also be generated
with the above discussed solitary type pulses. However,
this is beyond scope of the present study.

7. Chirped periodic waves by self-similar
analysis

In order to compare the chirped periodic waves derived
by HBT method, we also show the generation of chirped
periodic waves using the self-similar analysis. We
adopt the procedure developed by Kruglov et al. (32).
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According to the self-similar analysis, the complex func-
tion A(z, t) can be expressed as,

A(z, t) = U(z, t) exp[iφ(z, t)], (42)

where U and φ which are real functions of z and t rep-
resent the amplitude and phase, respectively. We assume
that the amplitude of the self-similar solutions of Equa-
tion (1) is given by,

U(z, t) = 1√
1 + α20D(z)

× R
[

t − tc
1 + α20D(z)

]
exp[G(z)]. (43)

The phase is given as,

φ = α1(z)+ α2(z)(t − tc)2, (44)

where tc ,D(z) andG(z) are the center of the pulse, cumu-
lative dispersion and cumulative loss/gain, respectively.
The constant phase and chirp parameters are represented
by α1 and α2, respectively. R is a function to be identified.
The functions D(z), G(z), α1 and α2 are defined by

D(z) = 4
∫ z

0
p(z′)dz′, (45)

G(z) =
∫ z

0
g(z′)dz′, (46)

α1(z) = α10 + λ

∫ z

0

p(z′)
(1 + α20D(z′))2

dz′, (47)

and

α2(z) = α20

1 + α20D(z)
. (48)

The parameters λ, α10 and α20 are the constants of inte-
gration. It is useful to define ρ(z), which is the ratio of
the dispersion to the nonlinearity given by,

ρ(z) = ρ(0)(1 + α20D(z)) exp (2G(z)) = p(z)
q(z)

. (49)

Differentiating Equation (49) gives,

γ (z) = 1
2ρ(z)

dρ
dz

− 2α20p(z)
1 + α20D(z)

. (50)

Further, Equation (50) provides the necessary and
sufficient condition for various functions p(z), q(z) and
γ (z) for the existence of self-similar solutions of the
NLSE. Finally, the self-similar solution for exponentially
decreasing dispersion and exponentially increasing non-
linearity is given by,

Figure 16. Intensity profile of initial (dashed lines) and
compressed output (solid lines) of the sn- periodic wave through
a PCF. The physical parameters are p0 = −0.0209631 ps2/m, q0 =
0.006794 W−1m−1, γ = 0.002420401 m−1, σ = 0.01812684 m−1,
LD = 9.822 m and k = 0.7.

Figure 17. Intensity profile of initial (dashed lines) and
compressed output (solid lines) of the cn- periodic wave through
a PCF. The physical parameters are p0 = −0.0209631 ps2/m, q0 =
0.006794W−1m−1, γ = 0.002420401m−1, σ = 0.01812684m−1,
LD = 9.822m and k = 0.7.

Figure 18. Intensity profile of initial (dashed lines) and
compressed output (solid lines) of the dn- periodic wave through
a PCF. The physical parameters are p0 = −0.0209631ps2/m, q0 =
0.006794 W−1m−1, γ = 0.002420401 m−1, σ = 0.01812684 m−1,
LD = 9.822 m and k = 0.7.
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12 S. O. ATUBA ET AL.

A =
√
2p0 exp (− σ z)
q0 exp (2γ z)

1
T0 exp (− σ z)

dn

×
(

t − tc
T0 exp (−σ z)

)

× exp
{
iα10 + ip0(eσ z − 1)(2 − k2)

σT2
0

− iσ eσ z(t − tc)2

4p0

}
, (51)

where T0 and α20 represent the initial pulse width and
chirp, respectively. It is also observed that the coefficient
of the loss/gain term has to be same as the decay (growth)
rate of the nonlinearity. Similarly, one can also derive the
other forms of periodic waves (cn and sn) for the above
mentioned exponential variations in the fiber medium.
Further, we intend to report that these periodic waves
can also be theoretically generated for the other possible
exponential variations of fiber media. As a final note, we
show that chirped periodic wave solution Equation (20)
derived by HBT method does match with that of the one
obtained based on the self-similar analysis Equation (51).

8. Conclusions

We have considered wave propagation in a tapered pho-
tonic crystal fibre wherein the dispersion, nonlinearity
and gain/loss vary along the propagation direction. The
wave propagation is governed by a variable coefficient
NLSE. We have discussed the formation of chirped pe-
riodic waves of sn, cn and dn types by solving the NLSE
using Hirota bilinear method. Further, we have found
that these chirped periodic waves exist not only in a
medium with exponentially decreasing dispersion and
exponentially increasing nonlinearity, but also in other
mediawith exponential variations of dispersion and non-
linearity. Based on these analytical results, we have de-
signed four different types of tapered PCFs. We have
dealt with the generation of a train of USPs using these
chirped periodic waves in various tapered PCFs. From
the detailed analysis, it has been found that exponen-
tially decreasing dispersion PCFs (case I and II) act as
compressors whereas the exponentially increasing dis-
persion PCFs (case III and IV) act as stretchers. Under
the long wave limit, chirped solitary type pulses have also
been derived from the chirped periodic waves. Finally,
the chirped periodic waves obtained by Hirota bilinear
method have been compared with that obtained by using
self-similar analysis.We envisage that the newly designed
four types of tapered PCFs would be highly useful in the
USP generation and also in the chirped pulse amplifica-
tion as a stretcher.
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