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Abstract  

The use of green energy sources t o  f e ed DC microgrids is gaining prominence over 

traditional centralised AC systems. DC microgrids are characterised by the use of 

intermediate DC-DC converter wh ich  acts as power conditioning units. Hence, the choice 

of an appropriate DC-DC converter becomes significant as the overall system efficiency is 

strongly dependent on the converter’s performance. This paper proposes a novel high gain 

high power (HGHP) DC-DC converter for DC microgrid, which is of one of the significant 

step forward in the development of DC microgrids. The suitability of the proposed HGHP 

DC-DC converter is demonstrated by experimental tests of the 60V/1.1kV, 3kW converter; 

test results validate the converter’s suitability for DC distribution. A significant number of 

performance parameters of the proposed converter is compared with state of the art 

converter topologies demonstrating the superior capabilities of the proposed converter. This 

paper also portrays the potential benefits that could be reaped by trending towards DC 

instead of existing AC system. The advantages and challenges to be confronted in the 

foreseeable future while implementing sustainable DC microgrids are also highlighted. 

Finally, this paper encapsulates renewable energy fed DC microgrid system as an 
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appropriate, technically feasible, economically viable and competent solution for 

efficiently utilising the sustainable energy sources. 

Keywords: Power electronics applications; Microgrid; DC-DC converter; Renewable 

energy integration; Distributed generation; High gain; Power conversion 

1 Introduction  

 

Electrical energy generated from fossil fuel sources is an option to fulfil the ever increasing 

load requirement. However, the process of electrical energy conversion from conventional 

energy sources (e.g. oil) pollutes the atmosphere leading to drastic and undesirable climatic 

fluctuations. The twin challenges of meeting the present day electrical energy demand while 

causing least damages to the environment are both massive and contradictory. Distributed 

renewable sources (DRSs) lend a great helping hand to confront this situation [1], [2]. Hence, 

among energy conscious planners, there is a significant inclination to efficiently convert and 

utilise electrical energy from the never exhausting, secure and non-polluting energy resources 

like solar, wind, etc [3],[4],[5]. Such a distributed renewable energy system should be simple, 

efficient, independent and stiff enough to replace the existing conventional system [6]. 

Moreover, the distributed renewable energy sources (RES) should possess desirable 

attributes: [7] 

(i) Electricity energy storage facility [8];  

(ii) Appropriate protection, monitoring and control mechanism;  

(iii) Ability to operate in islanded and grid connected mode to ensure reliability;  

(iv) Compatible with similar and other RES [9], [10] and  

(v) Smart enough to prioritise the load demand based on supply availability [11].   
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The concept of a microgrid (-grid) is emerging as an excellent solution for interconnecting 

RES and the loads. [12]. The main advantage of microgrids, from the reliability point of 

view, is that they can operate in both islanded as well as grid connected mode [13], [14]. 

Residential, commercial, and/or industrial loads are connected to a microgrid. [15]. The 

overall performance of a microgrid system depends on the type of distribution used to supply 

the loads [16], [17]. As present day loads operate from AC supply, AC distribution continues 

to be in vogue for more than a century. Fig. 1 shows a general schematic representation of a 

typical conventional AC power system systems, the uni-directional power flow from 

generation to load is depicted. 

 

Fig. 1. Schematic diagram representing the main components of a traditional AC system. 

 

The use of DC system on microgrid application is a realistic option. The DC distribution 

systems have good techno-economical potential compared to existing AC systems [18]. The 

use of low voltage DC (LVDC) has proven to be beneficial for the distribution networks [19]. 

LVDC is ideally suited for distribution networks due to its efficiency for shorter transmission 

distances and smaller transmission powers [20]. Also, DC distribution systems, particularly 

DC microgrids, make the grid more controllable, stable and reliable [21]. In DC distribution 

system, as capacitive leakage and inductive impedances do not exist in steady-state, higher 

power can be transferred with lesser voltage variation levels [22]. Further, like frequency, 

phase and reactive power requirements need not be considered in a DC microgrid, integrating 

many such DC microgrids to form a macro grid is simple. Therefore, planning, 

implementation and operation are simpler and less expensive [23]. 

Moreover, DC microgrids are more efficient than AC systems because: 
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(i) Certain energy-intensive manufacturing operations like smelting of aluminium, paper and 

pulp production units which waste more than 6% of total energy consumed in AC to DC 

conversion [24]; 

(ii) Data centres which operate at 10% higher efficiency, 20% less installation cost and 10% 

reduced equipment cost [25]; 

(iii) DC electrical loads such as LED lighting and electronic gadgets which are 20% of total 

electricity consumers in residential and commercial buildings [26];  

(iv) Charging stations for electric vehicles, heating, ventilation and air-conditioning (HVAC) 

systems and various household appliances are well suited to DC power [27].  

Fig. 2(a) shows the schematic diagram showing the general structure of a DC 

microgrid operating and the possibility of operating in grid-connected and off-grid mode. 

Various types of loads (critical and non-critical) connected to the DC microgrid are also 

clearly represented. Fig. 2(b) shows the schematic of a standalone DC microgrid feeding 

native DC loads and industrial variable frequency drives (VFD). 

 

(a) 
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(b) 

Fig. 2. Schematic diagram of a DC microgrid. 

(a) Operating in grid-connected and off-grid mode. 

(b) Operating in standalone mode. 

Though it is extremely difficult and expensive to replace the present AC distribution 

system by DC, bypassing the existing AC grid and forming smaller DC microgrids is a viable 

alternative. The evolution could be like a DC layer overlapping the pre-existing AC layer. 

The evolution can be achieved by integrating RES with loads while avoiding unnecessary 

rectification and inversion stages are technically feasible as well as economically viable [28]. 

DC microgrids commendably integrate distributed generation sources, energy storage devices 

and a large variety of loads compared to AC microgrids. 

Regarding social aspects, renewable energy fed DC microgrid is an affordable, more 

efficient, much faster and easier solution to demand and supply especially in rural areas [29]-

[31].  

In a DC microgrid, the crucial part of a DC distribution system is the DC-DC converter. 

To establish a competent renewable fed DC distribution system, proper selection and design 

of DC-DC converter with high voltage step up and high power handling capability is essential 

[32].  Other important features that motivate selection of a converter for DC distribution are 

discussed in [16] and [33]. 
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For a RES fed DC distribution systems, a DC-DC converter capable of offering higher 

voltage step-up ratio is essential. Power distribution (in the range 2kW to 5kW) at 50V DC 

voltage level is inefficient due to higher cable loss. The higher voltage rating of the order of 

1kV in the  DC  distribution system leads to smaller currents power losses compared to low 

voltage AC  system [34]-[38].  

According to EU low voltage directive (LVD 72/23/EEC), the use of 1 kV DC as a 

third distribution voltage level has proved to be a cost-efficient and effective solution to 

enhance the reliability of electricity distribution.  

 Conventional boost and boost derived converters are not suitable for high voltage gain 

applications as they suffer from practical issues like extreme duty ratio operation, large 

voltage stress on the switch, diode reverse recovery problems and poor efficiency [39]-[41]. 

Interleaved boost converters (IBC) are preferred for higher power ratings because of their 

inherent current sharing [42]-[44]. Non-isolated converters with appropriate gain extension 

techniques are preferred over isolated converters (which use transformers) mainly due to their 

merits like higher efficiency, reduced volume and size. Some of the commonly used gain 

extension methods are coupled inductor (CI) with and without IBC [45], [46], switched 

capacitor cells, voltage doublers [47], voltage multiplier cells (VMCs) [48] and charge pump 

technique. Though modular multilevel converters can cater to the high gain requirements, 

higher component count reduces their efficiency. 

 Active and passive voltage clamping are also employed in few converters to suppress 

the voltage stress on the power switches [49]. Some CI based topologies like winding cross-

coupled inductors (WCCI), dual coupled inductor [50], switched coupled inductor, multi-

winding [51] and multi CI based converters [52]-[54] are not very popular due to 

manufacturing complexity and larger switch voltage stress. 
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 Switched-capacitor (SC) based converters alleviate the necessity of magnetic 

components resulting in compact and light power converters [55]. Unfortunately, the 

achievable voltage gain is only integral times the number of SC cells used. In [56], the high 

step-up conversion ratio is achieved by combining CI and SC. Voltage balancing of output 

capacitors which are located between adjacent SC cells is another tricky issue. 

DC-DC converter topologies available in the literature are capable of offering either high 

voltage gain (>15) or handle large power levels (>1kW). Moreover, the existing DC-DC 

converters do not inherit many or few of the above-mentioned features which are vital for DC 

microgrids. Therefore, a most appropriate novel high gain high power DC-DC converter 

fulfilling most of the requirements of a DG fed DC microgrids is presented in this paper. 

This paper proposes an extended version of a high gain high power (HGHP) converter 

which is presented in [57]. The proposed HGHP converter is one of the significant steps 

forward in the development of DC microgrids. The paper is organised as follows: Section 1 

introduces the conceptual background and state of the art of high gain converters available in 

the literature, Section 2 describes the proposed HGHP topology, its operating principle and 

design details. Section 3 discusses the hardware tests and the results obtained. Section 4 

presents the details regarding the converter performance which are compared with few 

existing converters. Sections 5 and 6 discuss the challenges and prospects of the proposed 

HGHP converter when employed in DC microgrids. Section 7 provides the concluding 

remarks. 
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2 Proposed HGHP DC-DC Converter 

2.1 Topology Description and Operating Principle 

Fig. 3(a) shows the power circuit diagram of the proposed converter. The converter 

structure comprises of two stages. Stage 1 is formed by a three phase IBC with the primary 

winding of three CIs, a voltage lift capacitor (Clift) and a voltage lift diode (Dlift). The three 

legs of the IBC are operated with a uniform phase shift of 120 between them to reduce the 

input current ripple. Clift and Dlift are used to multiply the voltage gain of the IBC by the 

number of interleaved phases. In Stage 2, each secondary winding of the CI acts as a voltage 

source to the VMCs formed by multiplier diodes (DM1-DM6) and multiplier capacitors (CM1-

CM6). Three such arrangements are connected in series to extend the voltage gain. The 

rearranged version of Stage 2 is shown as an inset for clarity. Stage 1 and Stage 2 are 

cascaded through a diode (DIBC) to prevent feedback of stored energy from the CIs. Diode D0 

acts as the classical boost rectifier diode while output capacitor C0 is used to limit the output 

voltage ripple. This novel hybrid arrangement of CIs and VMCs enables this converter to 

yield higher voltage gain and handle higher power simultaneously. The operating modes are 

presented in [57]. Fig. 3(b) shows the characteristic waveforms of the proposed HGHP 

converter. 
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(a) 
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(b) 
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Fig. 3. Proposed HGHP DC-DC converter for DC microgrids. 

(a) Circuit diagram and (b) characteristic waveforms. 

2.2 Steady State Analysis 

This section is dedicated to analyse the proposed HGHP converter operating under the 

steady-state condition and derive key design details. Mathematical expressions describing 

important design parameters like (i) voltage conversion ratio, (ii) voltage and current stress 

across the semiconductor devices and (iii) passive elements are derived and presented. 

2.2.1 Voltage Conversion Ratio 

 Stage 1 of the proposed converter is a three phase IBC. As voltage lift technique has 

been employed, the voltage gain of Stage 1 (Vstage1) is given by 

 1

3

1liftStage IBC C inV V V V
D

  
        

(1) 

where VIBC is the voltage across the IBC stage, Vin represents the input voltage, 
liftCV indicates 

the potential across Clift with respect to ground and D represents the duty ratio of the 

switches. 

Stage 2 of the proposed converter comprises of VMCs which are embedded with the 

secondary winding of each CI. Therefore, the voltage obtainable through Stage 2 (Vstage2) is 

 2

3

1
Stage in

k
V n V

D

    
                                  (2) 

where n represents the turns ratio of CI and k is the coefficient of coupling. 

 Using (1) and (2), the voltage gain (M) of the proposed converter is derived as 

 0 3 1

1in

nkV
M

V D


 


          

(3) 

where V0 is output voltage. 
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Generalising above shown approach, for a converter employing P number of interleaved 

phases (with P number of CIs each having n turns ratio with k being the coupling coefficient) 

and P number of VMCs, the overall voltage gain MGeneralized can be deduced as: 

 0 1

1
Generalized

in

P nkV
M

V D


 


       (4) 

2.2.2 Switch Voltage Stress 

Due to asymmetrical structure of Stage 1, voltage stress on the switches (
1 2 3
, ,Z Z ZV V V ) is 

different and expressed as 

1 2

03

1 1
Z Z in

V
V V V

D nk
  

          
(5)

 

Switch Z3 experiences a voltage stress similar to the switch present in a classical boost 

converter (CBC). Therefore, 

 3

01

1 3 1
Z in

V
V V

D nk
 

          
(6) 

 Though the voltage stress on all the three power switches is unequal (VZ1 = VZ2  VZ3), 

the converter performance is not affected. All the three switches (Z1, Z2 and Z3) are chosen 

with identical voltage rating for ease of fabrication. 

2.2.3 Diode Voltage Stress 

 The diode D1 is OFF when Z3 conducts whereas diode Dlift is OFF when Z1 is ON. 

Both D1 and Dlift must be rated to block the voltage obtained from one interleaved phase. 

Therefore,  

1

1

1liftD D inV V V
D

 
  

        (7) 
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 The voltage stress on DM1 (
1MDV ) is obtained when DM2 conducts. By applying 

Kirchhoff’s Voltage Law (KVL) around the loop involving Clift, DIBC, DM1 and CM2, the 

voltage stress is derived as 

1 2M M liftD C CV V V 
         

(8)

 

2MCV represents the voltage across CM2 and 
liftCV indicates the voltage across Clift.

 

The voltage across CM2 is given by 

2 1M liftC C in

nk
V V V

D

              

(9) 

Substituting (9) in (8), 

1 1MD in

nk
V V

D

              (10)

 

 From VMC concept, voltage stress on other multiplier diodes DM2-DM5 is equal to 

(10). As DM6 is present closer to the output terminals, its voltage stress is minimum and same 

as the stress on D0. Although voltage across adjacent multiplier cells increases steadily, the 

voltage stress on the multiplier diodes is equal. Therefore, diodes with identical voltage rating 

are used while fabricating.

 

 

 

2.2.4. Current Stress on Semiconductor Devices 

Stage 1 of the proposed converter is asymmetrical due to the introduction of Clift. The RMS 

value of currents flowing through Z1, Z2 and Z3 are given by 

1 2 3

2 1
,

3 6
  Z in Z Z inI I I I I

                   (11) 

The RMS value of current stress on D1 and Dlift will be same as the current through Z3 and Z1 

respectively. Thus,  
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1 3

1

6
D Z inI I I 

         (12) 

lift 1D Z in

2
I I I

3
 

         (13)
 

Since DIBC and DM1 are present just after Stage 1, the current through them is  

inDD I
D

II
MIBC 3

1
1




         (14)
 

Since the multiplier diodes DM2-DM6 are present in the gain extension stage, the RMS current 

through these diodes progressively decrease and are expressed as 

inDMD I
nk

D
II

M 



3

1
32

        (15) 

inDD I
nk

D
II

MM 23

1
54 




        (16) 

inD I
nk

D
I

M 33

1
6 




         (17) 

The diodes DM6 and D0 must be rated to carry the full load current I0. Therefore,  

006
III DDM

          (18) 

2.2.5. Design of Passive Components 

 The proposed high gain high power (HGHP) DC-DC converter for DC microgrid is 

intended to be used in PV integration. The input current ripple of a DC-DC converter used in 

PV applications should be minimised to harness the maximum power from the input PV 

panels efficiently. While designing the inductor, a judicious trade-off is made between its size 
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and current ripple. For the CIs used in the proposed converter, the primary winding 

inductance (LPrimary) is determined from 

Primary

( 3 )

3





lift

lift

in C in

L C

V V V
L

f i V
        (19) 

where f is the switching frequency and iL represents the input current ripple. 

The inductance value of the secondary winding is computed from the turns ratio n. The turns 

ratio is decided based on the required voltage gain and is expressed as 

 




 


 1

3

11 DM

k
n          (20) 

The voltage across CM1, CM3 and CM5 is same as the voltage impressed across L3S, L2S and L1S 

respectively. Since the three CIs have same turns ratio and coupling coefficient, voltage 

across these capacitors are same and given by 

1 3 5 1M M MC C C in

nk
V V V V

D

              

(21) 

The voltage across CM2 is given by (9). Each VMC cell contributes to a voltage gain given by 

(21). Therefore, voltage across CM4 and CM6 is deduced as 

4 2 1M MC C in

nk
V V V

D

              

(22) 

6 4 1M MC C in

nk
V V V

D

              (23) 

The output capacitor value C0 is determined from duty ratio D, output current I0, output 

voltage ripple V0 and the switching frequency f as 

0
0

0

DI
C

f V



          (24) 
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3 Hardware Tests and Results 

The proposed HGHP DC-DC converter suitable for DC microgrid applications has been 

implemented and then tested in order to demonstrate the suitability and the performance of 

the proposed concept. The hardware implementation is based on the parameters and 

specifications shown in Table 1. The gate pulses to switches Z1, Z2 and Z3 are generated using 

TMS320F28027 digital signal processor (DSP). SCALE driver board 2AP043512 is used to 

interface the control and power circuit. The driver board and power module are kept in close 

proximity to reduce EMI issues. Tektronix makes TPS2024B digital storage oscilloscope 

(DSO) with four isolated channels along with standard accessories like P5210 high voltage 

probe, and A622 current probes are used to capture the key experimental waveforms. Fig. 4 

shows the photograph of the experimental setup described above. 

 

Fig. 4. Photograph showing the experimental setup of the proposed converter. 
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The first experimental test is performed to verify the high gain high power handling 

capability of the proposed converter considering a 60V input and 3kW load. Fig. 5(a) shows 

the experimental waveforms of the gate pulses (CH1-CH3) and output voltage, V0 (CH4). 

The experimental measurements demonstrate the duty ratio, frequency and the phase shift 

between each pulse are fulfil the system requirement and specification defined in Table 1. 

Also, the experimental waveform of the output voltage exhibits a very low ripple as predicted 

from the design and specifications. The experimental results of the voltage waveforms in 

used to demonstrate the conversion ratio (18.3) of the proposed converter, and it is clear the 

requirements are properly fulfilled, the waveforms are presented in Fig. 5(b) and they 

perfectly match the theoretical value defined in the design stage. 

Table 1. Specifications of the main components of the proposed HGHP DC-DC 

converter for DC microgrid. 

Parameters Specifications / Part Number 

Input voltage, Vin 60 V 

Output voltage, V0 1.10  kV 

Output power, P0 3 kW 

Switching frequency, f 100 kHz 

Duty ratio, D 0.55 

Turns ratio, n 2.0 

Coefficient of coupling, k 0.875 

Input ripple current 10% of input current (Iin) 

Primary coupled inductors: L1P, L2P, L3P 18µH, 100kHz (L1P-45A, L2P-15A, 

L3P-15A) 

Secondary coupled inductors L1S, L2S, L3S 72µH, 10A, 100kHz 

Power switches Z1, Z2, Z3 (IGBTs) IXDN55N120D1 (1200V,100A, 2.3V) 

Voltage lift diode, Dlift VS-UFB280FA40 (400V, 170A) 

Diodes D1, DM1 DSEI2X101-12A (1.2kV, 91A) 

Diode DIBC DSEI2X101-06A (600V, 96A) 

Diodes DM6, D0 DSS2X61-01A (100V, 60A) 
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Multiplier diodes DM2-DM5 DSEI2X31-06C (600V, 30A) 

Capacitors Clift,CM2 BC2799-ND (5µF/1.2kV) 

Multiplier capacitors CM1, CM5 495-4186-ND (4.7µF/250V) 

Multiplier capacitor CM3 P14214-ND (4.7µF/450V) 

Capacitors CM4, CM6, C0 338-1376-ND (4.7µF/1.5kV) 

Heat sink 294-1112-ND 

 

Fig. 5(c) shows the experimental waveforms of the voltage across the capacitors at various 

key positions in the proposed converter. The waveform presented in CH1 shows the potential 

difference across Clift while the remaining three channels (CH2, CH3 and CH4) demonstrate 

the voltage developed across CM2, CM4 and CM6 respectively. Since Clift is present between 

two interleaved phases, the voltage developed across Clift is the voltage contributed by one 

IBC leg. The voltage built up across CM2, CM4 and CM6 clearly validate the implemented gain 

extension concept. As the capacitor CM6 is located at the far end of Stage 2 and no further 

gain extension is envisaged, the potential across CM6 is same as the output voltage. 

 Fig. 5(d) shows the waveform of the current through the primary windings L1P, L2P 

and L3P along with the input current, Iin. The total input current is shared among the three 

interleaved phases. As anticipated, the current distribution in the interleaved phases is 

unequal due to asymmetry. Since the switches are triggered with a uniform phase shift of 

120, the input current ripple is minimised. The magnitude of ripple current matches very 

closely with the designed value; the minor deviation (0.7 A) is attributed to the leakage 

present in the CIs. 
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(a) CH1 – CH3(50V/div): Voltage across gate and emitter terminals (VGE) of the power 

switches Z1, Z2 and Z3 and CH4(500V/div): Output voltage. (Time scale 2.5s/div) 

 

(b) CH1(100V/div): Input voltage, CH2 and CH3(50V/div): Gate pulses applied to 

switches Z2 and Z3, CH4(500V/div): Output voltage. (Time scale 2.5s/div). 
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(c)  CH1(500V/div): Voltage across CLift, CH2(500V/div): Voltage across CM2, 

CH3(500V/div): Voltage across CM4, CH4(2kV/div): Voltage across CM6. (Time scale 

25s/div) 

 

(d) CH1(50A/div), CH2(10A/div), CH3(5A/div): Current through L1P, L2P and L3P 

respectively, CH4(50A/div): Input current Iin. (Time scale 2.5s/div) 

Fig. 5. Experimental results showing the voltage and current waveform captured using the 

oscilloscope: Test carried out at full load condition. 

  The second test on the proposed converter is conducted to determine (i) the voltage and 

current stresses experienced by the semiconductor devices at full load condition and (ii) the 

operating efficiency of the proposed HGHP converter when load varies from 75% to 115% of 
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full load. Fig. 6(a) shows the voltage stress on Z3 as related to its gate pulse and the output 

voltage. The turn ON and turn OFF instants of Z3 are in accordance with the applied gate 

pulse. The voltage stress on Z3 is only about 12% of V0. Despite of large voltage conversion 

ratio realised in this converter; the switch voltage stress is very low because (i) voltage gain 

extension occurs in Stage 2, and (ii) VMCs present in Stage 2 act as passive recycling 

network for transferring the stored energy in the leakage inductance to the load. 

The waveforms presented in Fig. 6(b) to 6(d) pertain to efficiency computation at various 

load conditions. Under full load condition, the experimented converter operates at 92.63% 

efficiency. This efficiency value is acceptable since the converter simultaneously offers a 

high voltage gain of 18.3 and delivers 3 kW output power. The voltage reduction from the 

rated load to 115% of full load condition is about 50 V which translates to 4.54% voltage 

regulation at 89.78% efficiency. At 75% load condition, the voltage regulation is 8.63% 

while the efficiency is 90.10%. Energy storage elements contribute to a reasonably good 

voltage regulation even when operated under open loop mode. For DC microgrid, a constant 

DC bus voltage is needed to ensure proper operation of various loads connected to the 

common DC bus. When load condition tends to fluctuate, the energy storage elements used in 

the proposed HGHP converter act as energy buffer and maintain the DC bus voltage at the 

designed (specified) value. When operating at light load condition (75% of full load), the 

proposed converter yields a slightly higher voltage at the output. The output capacitor is rated 

to withstand this marginally higher output voltage. To maintain the DC output voltage at a 

constant and specified value and protect the other equipment/load connected to the common 

DC bus, duty ratio of the switches needs to be reduced slightly. 
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(a) CH1(50V/div): Gate pulse of Z3, CH2(100V/div): Voltage stress on Z3, CH3(1kV/div): 

Output voltage. (Time scale 2.5s/div) 

 

(b) CH1(100V/div) and CH2(50A/div): Voltage and current at the input terminals 

respectively, CH3(2kV/div) and CH4(2.5A/div): Voltage and current at the output, 

MATH(5kVA/div) (channel ‘M’): Output power at full load. (Time scale 5s/div). 
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(c) CH1(100V/div), CH2(100A/div), CH3(2kV/div) and CH4(1A/div): same as Fig. 

6(b) at 75% of full load. (Time scale 5s/div) 

 

(d) CH1(100V/div), CH2(50A/div), CH3(2kV/div) and CH4(2A/div): same as Fig. 6(b) at 

125% of full load. (Time scale 2.5s/div) 

Fig. 6. Experimental results showing the voltage and current waveform captured using the 

oscilloscope: Test carried out at full load condition. 

The loss distribution of the converter under full load condition is calculated from (24)-(26). 

2
switch _ loss switch _ RMS switch _ ON switch _ ON switch _ OFFP I R P P       (24)  

2
diode _ loss diode _ ON diode_ Avg diode_ RMS diodeP V I I R   

    
(25) 
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2 2
CI _ loss py py sy sy ironP I R I R P    

       
(26) 

where 

Pswitch_loss, Pdiode_loss, PCI_loss and Piron are the power loss occurring in the switches, diodes, 

coupled inductor and magnetic/ferrite core of CI respectively. 

Pswitch_ON and Pswitch_OFF are respectively the turn ON and turn OFF power loss occurring in 

the switches.  

Iswitch, Idiode, Ipy and Isy are the current flowing through switch, diode, primary winding of CI 

and secondary winding of CI respectively. 

Rswitch, Rdiode, Rpy and Rsy are the resistance of the switch, diode, primary winding and 

secondary winding of CI respectively. 

From the manufacturers’ datasheet, the required parameters like Rswitch_ON, Rdiode and Piron are 

obtained and the respective losses are calculated. Fig. 7shows the loss distribution of the 

converter under full load condition. The conduction loss and switching loss occurring across 

the power switches account for about 45% of the total losses. Generally, polypropylene 

capacitors are efficient and contribute to very low losses. To minimise the losses occurring 

across the connecting wires, thick stranded conductors with low resistance is used. Thick 

multi-layered printed circuit board (PCB) tracks are used to reduce the losses occurring 

across them. Overall, the losses occurring across the capacitors, losses occurring in the PCB, 

connecting wires, etc. are minimal and work out to 2% of the total power. 

Fig. 8 shows the top view photograph of the implementation of the proposed converter laid 

on the PCB. Modules with SOT227 package are used as power switches and diodes. The 

coupled inductors operate at the 100ckHz frequency and are wound using litz wire to reduce 

conduction losses, size and volume. Consequently, the three CIs are conveniently 
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accommodated on the PCB itself. Switches and diodes are naturally cooled using individual 

peel and stick type heat dissipators. Fig. 9 shows the front view photograph of the assembled 

converter. Capacitors CM4, CM6 and C0 were the tallest components with a height of about 

0.065 m. The overall dimensions of the converter are 0.385m  0.230m  0.065m (length  

width  height). 

 

Fig. 7. Loss distribution of the experimented converter operating at rated condition. 
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Fig. 8. Photograph showing the top view of the implemented HGHP DC-DC converter for 

DC Microgrids. 

 

Fig. 9 Front view photograph of the proposed HGHP converter. 
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4 Performance Analysis and Comparison with Few Existing Converters 

The performance of the presented HGHP DC-DC converter suitable for DC microgrid 

applications is evaluated considering variations in turns ratio (n), the duty ratio (D), the 

coefficient of coupling (k) of CIs and load conditions, simulation results are presented below. 

4.1  Efficiency and Output Voltage 

Fig. 7(a) shows the output voltage and efficiency values at various load conditions obtained 

during simulation and experimentation for the HGHP DC-DC converter suitable for DC 

microgrid applications. The peak operating efficiency of the converter is about 92% under 

full load condition. When the load varies from 75% to 115% of rated load, the practical 

efficiency fluctuates within a narrow 3% band. This narrow fluctuation is an advantage, and 

due to the presence of energy storage elements which ensure appropriate delivery of 

demanded output power over the load range considered. The output voltage remains almost 

constant over a load variation ranging from 75% to 115% of full load and proves the voltage 

gain capability of the converter while validating the design hypothesis.  

Fig. 10(b) shows the plot of ideal voltage gain (k = 1) versus duty ratio variation for the 

adopted and few existing converters. Proposed HGHP DC-DC converter offers the highest 

voltage gain compared to other converters. Converter presented in [47] and [55] offer the 

same gain as turns ratio is unity for this converter. Fig10(c) shows the voltage gain variation 

of the proposed converter with variation in turns ratio n. The desired operating point is 

achieved at n = 2 and k = 0.875 (experimentally determined value). Since CIs are used in the 

proposed converter, its voltage gain varies as the coupling coefficient varies. This variation is 

shown in Fig. 10(d). The change in voltage gain at a particular duty ratio when k varies from 

0.875 to 1 is very less and proves that the variation in k does not drastically affect the 

practical output voltage. 
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4.2. Voltage Gain and Power Handling Capability 

To appreciate the advantageous features of the proposed HGHP DC-DC converter, its main 

attributes are benchmarked with converters presented in [52], [53], [55] and [56]. Table 2 

provides some important attributes which are compared. All the converters that are compared 

provide a voltage gain of more than ten except the converter in [53], whose voltage gain is 

9.83. Converters presented in [52], [53] and [55] use two CIs with a relatively smaller turns 

ratio of 1 and 1.6 in [52]. Though the voltage gain of converters is higher than 10 (except 

[53]), their power handling capability is limited to 1 kW mainly due to the gain extension 

technique adopted. In the proposed converter, the presence of IBC as its first stage with three 

CIs enables the converter to handle 3 kW power at the desired voltage level. 

 

(a) 
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(b) 

 

(c) 
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(d) 

Fig. 10. Plots representative of the main performance indicators of the proposed converter 

(a) Efficiency and output voltage of the proposed converter under simulation and 

experimentation. 

(b) Voltage gain plot of the proposed converter and some existing converters when k = 1. 

(c) Voltage gain variation of the developed converter for various values of n. 

(d) Voltage gain variation of the developed converter for various values of k. 

4.1.1 Switch Stress 

In the proposed converter, the voltage stress experienced by Z1 and Z2 is 36% while Z3 

experiences a very low voltage stress of only about 12% of the output voltage. This reduced 

switch voltage stress is attributed to Stage 2 where the majority of gain extension takes place. 

Switches used in [52] and [55] experience a stress of about half of their output voltage while 
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in [53], the switching stress is about one-fourth of the output. In [56], switches are subjected 

to the least voltage stress of 12.5% of its output voltage due to clamping technique adopted. 

4.1.2 Component Count 

Proposed converter has maximum components and converter in [52] uses the least number of 

components. The presence of more components in the presented converter is acceptable since 

higher voltage gain, and power transfer of 3kW is simultaneously achieved. In [56], 

additional switches are used to reduce the voltage stress on the main switches resulting in 

increased component count. Other converters presented in Table 2 have a moderate 

component count. 
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Table 2. Comparison of proposed HGHP DC-DC converter with some converters 

proposed in the scientific literature [52]-[56]. 

Attributes 
Converters presented in 

[52] [53] [55] [56] Proposed 

Input voltage (Vin) 24 60 36 15 60 

Output voltage (V0) 380 590 400 200 1100 

Voltage gain (M) 15.83 9.83 11.11 13.33 18.33 

Output power (kW) 0.5 0.87 1 0.4 3 

Duty ratio (D) 0.56 0.615 0.67 0.65 0.55 

Magnetic 

components used 
2 CI 2CI 2 CI 3CI 3 CI 

CI turns ratio (n) 1.6 1 1 2 2 

Generalised voltage 

gain expression 

with coupling 

coefficient  k = 1 

D

n




1

14

 

3 1

1
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4
 

4
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D
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nk




1

13
 

Gain extension 

technique 

CI, 

diode 

capacitor 

stages 

Interleaved, 
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winding CI 
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voltage 
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CI and 
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14

0
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V
 rCV

n
 

2
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4

oV

n
 

nk

V

1

0  

Switch stress (% of 

V0) 
51.35 24.4 50 12.5 36.36 

No. of switches  2 2 4  6 3 

No. of diodes 4 8 0 4 10 

No. of capacitors  5 5 4 7 8 

Total component 

count  
13 16 14 20 23 
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4.3 MPPT Implementation 

The proposed HGHP DC-DC converter is designed to be used in DC microgrid applications, 

one of the main applications is interfacing PV systems. Consequently, the converter should 

be able to perform additional functionalities as Maximum Power Point Tracking (MPPT). To 

facilitate easy implementation of  a MPPT algorithm, the relation between the duty ratio (D), 

equivalent resistance (seen by the source) at maximum power point (RConv-MPP) and load 

resistance (RL) is provided in (27). 

 1 3 3 Conv MPP

L

R
D nk

R

  
       (27) 

5 Challenges  

Although DC microgrid has bright opportunities and is the right candidate to encounter the 

future energy demand by integrating DG and the loads, some challenges are associated while 

implementing a DC distribution scheme [58]. Some of the main challenges are discussed 

below.  

(i) The use of high DC bus voltages of the order of 1 kV is more attractive at distribution 

levels as they reduce the current and copper weight. However, when DC bus voltage 

exceeds 75 V, additional safety measures are required to avoid electrocution [59] – 

[62]. Apart from proper electrical insulation, an active protection system is also 

required to detect insulation failures, leakage currents, etc., and to isolate the power 

supply and loads. Though designing a complete safety system for DC is difficult, 

other safety mechanisms like residual current detector (RCD) and insulation 

resistance monitoring device (IMD) guarantee the necessary safety and monitoring 

functions. 
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(ii) The growth of DC distribution is constrained due to lack of higher current interrupting 

capacity of DC circuit breaker (CB), protection schemes and operational experience. 

However, expert research on fault detection and protection of DC distribution system 

has resulted in advanced protection schemes which are capable of investigating 

different faults and prove to be effective for DC distribution system with distributed 

energy sources [63] – [66]. 

(iii)When DC distribution is carried out through underground (UG) cables in urban areas, 

corrosion is likely to be more compared to AC [67]. 

(iv) Though there are different arguments towards the voltage levels and standards, to 

reach a breakthrough, standardisation of voltage levels is an important step. 

Organisations like Emerge Alliance (EA), the European Telecommunications 

Standards Institute (ETSI), the International Electrotechnical Commission (IEC) and 

IEEE are actively involved in evolving and fixing the appropriate policies and 

standards. 

(v) Manufacturing of DC compatible appliances is still in a nascent stage. Industries 

which manufacture products for DC distribution systems are very few since the 

demand for DC compatible loads/appliances is very low. On the other hand, minor 

modifications can be done in the present appliances or devices to make them “DC- 

ready” [68] – [70]. 

6 Prospects  

 Despite some stiff challenges, DC microgrids and DC distribution, in particular, have 

wider implications on efficient energy utilisation. The motivation to encounter the challenges 

may be obtained by looking at some of the bright prospects that DC distribution is expected 

to offer. Some of the ways to easily shift/adapt towards DC distribution are as follows: 
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(i) Present AC distribution lines can be upgraded into DC with few minor infrastructure 

changes resulting in increased power transfer capacity [71]. 

(ii) In residential and commercial buildings, it is standard practice to install multiple 

wiring networks for lighting loads, ring mains, the internet, intercom, etc., Therefore, 

adding a supplementary DC electrical network is perfectly achievable [72]. Further, 

DC sockets can be provided at modest cost. Introducing DC lines in residences will 

increase the market demand for DC appliances. Resultantly, they will keep getting 

better, and a wider range of products that work in DC will come into existence. In the 

long run, this phenomenon is expected to make DC appliances more affordable and 

efficient.  

(iii)In longer time perspective, smaller communities may find that their off-grid DC 

microgrid systems more reliable and satisfy their needs [73]. The quality of the power 

delivered to the customer will be improved. Further, as the distance between the 

generating station and load centre comes down drastically, the utility bills will also be 

reduced. 

Therefore, DC distribution has (i) a prosperous future, (ii) the potential to efficiently and 

effectively replace the existing AC system and (iii) provide reliable and high-quality power at 

a much affordable cost. 

7 Conclusion 

A high gain high power DC-DC converter suitable for DC microgrid, considering integration 

of PV system is developed. A non-isolated DC-DC converter has been developed to 

simultaneously realise high voltage gain at a higher power level for DC microgrid 

applications. When the converter is supplied from a 60 V input, the converter yielded 1.1 kV 

at the output terminals and delivered 3 kW of power at 92.6% efficiency. Many key 
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performance attributes of the proposed converter has been compared with some existing 

converters in order to highlight the versatility of the presented converter. When fed from a 

RES, the benefits of DC distribution systems, key challenges involved in adapting to DC and 

prospects have been thoroughly discussed. Further, the efficiency at which DC distribution 

systems and DC microgrids supply modern loads combined with the ease of integrating DG 

and storage elements makes the overall concept appealing. As an extension, a DC microgrid 

setup can be made to operate in a smarter way viz; avoiding brownouts and or blackouts, 

taking care of critical loads and other load demands depending upon the source availability 

by incorporating intelligence and internet connectivity. Standardisation of voltage levels, 

safety, protection and other key issues like DC compatible appliance manufacturing, creating 

awareness among the consumers, installation, operation and availability of qualified and 

trained technicians with experience in DC distribution systems should be addressed. 
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