
 

Highly Z-stereoselective synthesis of 1,3-oxathiol-2-ylidenes and 4-

methylene-oxazolidine-2-thiones through atom selective 5-exo-dig 

cyclization of propargyl alcohol with isothiocyanate 

S. Antony Savarimuthu,*a Rajendran Senthil Kumaran,b D.G. Leo Prakashc S. Augustine 

Thomas,a Thirumanavelan Gandhid and Mrinal K. Bera*e 

a Department of Chemistry, St. Xavier’s College (Autonomous), Palayamkottai, Tamil Nadu-627 002, India  

b Syngene International Limited, Biocon Park, Bangalore-560099, India 

c Materials Research Centre, College of Engineering, Swansea University, Swansea SA2 8PP, UK. 

d Materials Chemistry Division, School of Advanced Sciences, VIT University, Vellore-632 014, India. 

e Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, P.O. - Botanic 

Garden, Howrah-711 103, West Bengal, India 

  

Supporting Information  

 

ABSTRACT: DBU mediated 5-exo-dig cyclization of isothiocyanate and propargyl alcohol leading to 

valuable heterocyclic compounds has been accomplished. Different mode of nucleophilicity 

(either S-selective or N-selective) of isothiocyanates 

was found to depend on the substitution pattern of 

propargyl alcohol. The terminal propargyl alcohol and 

isothiocyanate underwent N-nucleophilic attack to afford 3-substituted 4-methylene oxazolidine-2-thiones. 

On contrary, exclusive S-nucleophilic cyclization was observed with internal propargyl alcohol to produce 

(Z)-1,3-oxathiol-2-ylidenes and (Z)-N-(Z)-4-ethylidene-1,3-oxathiolan-2-ylidenes from secondary and 

primary propargyl alcohol, respectively. The formation of high Z-selectivity in imine motif and alkene is the 

highlight of this new method, the former is due to electronic factors and the later is because of steric 

factors. 

INTRODUCTION: 1,3-oxathiol-2-ylidenes having exocyclic imine and exocyclic C=C bond is an 

interesting class of heterocyclic compounds with significant biological activities1 yet its synthetic routes 



 

are still limited.2 On contrary, oxazolidine-2-thione units are commonly found in natural products and 

pharmaceuticals with wide ranging bioactivities.3-4 Due to their biological significance and limited number 

of synthetic routes, developing an efficient method towards 1,3-oxathiol-2-ylidenes and oxazolidine-2-

thione derivatives5 with good geometrical selectivity is a matter of interest. In general, the selectivity 

around C=C bond is well known and governed by either electronic or steric factors. On the other hand, 

the selectivity around C=N bond is somewhat rare and less studied area. Importantly, the multiple 

selectivities around C=X bond (X= C,N) in a single system would be highly challenging and indeed hard 

to achieve. The synthetic method with such selectivity would play significant role in all fields of chemistry. 

In recent years, propargyl alcohol has emerged as a prolific synthon of broad synthetic utility in the 

context of heterocyclic compounds6and many more interesting organic transformation.7Strategy for 

substituted pyrroles and pyridines from propargyl alcohols with terminal alkyne under transition metal 

catalyzed condition is well established.8 Propargyl alcohol is also known to react with sulphur dioxide 

leading to oxathiolene oxide9 while reacting with carbon dioxide it affords cyclic carbonates under 

transition metal catalyzed condition.10 Isothiocyanates, being a higher congener of carbon dioxide are 

expected to be more reactive than carbon dioxide and thus found numerous application in synthesis of  

heterocyclic compounds.11 More interestingly, isothiocyanates are equipped with multiple reaction 

centers, i.e, one electrophilic centre at carbon and two nucleophilic centers at nitrogen and sulphur. 

Therefore, different mode of nucleophilic attack by isothiocyanates is almost inevitable under different 

reaction conditions and with different substrate with which it reacts. The –NCS group predominantly 

involved in resonance hybrid and so it reacts through either C=S or the C=N bond. The literature 

precedence is also in agreement that different circumstances will determine whether nitrogen or sulphur 

atom to act as a nucleophile of isothiocyanate molecule.12 Dethe et al demonstrated that propargyl amine 

reacts with isothiocyanates under basic condition to produce imidazole-2-thiones and spirocyclic 

imidazolidine-2-thiones by triggering N-nucleophile (Scheme 1a).13a In a different instance, Nakka et al 

reported that S-nucleophile based cyclization of 2-aminopyridine/amidine with isothiacyanates via N-S 

bond formation for the synthesis of N-fused and 3,4-disubstituted 5-imino-1,2,4-thiadiazoles (Scheme 

1b).13bThus, the mode of nucleophilic attack of isothiocyanate varies and mainly governed by reaction 

conditions and the reacting partners.  



 

  

Scheme 1 Use of isothiocyanate as potential ambient nucleophilic reagent in synthesis of novel 
heterocyclic framework 

 Being inspired by the wide ranging synthetic utility of isothiocyanate as versatile synthon, we 

envisioned to employ propargyl alcohol as a synthetic probe to study the isothiocyanate for atom specific 

cyclization. Notably, this study would disclose the stereochemical outcome around the C=X (X = C, N) 

bonds. Herein, we disclose the result on DBU assisted coupling and 5-exo-dig cyclization of 

isothiocyanate with internal 1oand 2o propargyl alcohol (Scheme 1c) to access 4-methylene oxazolidine-2-

thiones, (Z)-N-(Z)-4-ethylidene-1,3-oxathiolan-2-ylidenes and (Z)-1,3-oxathiol-2-ylidenes respectively with 

high Z-selectivity.Further, isothiocyanate undergoes N-nucleophilic substitution with prop-2-yn-1-ol, a 

terminal alcohol to afford 4-methylene oxazolidine-2-thiones as exclusive product. 

RESULT AND DISCUSSION: In order to find out the optimum reaction conditions, 1,3-diphenylprop-2-

yn-1-ol (1a) and 1-chloro-2-isothiocyanatobenzene (2a) were chosen as substrate and reactant, 

respectively (Table 1). The first experiment was carried out were in DCM as solvent with different organic 

bases at room temperature under nitrogen atmosphere. We could able to isolate neither heterocyclic 



 

products nor insignificant amount of cyclized product, which was found to be N-(4-benzyl-5-phenyl-1,3-

oxathiol-2-ylidene)-2-chloroaniline (4aa) (Table 1; entries 1-6). In most of the cases a noncyclized linear 

product was formed as the major component. In quest of the optimum condition, keeping the other factors 

unchanged, the reaction was further performed with DBU in acetonitrile as solvent and we were delighted 

to find that the cyclized product 4aa (Table 1; entry 7) was afforded exclusively with excellent yield. 

Experiments with the inorganic carbonate bases (Na2CO3, K2CO3 and Cs2CO3) and hydroxides (LiOH, 

NaOH and KOH) in DMF solvent mostly resulted with insignificant yield of 4aa and significant yield of the 

uncyclized product (3aa) (Table 1; entries 8-13). When the reaction was carried out in sodium alkoxide 

bases like NaOMe, NaOEt and NaOtBu, 3aa was formed as sole product (Table 1; entries 14-16); while 

the use of KOtBu and LiOtBu produced 32% and 45% of 4aa (Table 1; entry 17-18), respectively. Here, 

the best yield for the synthesis of multisubstituted 1,3-oxathiol-2-ylidenes was accomplished with the 

condition mentioned in entry 7 of table 1 and  thus considered as the optimum condition. 

Having arrived at the optimum reaction conditions, the scope of the synthesis was examined with the 

broad range of isothiocyanates. The reactions with substituted 1,3-diphenylprop-2-yn-1-ol (Scheme 2) 

and the electron-deficient (-Cl14) or electron-rich (-OMe, -Me and –tBu15) substituted phenyl 

isothiocyanate delivered > 80% yield of 4aa-4ae, irrespective of their position. Subsequently, 2-chloro 

phenyl isothiocyanate was screened with differently substituted 1,3-diphenylprop-2-yn-1-ol. 4-fluoro 

phenyl propargyl alcohol, explored on gram scale, produced an excellent yield of 4ba. The other two 

different positional di-fluoro substituted propargyl alcohols and three-fluoro substituted propargyl alcohols 

were employed and identified as equally good substrates producing 4ca, 4da and 4ea with 86%, 94% 

and 93% yield, respectively. Similarly, different halogen (Cl, F, Br) substituted phenyl propargyl alcohols 

were successfully coupled with 2-chloro phenyl isothiocyanate to afford excellent yields of 4ga-4ia, and a 

propargyl alcohol with substituents R1= 4-iPr produced 75% of 4ja. In addition, propargyl alcohols 

carrying 4-Cl or 4-Br phenyl attached to C1 and 4-F phenyl attached to C3 were also productive when 

reacted with electron rich isothiocyanates, delivered moderate yields of 4mc, 4hc and 4hf. The scope of 

the methodology was further tested using disubstituted pyridine propargyl alcohols produced the desired 

products 4ka with good yields. In addition, the Boc protected indole substituted phenyl propargyl alcohol 

delivered the expected product 4la with satisfactory yield. 



 

Table 1: Study of optimum reaction conditionsa 

 

 

 

 

 

[a]Yields of isolated products. DCM = dichloromethane, ACN = acetonitrile, DMF = N,N-dimethyl-

formamide, DBU = 1,8-diazabicyclo[5.4.0]undec-7-ene, DBN = 1,5-diazabicyclo[4.3.0]non-5-ene, DABCO 

= 1,4-diazabicyclo[2.2.2]octane, DIPEA= di-isopropyl ethyl amine, Et = ethyl, tBu = tertiary butyl, rt = room 

temperature, t = time, h = hour, N2 = nitrogen. 

 

Entry Solvent Base t (h) % yield of 4aa % yield of 3aa 

1 DCM DBU 72 15 50 

2 DCM DBN 72 18 50 

3 DCM DABCO 72 0 0 

4 DCM DIPEA 17 0 43 

5 DCM DBU 20 21 10 

6 DCM DBN 20 24 15 

7 ACN DBU 1 88 0 

8 DMF Na2CO3 15 0 0 

9 DMF K2CO3 15 0 32 

10 DMF Cs2CO3 15 0 53 

11 DMF LiOH 15 9 72 

12 DMF NaOH 15 16 60 

13 DMF KOH 15 0 63 

14 DMF NaOMe 15 0 68 

15 DMF NaOEt 15 0 82 

16 DMF NaOtBu 15 0 84 

17 DMF KOtBu 1 32 49 

18 DMF LiOtBu 1 45 42 



 

Scheme 2: Scope of the synthesis of 3,4,5-trisubstituted (Z)-1,3-oxathiol-2-ylidenesa 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[a] Reaction conditions: 1 (4.80 mmol), 2 (4.80 mmol), DBU (4.80 mmol) in 10 volume of ACN wrt 1 under 
N2 atmosphere. [b]Reactions were carried out on gram scale 

It is worth mentioning that our newly synthesized 1,3-oxathiol-2-ylidene compounds with chloro and 

bromo substituents could be considered as potential candidates for different transition metal catalyzed 

coupling reaction including Suzuki15 and Sonogashira16 to generate more complex molecular architecture. 

Most importantly, out of all the reactions enlisted in Scheme 2, isothiocyanates reacted exclusively with S-

nucleophilic sites resulting in the formation of 1,3-oxathiol-2-ylidene as sole product. At this point, what 

remained unknown is the stereochemical outcome around C=N bond. In order to confirm the selectivity in 

imine, X-ray structure determination was carried out on the compound 4aa14 which gave good crystal and 

the structure determination disclosed the stereochemistry around C=N bond is Z. This unprecedented 



 

selection of Z isomer of imine is somewhat rare. As shown in figure 1, E-isomer would face severe 

electron-electron repulsion between the lone pairs in 2p-lobes of nitrogen and relatively large 3p-lobes of 

sulfur and thus highly disfavored whereas, the Z-isomer has minimal electron-electron repulsions 

between the lone pairs in 2p-lobes of nitrogen and 2p-lobes of oxygen which results in the exclusive Z-

selectivity. Also, this observation is in line with Gálvez17 et al previous report where they described that 

the Z-isomer is indeed more stable than E-isomer. 

 

 

 

Figure 1: Selectivity in imine 

 

Scheme 3: Scope of the synthesis of 3,4-disubstituted (Z)-N-(Z)-4-ethylidene-1,3-oxathiolan-2-ylidenesa 

 

 

 

 

 

 

 

 

 

 

 

 

[a] Reaction conditions: 1 (4.80 mmol), 2 (4.8058 mmol), DBU (4.80 mmol) in 10 volume of ACN wrt 1 

under N2 atmosphere. [b]Reaction was carried out on gram scale. 

 

Prompted by the successful synthesis of multisubstituted (Z)-1,3-oxathiol-2-ylidenes from secondary 

propargyl alcohols, the same synthetic procedure was employed with primary propargyl alcohols. This 

time N-4-ethylidene-1,3-oxathiolan-2-ylidenes was found to be the sole product as depicted in Scheme 3. 

Firstly, 3-phenyl-prop-2-yn-1-ol was tested separately with six different aromatic isothiocyanates; for 

5ra 



 

example the ortho substituted (2-Cl or 2-Me) isothiocyanates yielded 88% of 5na and 82% of 5nb. The 

gram scale synthesis from electron rich methoxy substituents attached to ortho or meta positions of 

aromatic isothiocyanates were well transformed to the desired products of 5nd and 5ne with satisfactory 

yields. Similarly p-tBu and p-Br substituted phenyl at C-3 of propargyl alcohols underwent smooth 

reaction, affording good to excellent yields of 5nc and 5ng, respectively. This reaction was further applied 

to six different substituted phenyl prop-2-yn-1-ols with two isothiocyanates. The 4-nitro and di-fluoro 

substituted aromatic propargyl alcohols undergone coupling and cyclization smoothly with 2-chloro phenyl 

isothiocyanate and afforded 90% of 5oa and 87% of 5pa. The disubstituted, substituents being -Cl and -

OMe or -Cl and –Me, propargyl alcohols were producing very good yields of 5qa and 5ra; the 3-(p-

tolyl)prop-2-yn-1-ol,  3-(5-chloro-2-methylphenyl)prop-2-yn-1-ol and 3-(5-methyl-pyridin-2-yl) Prop-2-yn-1-

ol were equally effective, forming 88% of 5sa, 89% of 5td and 81% of 5ua. The 3-(4-nitrophenyl)prop-2-

yn-1-ol reacting with 1-(tert-butyl)-4-isothiocyanatobenzene gave 92% of 5oc. Thus, the reaction was 

found to be highly successful even with primary propargyl alcohol. Again we were curious to know the 

selectivity around the C=N bond. The careful analysis of NMR spectra once again, revealed that the 

reaction is stereoselective since we are isolating only single isomer. X-ray crystal analysis of 5ra18 

revealed that the stereochemical outcome in alkene is Z as well. This can be explained as shown in figure 

2 where E-isomer is highly disfavoured due to severe A1,3-strain19 between the hydrogen and aryl group. 

Such strain is not present in the Z-isomer. This attributes to the exclusive Z-selectivity in the alkene. 

Further, as anticipated, the imine remained Z-selective. Thus we have synthesized N-4-ethylidene-1,3-

oxathiolan-2-ylidenes with high dual Z-selectivity. 

 

 

 

 

Figure 2: Selectivity in alkene 

 

Finally, prop-2-yn-1-ol was treated with phenyl isothiocyanates under optimized reaction condition and the 

product was found to be oxazolidine-2-thiones derivative 6a with good yield (Scheme 4). Unlike the 

reactions of isothiacyanate with secondary and primary propargyl alcohols, the nucleophilic attack took 



 

place via N-atom to afford oxazolidine-2-thione.  Subsequently, we carried out the reaction with differently 

substituted phenyl isothiocyanates (4-OBn, 2-Me, 4-tBu and 2-OMe) and delivered isolated products of 

oxazolidine-2-thiones derivatives 6b-6e with moderate to excellent yield. Once again, we were fortunate 

to have a suitable crystal of compound 6b20 for crystallographic study which confirm the structural 

assignment unambiguously. 

Scheme 4: Scope of the synthesis of 3-substituted 4-methylene-oxazolidine-2-thionesa 

 

 

 

 

 

 

 

 

 

[a] Reaction conditions: 1 (4.80 mmol), 2 (4.8058 mmol), DBU (4.80 mmol) in 10 volume of ACN wrt1 

under N2 atmosphere. [b]Reaction was carried out on gram scale. 

 

The possible reaction mechanism has been proposed in Scheme 5.  DBU de-protonates the hydroxyl 

group in terminal primary propargyl alcohol and subsequently the corresponding N-anion in 

Isothiocyanates attacks the alkyne through a 5-exo-dig mode to get oxazolidine-2-thiones (6). In internal 

primary propargyl alcohol, 5-exo-dig cyclization of S-anion in isothiocyanate attacks the alkyne to get 5. In 

case of internal secondary propargyl alcohol, the S-anion led to the formation of exocyclic olefin which 

quickly rearranges through 1,3-hydrogen shift to form more substituted endocyclic olefin 4. 

Scheme 5: Plausiible reaction mechanism 

 

 

 

 

 

 

 

 



 

 

 

 

CONCLUSION 

A new synthetic protocol have been demonstrated for synthesizing 3,4,5-substituted (Z)-1,3-oxathiol-2-

ylidenes, 3,4-disubstituted (Z)-N-(Z)-4-ethylidene-1,3-oxathiolan-2-ylidenes and 4-methylene-oxazolidine-

2-thiones by reacting isothiocyanates with internal secondary, primary and terminal primary propargyl 

alcohols, respectively. Interestingly, the site of nucleophilic attack of isothiocyanate was found to be 

different, either S-nucleophilic or N-nucleophilic was achieved depends on the nature of propargyl 

alcohol. Moreover, the stereochemical arrangement of various groups around C=N and C=C were found 

to be quite significant. The high Z-selectivity in imine is favored because there is no repulsion between 

the lone pairs in sulfur and nitrogen as they are placed far away around C=N bond. In case of alkene 

selectivity, the lack of 1,3-allylic steric strain between hydrogen and aryl group plays an important role in 

favoring Z-alkene. It is worth mentioning that the cyclization is highly atom specific and leading to 

stereoselectivity around C=N and C=C bond which is rare and unique outcome of this study. 

 

EXPERIMENTAL SECTION 

 General. 1H and 13C {1H} NMR spectra were recorded at 300/ 400 (75/100) MHz spectrometers, 

respectively and the spectral data were reported in ppm relative to tetramethylsilane (TMS) as the internal 

standard. Mass spectra were recorded by electron ionization. IR spectra were recorded on an FT-IR 

spectrometer, and major peaks were reported in cm-1. TLC was performed by using commercially 

available 100-400 mesh silica gel plates (GF254). Unless and otherwise mentioned, the purchased 

chemicals were used without further purification.  

 

General procedure for the synthesis of secondary propargyl alcohols (1a-1m). To an oven dried 

multi-necked round bottom flask (RBF) were added corresponding phenyl acetylene (0.100mol) and 

tetrahydrofuran (THF), sequentially under nitrogen atmosphere. The reaction mixture was cooled to -70 

°C. 2.0M solution of n-BuLi in hexane (0.090mol) at -70 °C was added and the reaction mixture was 



 

stirred at the same temperature for about 20 minutes. Then a solution of corresponding benzaldehyde 

(0.067mol) in tetrahydrofuran at -70 °C was added to the reaction mixture which was stirred at the same 

temperature for about 10 minutes. The progress of the reaction was monitored by thin layer 

chromatogram (TLC) and at the completion of the reaction the reaction mixture was quenched with 

aqueous NH4Cl solution and then extracted with ethyl acetate. The organic layer washed with aqueous 

NH4Cl solution, dried over Na2SO4, filtered and concentrated at reduced pressure to give a light brown 

liquid. The crude sample was purified by chromatography on silica gel (petroleum ether/ethyl acetate = 

1/1) to give the desired secondary propargyl alcohols. 

General procedure for the synthesis of primary propargyl alcohols (1n-1u). To an oven dried 

multi-necked RBF were added corresponding iodobenzene (0.057mol), prop-2-yn-1-ol (0.085mol), 

acetonitrile (ACN), Pd(PPh3)2Cl2 (2.844mmol), CuI (2.844 mmol) and triethyl amine (0.142mol) were 

successively added under nitrogen atmosphere at room temperature. The reaction mixture was heated to 

80 °C and stirred at the same temperature for 2 h. Completion of the reaction was asserted by TLC and 

then the reaction mixture was quenched with aqueous ammonia solution. The reaction mixture was 

extracted with ethyl acetate, and the organic layer washed with brine solution, dried over Na2SO4, filtered 

and concentrated at reduced pressure to give a dark brown liquid. The crude sample was purified by 

chromatography on silica gel (petroleum ether/ ethyl acetate = 1/1) to give the desired primary propargyl 

alcohols. 

General procedure for the synthesis of 3,4,5-trisubstituted (Z)-1,3-oxathiol-2-ylidenes.  

 (Z)-N-(4-benzyl-5-phenyl-1,3-oxathiol-2-ylidene)-2-chloroaniline (4aa): To a solution of 1a (120 mg, 

0.576 mmol) in ACN (1.2 mL) was added successively 1-chloro-2-isothiocyanato-benzene (2a) (97.4 mg, 

0.576 mmol) and DBU (87.7 mg, 0.576 mmol) under nitrogen atmosphere at room temperature. The 

reaction mixture was stirred for about 1 hr and then quenched into ice-water (25 mL), extracted with 

MTBE (25 mL), and the organic layer washed with brine solution (25 mL), dried over Na2SO4 and filtered. 

Then the filtrate was stirred along with silica gel (500 mg) for 0.5 hr, filtered and concentrated at a 

reduced pressure to get 191 mg of 4aa, 88% yield; yellow amorphous solid. 1H NMR (400 MHz, CDCl3) δ 

7.64 (d, J = 6 Hz, 2H), 7.45-7.21 (m, 7H), 7.20-7.04 (m, 5H), 3.98 (s, 2H); 13C {1H} NMR (100 MHz, 

CDCl3) δ 163.6, 146.2, 144.3, 137.4, 130.8, 129.9, 129.4, 129.2, 128.7, 128.5, 128.3, 128.0, 127.8, 127.3, 



 

125.9, 122.1, 114.2, 33.2; IR (KBr) υ max: 2929.9, 2155.4, 1765.8, 1657.4, 1485.9, 1333.3, 1086.7, 853.2, 

759.1, 705.3 cm-1; MS (ESI): 378.30 (M+H)+; Anal. Calcd for C22H16ClNOS: C, 69.92; H, 4.27; N, 3.71. 

Found: C, 69.85; H, 4.18; N, 3.76. 

 

(Z)-N-(4-benzyl-5-phenyl-1,3-oxathiol-2-ylidene)-2-methylaniline (4ab): 95 mg, 86% yield; yellow 

gummy solid; 1H (400 MHz, CDCl3) δ 7.65-7.61 (m, 2H), 7.43 (dd, J = 5.6, 6.4 Hz, 3H), 7.33-7.25 (m, 3H), 

7.22-7.13 (m, 4H), 7.03 (d, J = 7.6 Hz, 1H), 6.93 (d, J = 7.6 Hz, 1H), 3.96 (s, 2H), 2.24 (s, 3H); 13C {1H} 

NMR (100 MHz, CDCl3) δ 161.4, 148.1, 144.0, 137.6, 131.4, 130.7, 129.9, 129.4, 129.3, 128.7, 128.0, 

127.8, 127.5, 125.0, 120.2, 114.0, 33.3, 18.3; IR (KBr) υ max: 2909.9, 2125.4, 1755.8, 1657.9, 1482.9, 

1334.3, 1066.7, 843.2, 779.1, 709.3 cm-1; MS (ESI): 358.20 (M+H)+; Anal. Calcd for C23H19NOS: C, 77.28; 

H, 5.36; N, 3.92. Found:  C, 77.32; H, 5.25; N, 3.87.  

 

(Z)-N-(4-benzyl-5-phenyl-1,3-oxathiol-2-ylidene)-4-(tert-butyl)aniline (4ac): 104 mg, 89% yield; yellow 

solid; 1H (400 MHz, CDCl3) δ 7.69-7.67 (m, 2H), 7.40-7.34 (m, 5H), 7.19-7.15 (m, 3H), 6.99 (d, J = 4.8 Hz, 

2H), 6.85 (d, J = 2.8 Hz, 2H), 3.90 (s, 2H), 1.32 (s, 9H); 13C {1H} NMR (75 MHz, CDCl3) δ 163.6, 152.9, 

144.2, 135.3, 131.9, 129.0, 128.7, 127.8, 127.3, 127.0, 126.8, 126.5, 125.5, 125.4, 34.8, 31.2, 29.7; IR 

(KBr) υ max: 2729.9, 2159.4, 1785.8, 1677.2, 1425.0, 1313.3, 1286.7, 833.2, 750.1, 715.0 cm -1; MS (ESI): 

400.30 (M+H)+; Anal. Calcd for C26H25NOS:  C, 78.16; H, 6.31; N, 3.51. Found: C, 78.23; H, 6.27; N, 3.46. 

 

(Z)-N-(4-benzyl-5-phenyl-1,3-oxathiol-2-ylidene)-2-methoxyaniline (4ad): 76 mg, 82% yield; yellow 

solid; 1H (400 MHz, CDCl3) δ 7.70-7.67 (m, 2H), 7.45-7.35 (m, 4H), 7.16 (dd, J = 4 Hz, 3H), 7.00-6.92 (m, 

1H), 6.90-6.87 (m, 4H), 3.95-3.76 (m, 2H), 3.60 (s, 3H); 13C {1H} NMR (100 MHz, CDCl3) δ 164.2, 154.9, 

144.0, 135.3, 131.5, 129.8, 129.0, 128.8, 128.5, 127.9, 127.0, 126.9, 125.9, 125.3, 123.0, 120.9, 112.3, 

55.6, 29.7; IR (KBr) υ max: 3020.7, 2023.7, 1950.7, 1599.9, 1498.3, 1396.1, 1328.7, 1426.2, 1210.1, 

1067.2, 818.2, 759.1 cm-1; MS (ESI): 374.00 (M+H)+; Anal. Calcd for C23H19NO2S: C, 73.97; H, 5.13; N, 

3.75. Found: C, 73.90; H, 5.10; N, 3.66. 

 



 

(Z)-N-(4-benzyl-5-phenyl-1,3-oxathiol-2-ylidene)-3-methoxyaniline (4ae): 54 mg, 80% yield; yellow 

solid; 1H (400 MHz, CDCl3) δ 7.63-7.61 (m, 2H), 7.43 (d, J = 7.2 Hz, 3H), 7.32 (dd, J = 4.4, 7.2 Hz, 3H), 

7.28-7.21 (m, 3H), 6.67-6.60 (m, 3H), 4.00 (s, 2H), 3.79 (s, 3H); 13C {1H} NMR (100 MHz, CDCl3) δ 161.1, 

150.3, 143.9, 137.6, 130.8, 129.8, 129.4, 129.2, 128.9, 128.7, 127.9, 127.7, 126.4, 113.8, 113.5, 110.8, 

107.3, 55.7, 33.2; IR (KBr) υ max: 2979.9, 2095.4, 1725.8, 1667.9, 1455.9, 1293.3, 1096.7, 850.2, 749.1, 

709.0 cm-1; MS (ESI): 374.00 (M+H)+; Anal. Calcd for C23H19NO2S:  C, 73.97; H, 5.13; N, 3.75. Found: C, 

73.90; H, 5.10; N, 3.65. 

 

(Z)-2-chloro-N-(4-(4-fluorobenzyl)-5-phenyl-1,3-oxathiol-2-ylidene)aniline (4ba): 178.2 mg, 91% yield; 

yellow solid. 1H (400 MHz, CDCl3) δ 7.66-7.45 (m, 2H), 7.44-7.40 (m, 4H), 7.26-7.16 (m, 3H), 7.07-6.98 

(m, 4H), 3.95 (s, 2H); 13C {1H} NMR (100 MHz, CDCl3) δ 162.5 (244.6Hz), 146.2, 144.3, 133.2, 130.8, 

130.3, 130.2, 130.0, 129.3, 128.4, 128.0, 127.2, 126.0, 122.1, 116.4, 116.2, 114.1, 32.5; IR (KBr) υ max: 

2979.1, 2091.4, 1745.6, 1637.9, 1455.9, 1263.3, 1066.2, 850.2, 779.1, 719.0 cm-1; MS (ESI): 396.30 

(M+H)+; Anal. Calcd for C22H15ClFNOS: C, 66.75; H, 3.82; N, 3.54. Found:  C, 66.83; H, 3.80; N, 3.51. 

 

(Z)-2-chloro-N-(4-(4-fluorobenzyl)-5-(2-fluorophenyl)-1,3-oxathiol-2-ylidene)aniline (4ca): 83 mg, 

86% yield; yellow solid; 1H (400 MHz, CDCl3) δ 7.42-7.41 (m, 2H), 7.28-6.95 (m, 10H), 3.74 (s, 2H); 13C 

{1H} NMR (100 MHz, CDCl3) δ 161.2, 158.7, 146.0, 138.2, 133.0 (3 Hz), 132.4 (8.2 Hz), 131.5, 130.8, 

130.5 (8 Hz), 130.2 (8.2 Hz), 128.4, 127.2, 126.0, 125.0, 122, 117.7, 116.8 (21.7 Hz), 116.4 (14.1 Hz), 

116.1 (22 Hz), 32.5; IR (KBr) υ max: 2939.5, 2045.4, 1705.8, 1647.9.5, 1405.9, 1253.3, 1056.7, 859.2, 

789.1, 721.0 cm-1; MS (ESI): 414.20 (M+H)+; Anal. Calcd for C22H14ClF2NOS: C, 63.85; H, 3.41; N, 3.38. 

Found: C, 63.79; H, 3.37; N, 3.31. 

 

(Z)-N-(4-benzyl-5-(2,5-difluorophenyl)-1,3-oxathiol-2-ylidene)-2-chloroaniline (4da): 116 mg, 94% 

yield; yellow solid; 1H (400 MHz, CDCl3) δ 7.40 (dd, J = 1.2 Hz, 1H), 7.31-7.25 (m, 3H), 7.23-7.15 (m, 6H), 

7.04 (t, J = 7.2 Hz, 2H), 3.78 (s, 2H); 13C {1H} NMR (100 MHz, CDCl3) δ 161.5 (288Hz), 155.9 (308Hz), 

145.9, 137.1, 136.9, 130.8, 129.3, 128.9, 128.4, 127.9, 127.2, 126.0, 121.9, 119.1 (9Hz), 119.0, 118.8 

(8.6Hz), 118.2 (8.6Hz), 118.0 (8.6Hz), 117.1 (24.8Hz), 33.3 (4.6Hz); IR (KBr) υ max: 2979.2, 2015.4, 



 

1705.0, 1677.9.5, 1405.0, 1253.9, 1066.7, 859.0, 759.1, 711.0 cm-1; MS (ESI): 414.20 (M+H)+; Anal. 

Calcd for C22H14ClF2NOS: C, 63.85; H, 3.41; N, 3.38. Found: C, 63.82; H, 3.37; N, 3.30. 

 

(Z)-2-chloro-N-(5-(2,5-difluorophenyl)-4-(4-fluorobenzyl)-1,3-oxathiol-2-ylidene)aniline (4ea): 120 

mg, 93% yield; yellow solid; 1H (400 MHz, CDCl3) δ 7.45-7.30 (m, 2H), 7.25-7.14 (m, 5H), 7.09-6.98 (m, 

4H), 3.77 (s, 2H); 13C {1H} NMR (100 MHz, CDCl3) δ 163.3, 160.9, 159.7, 136.5, 132.3, 130.4, 130.1, 

130.0, 127.9, 126.7, 125.6, 121.4, 118.7, 117.8, 117.7, 117.6, 117.5, 117.2, 115.9, 115.7, 32.1; IR (KBr) 

υmax: 2929.9, 2109.4, 1755.8, 1670.4, 1405.0, 1313.0, 1286.7, 853.2, 750.1, 705.0 cm -1; MS (ESI): 432.04 

(M+H)+; Anal. Calcd for C22H13ClF3NOS: C, 61.19; H, 3.03; N, 3.24. Found: C, 62.01; H, 3.20; N, 3.22. 

 

(Z)-2-chloro-N-(5-(4-chlorophenyl)-4-(4-fluorobenzyl)-1,3-oxathiol-2-ylidene)aniline (4fa): 97 mg, 

90% yield; yellow solid; 1H (400 MHz, CDCl3) δ 7.57-7.53 (m, 2H), 7.46-7.32 (m, 3H), 7.27-7.15 (m, 3H), 

7.05-6.99 (m, 4H), 3.92 (s, 2H); 13C {1H} NMR (100 MHz, CDCl3) δ 162.5 (244.7 Hz), 144.6 (282.8 Hz), 

136.0, 132.8, 130.8, 130.2, 130.1, 129.6, 129.1, 128.4, 127.2, 126.8, 126.0, 122.0, 116.5, 116.3, 114.8, 

32.5; IR (KBr) υ max: 2909.9, 2045.4, 1725.1, 1667.9, 1395.1, 1293.3, 1090.6, 850.7, 759.1, 709.5 cm -1; 

MS (ESI): 430.50 (M+H)+; Anal. Calcd for C22H14Cl2FNOS: C, 61.40; H, 3.28; N, 3.25. Found:  C, 61.33; 

H, 3.22; N, 3.22.  

 

(Z)-N-(4-benzyl-5-(2-chloro-5-nitrophenyl)-1,3-oxathiol-2-ylidene)-2-chloroaniline (4ga): 78 mg, 92% 

yield; yellow solid; 1H (400 MHz, CDCl3) δ 8.41 (s, 1H), 8.27 (s, 1H), 7.70 (d, J = 8.8 Hz, 1H), 7.42 (d, J = 

3.2 Hz, 1H), 7.31-7.20 (m, 4H), 7.13-7.00 (m, 4H), 3.70 (s, 2H); 13C {1H} NMR (100 MHz, CDCl3) δ 163.1, 

146.8, 145.7, 142.2, 136.4, 131.8, 130.9, 129.7, 129.4, 128.8 (2), 128.4, 128.2, 128.0, 127.8, 126.5, 

126.2, 121.9, 33.3; IR (KBr) υ max: 2947.0, 2091.4, 1720.8, 1667.9, 1455.9, 1293.3, 1096.2, 850.2, 749.1, 

04.0 cm-1; MS (ESI): 457.00 (M+H)+; Anal. Calcd for C22H14Cl2N2O3S: C, 57.78; H, 3.09; N, 6.13. Found: 

C, 57.83; H, 3.12; N, 6.19. 

 

(Z)-N-(5-(4-bromophenyl)-4-(4-fluorobenzyl)-1,3-oxathiol-2-ylidene)-2-chloroaniline (4ha): 103 mg, 

89% yield; yellow solid; 1H (400 MHz, CDCl3) δ 7.59-7.40 (m, 4H), 7.23-7.14 (m, 4H), 7.07-6.98 (m, 4H), 



 

3.92 (s, 2H); 13C {1H} NMR (100 MHz, CDCl3) δ 163.3, 160.9, 142.7, 132.4, 130.4, 129.7, 129.3, 128.9, 

127.9, 126.9, 126.7, 125.6, 123.8, 121.5, 116.0, 115.8, 115.6, 32.1; IR (KBr) υ max: 2929.1, 2095.4, 

1725.8, 1667.9, 1459.9, 1293.9, 1066.7, 850.2, 749.6, 719.0 cm-1; MS (ESI): 474.10 (M+H)+; Anal. Calcd 

for C22H14BrClFNOS: C, 55.66; H, 2.97; N, 2.95. Found:  C, 55.74; H, 2.91; N, 2.85. 

 

(Z)-N-(4-benzyl-5-(4-bromophenyl)-1,3-oxathiol-2-ylidene)-2-chloroaniline (4ia): 83 mg, 77% yield; 

yellow solid; 1H (400 MHz, CDCl3) δ 7.62-7.45 (m, 4H), 7.43-7.28 (m, 4H), 7.22-7.22 (m, 3H), 7.09-7.05 

(m, 2H), 3.97 (s, 2H); 13C {1H} NMR (100 MHz, CDCl3) δ 162.5, 145.7, 142.7, 136.7, 132.0, 131.9, 131.8, 

130.4, 130.0, 129.6, 129.4, 129.0, 128.9, 128.5, 128.2, 127.9, 127.6, 127.5, 126.9, 126.8, 126.5, 125.5, 

123.7, 121.6, 115.9, 114.6, 32.8; IR (KBr) υ max: 2999.9, 2095.4, 1725.8, 1467.2, 1455.9, 1303.3, 1076.7, 

850.2, 749.8, 700.0 cm-1; MS (ESI): 456.97 (M+H)+; Anal. Calcd for C22H15BrClNOS: C, 57.85; H, 3.31; N, 

3.07. Found:  C, 57.99; H, 3.42; N, 3.14.  

 

(Z)-N-(4-benzyl-5-(4-isopropylphenyl)-1,3-oxathiol-2-ylidene)-2-chloroaniline (4ja): 68 mg, 75% yield; 

semi yellow solid; 1H (400 MHz, CDCl3) δ 7.61-7.59 (m, 2H), 7.45-7.22 (m, 9H), 7.10-7.05 (m, 1H), 4.01 

(s, 2H), 3.02-2.95 (m, 1H), 1.32-1.30(d, J = 6.8 Hz, 6H); 13C {1H} NMR (100 MHz, CDCl3) δ 163.1, 150.4, 

145.9, 144.0, 137.1, 130.3, 128.9, 128.2, 127.8, 127.5, 127.2, 126.8, 125.5, 125.3, 121.7, 112.8, 34.0, 

32.7, 23.7; IR (KBr) υ max: 2999.2, 2015.0, 1645.0, 1677.9.5, 1405.0, 1233.9, 1066.7, 859.0, 759.1, 703.0 

cm-1; MS (ESI): 420.11 (M+H)+; Anal. Calcd for C25H22ClNOS: C, 71.50; H, 5.28; N, 3.34. Found:  C, 

71.68; H, 5.38; N, 3.51. 

 

(Z)-N-(4-benzyl-5-(4-chlorophenyl)-1,3-oxathiol-2-ylidene)-4-(tert-butyl)aniline (4mc): 76 mg, 73% 

yield; yellow solid; 1H (400 MHz, CDCl3) δ 7.55 (d, J = 8.8 Hz, 2H), 7.42 (d, J = 8.4 Hz, 2H), 7.36-7.27 (m, 

5H), 7.21 (d, J = 6.8 Hz, 2H), 6.98 (d, J = 8.8 Hz, 2H), 3.95 (s, 2H), 1.30 (s, 9H); 13C {1H} NMR (75 MHz, 

CDCl3) δ 161.2, 140.1, 138.5, 137.2, 136.9, 135.3, 129.0, 128.9, 128.7, 128.1, 127.4, 126.4, 120.5, 113.8, 

34.4, 32.8, 31.4; IR (KBr) υ max: 2079.2, 2015.4, 1705.0, 1779.5, 1405.0, 1293.3, 1066.7, 859.0, 759.1, 

701.0 cm-1; MS (ESI): 434.10 (M+H)+; Anal. Calcd for C26H24ClNOS: C, 71.95; H, 5.57; N, 3.23. Found:  

C, 71.97; H, 5.51; N, 3.34. 



 

 

(Z)-N-(5-(4-bromophenyl)-4-(4-fluorobenzyl)-1,3-oxathiol-2-ylidene)-4-(tert-butyl)aniline (4hc): 82 

mg, 78% yield; yellow solid; 1H (400 MHz, CDCl3) δ 7.57 (d, J = 8.4 Hz, 2H), 7.47 (d, J = 8.8 Hz, 2H), 7.34 

(d, J = 8.8 Hz, 2H), 7.17 (d, J = 8.4 Hz, 2H), 7.00 (dd, J = 8.4 Hz, 4H), 3.91 (s, 2H), 1.30 (s, 9H); 13C {1H} 

NMR (100 MHz, CDCl3) δ 162.1, 145.4, 133.0, 132.9, 132.5, 130.2, 130.1, 129.3, 127.5, 126.9, 124.1, 

120.9, 116.5, 116.2, 114.2, 34.9, 32.5, 31.8; IR (KBr) υ max: 3079.2, 2015.4, 1745.0, 1679.5, 1385.0, 

1253.2, 1066.7, 859.0, 709.1, 711.0 cm-1; MS (ESI): 496.10 (M+H)+; Anal. Calcd for C26H23BrFNOS: C, 

62.90; H, 4.67; N, 2.82. Found:  C, 62.97; H, 4.71; N, 2.76.  

 

(Z)-4-(benzyloxy)-N-(5-(4-bromophenyl)-4-(4-fluorobenzyl)-1,3-oxathiol-2-ylidene)aniline (4hf): 96 

mg, 83% yield; yellow solid; 1H (400 MHz, CDCl3) δ 7.62-7.59 (m, 2H), 7.58-7.49 (m, 2H), 7.48-7.45 (m, 

3H), 7.43-7.39 (m, 3H), 7.19-6.96 (m, 2H), 6.88-6.82 (m, 4H), 5.05 (d, J = 14.4 Hz, 2H), 3.90 (d, J = 26 

Hz, 2H); 13C {1H} NMR (100 MHz, CDCl3) δ 158.2, 142.8, 137.4, 136.6, 132.7, 131.0, 130.2, 129.7, 129.3, 

128.7, 128.4, 128.0, 127.9, 127.3, 126.2, 124.1, 123.1, 116.3, 114.2, 32.5, 29.5; IR (KBr) υ max: 2959.2, 

2015.4, 1755.0, 1677.3, 1385.0, 1253.9, 1066.7, 889.0, 759.1, 701.5 cm-1; MS (ESI): 546.20 (M+H)+; 

Anal. Calcd for C29H21BrFNO2S: C, 63.74; H, 3.87; N, 2.56. Found:  C, 63.64; H, 3.75; N, 2.50.   

 

(Z)-N-(4-benzyl-5-(5-bromopyridin-3-yl)-1,3-oxathiol-2-ylidene)-2-chloroaniline (4ka): 75 mg, 79% 

yield; semi yellow solid; 1H (300 MHz, CDCl3) δ 8.78 (s, 1H), 8.70 (s, 1H), 8.17 (s, 1H), 7.40 (d, J = 7.8 

Hz, 1H), 7.34-7.32 (m, 3H), 7.26-7.20 (m, 3H), 7.09-7.02 (m, 2H), 3.99 (s, 2H); 13C {1H} NMR (100 MHz, 

CDCl3) δ 162.0, 150.7, 145.7, 145.4, 139.2, 138.2, 136.2, 130.9, 129.6, 128.6, 128.4, 128.2, 127.1, 126.3, 

121.8, 118.9, 33.2; IR (KBr) υ max: 3029.9, 2009.4, 1755.2, 1670.4, 1445.0, 1313.0, 1286.5, 853.2, 750.1, 

709.0 cm-1; MS (ESI): 457.20 (M+H)+; Anal. Calcd for C21H14BrClN2OS: C, 55.10; H, 3.08; N, 6.12. Found:  

C, 55.18; H, 3.14; N, 6.17.  

 

(Z)-tert-butyl 3-(2-((2-chlorophenyl)imino)-4-(4-fluorobenzyl)-1,3-oxathiol-5-yl)-1H-indole-1-

carboxylate (4la): 65 mg, 68% yield; yellow solid;  1H (400 MHz, CDCl3) δ 8.18 (d, J = 7.2 Hz, 1H), 7.92 

(d, J = 6.4 Hz, 1H), 7.80 (s, 1H), 7.52-7.30 (m, 3H), 7.26-7.17 (m, 3H), 7.07 (d, J = 7.6 Hz, 2H), 7.00 (d, J 



 

= 8.4 Hz, 2H), 3.92 (s, 2H), 1.53 (s, 9H); 13C {1H} NMR (100 MHz, CDCl3) δ 161.2, 144.1, 143.1, 137.9, 

137.0, 136.0, 135.5, 134.0, 130.9, 130.2, 128.4, 126.1, 124.0, 122.3, 121.8, 116.4, 116.2, 115.7, 59.7, 

32.0, 28.6; IR (KBr) υ max: 2979.2, 2015.4, 1705.0, 1677.9, 1405.0, 1253.9, 1066.7, 859.0, 759.1, 717.0 

cm-1; MS (ESI): 535.20 (M+H)+; Anal. Calcd for C29H24ClFN2O3S: C, 65.10; H, 4.52; N, 5.24. Found: C, 

65.19; H, 4.58; N, 5.34. 

 

General procedure for synthesis of 3,4-disubstituted (Z)-N-(Z)-4-ethylidene-1,3-oxathiolan-2-

ylidenes.  

(Z)-N-((Z)-4-benzylidene-1,3-oxathiolan-2-ylidene)-2-chloroaniline (5na): To a solution of 1n (125 mg, 

0.946 mmol) in ACN (1.2 mL) was added successively 1-chloro-2-isothiocyanato-benzene (2a) (160 mg, 

0.946 mmol) and DBU (144 mg, 0.946 mmol) under nitrogen atmosphere at room temperature. The 

reaction mixture was stirred for about 1 hr and then quenched into ice-water (25 mL), extracted with 

MTBE (25 mL), and the organic layer washed with brine solution (25 mL), dried over Na2SO4 and filtered. 

Then the filtrate was stirred along with silica gel (500 mg) for 0.5 hr, filtered and concentrated at a 

reduced pressure to obtain 250.7 mg, 88% yield; pale yellow solid. 1H (400 MHz, CDCl3) δ 7.42-7.38 (m, 

2H), 7.36-7.30 (m, 2H), 7.28-7.23 (m, 3H), 7.10 (t, J = 8 Hz, 1H), 7.00 (d, J = 8.4 Hz, 1H), 6.61 (s, 1H), 

5.27 (s, 2H); 13C {1H} NMR (100 MHz, CDCl3) δ 164.0, 145.8, 135.3, 130.6, 130.0, 129.2, 128.4, 128.3, 

128.1, 127.0, 126.0, 122.8, 120.9, 76.2; IR (KBr) υ max: 3025.2, 2859.4, 1669.1, 1487.4, 1205.0, 1062.4, 

1015.7, 853.2, 768.8, 687.0, 512.2 cm-1; MS (ESI): 302.10 (M+H)+; Anal. Calcd for C16H12ClNOS: C, 

63.68; H, 4.01; N, 4.64. Found:  C, 63.76; H, 4.11; N, 4.76.  

 

(Z)-N-((Z)-4-benzylidene-1,3-oxathiolan-2-ylidene)-2-methylaniline (5nb): 96 mg, 82% yield; white 

solid; 1H (300 MHz, CDCl3) δ 7.40-7.25 (m, 2H), 7.25-7.12 (m, 4H), 7.10-7.00 (m, 2H), 6.90-6.83 (m, 1H), 

6.58 (s, 1H), 5.21 (s, 2H), 2.21 (s, 3H); 13C {1H} NMR (75 MHz, CDCl3) δ 161.1, 147.0, 130.7, 130.4 (31.5 

Hz), 129.5 (52.5 Hz), 128.6 (31.5 Hz), 127.8 (48.8 Hz), 126.6 (44.3 Hz), 124.6, 120.4, 120.0, 100.8, 75.2, 

17.8; IR (KBr) υ max: 3005.2, 2859.9, 1599.1, 1457.4, 1205.0, 1062.4, 1015.0, 855.2, 768.8, 657.7, 502.2 

cm-1; MS (ESI): 281.70 (M+H)+; Anal. Calcd for C17H15NOS: C, 72.57; H, 5.37; N, 4.98. Found:  C, 72.52; 

H, 5.43; N, 5.08. 



 

 

(Z)-N-((Z)-4-benzylidene-1,3-oxathiolan-2-ylidene)-4-(tert-butyl)aniline (5nc): 82 mg, 86% yield; 

yellow solid; 1H (400 MHz, CDCl3) δ 7.36-7.33 (m, 5H), 7.28-7.24 (m, 2H), 6.92 (d, J = 8.4 Hz, 2H), 6.60 

(s, 1H), 5.18 (d, J = 1.6 Hz, 2H), 1.33 (s, 9H); 13C {1H} NMR (75 MHz, CDCl3) δ 161.2, 147.4, 145.3, 

135.0, 130.4, 128.5, 127.8, 127.0, 125.7, 120.8, 120.0, 74.7, 34.4, 31.4; IR (KBr) υ max: 3025.2, 2859.2, 

1669.1, 1457.4, 1205.2, 1062.4, 1065.7, 851.2, 768.8, 697.0, 512.2 cm-1; MS (ESI): 324.30 (M+H)+; Anal. 

Calcd for C20H21NOS: C, 74.27; H, 6.54; N, 4.33. Found:  C, 74.31; H, 6.50; N, 4.27. 

 

(Z)-N-((Z)-4-benzylidene-1,3-oxathiolan-2-ylidene)-2-methoxyaniline (5nd): 76 mg, 71% yield; pale 

yellow solid; 1H (400 MHz, CDCl3) δ 7.33-7.27 (m, 2H), 7.26-7.10 (m, 4H), 6.95-6.93 (m, 3H), 6.57 (s, 1H), 

5.23 (d, J = 1.6 Hz, 2H), 3.83 (s, 3H); 13C {1H} NMR (100 MHz, CDCl3) δ 163.1, 151.7, 137.8, 135.5, 

130.7, 129.2, 128.3, 126.0, 122.6, 121.4, 120.3, 119.8, 112.2, 75.8, 56.2; IR (KBr) υ max: 3005.2, 2859.1, 

1729.1, 1787.4, 1265.0, 1060.4, 1019.7, 853.2, 738.8, 687.0, 502.9 cm-1; MS (ESI): 298.20 (M+H)+; Anal. 

Calcd for C17H15NO2S: C, 68.66; H, 5.08; N, 4.71. Found:  C, 68.55; H, 5.01; N, 4.65. 

 

(Z)-N-((Z)-4-benzylidene-1,3-oxathiolan-2-ylidene)-3-methoxyaniline (5ne): 79 mg, 73% yield; yellow 

solid; 1H (400 MHz, CDCl3) δ 7.35-7.24 (m, 6H), 6.70 (dd, J = 2.0, 1.6 Hz, 1H), 6.60-6.56 (m, 2H), 6.55 (s, 

1H), 5.20 (d, J = 1.6 Hz, 2H), 3.80 (s, 3H); 13C {1H} NMR (100 MHz, CDCl3) δ 160.5, 149.6, 153.0, 130.1, 

129.6, 129.0, 127.9, 120.3, 115.3, 113.6, 110.5, 108.7, 107.1, 75.1, 55.4; IR (KBr) υ max: 3055.2, 2899.4, 

1869.1, 1487.4, 1225.0, 1062.4, 1045.7, 853.2, 768.8, 667.0, 502.6 cm-1; MS (ESI): 298.20 (M+H)+; Anal. 

Calcd for C17H15NO2S: C, 68.66; H, 5.08; N, 4.71. Found:  C, 68.55; H, 5.01; N, 4.65. 

 

(Z)-4-(tert-butyl)-N-((Z)-4-(4-nitrobenzylidene)-1,3-oxathiolan-2-ylidene)aniline (5oc): 117 mg, 92% 

yield; yellow solid; 1H (400 MHz, CDCl3) δ 8.22-8.20 (d, J = 8.4 Hz, 2H), 7.45-7.35 (m, 4H), 6.97-6.95 (d, J 

= 8.4 Hz, 2H), 3.84 (s, 2H), 1.32 (s, 9H); 13C {1H} NMR (100 MHz, CDCl3) δ 156.8, 142.6, 142.3, 140.5, 

138.9, 127.8, 124.4, 121.4, 119.0, 115.3, 112.5, 29.4, 27.5, 26.4; IR (KBr) υ max: 3015.2, 2659.4, 1969.1, 

1487.4, 1205.1, 1062.4, 1023.7, 853.0, 768.8, 681.0, 512.9 cm-1; MS (ESI): 369.12 (M+H)+; Anal. Calcd 

for C20H20N2O3S: C, 65.20; H, 5.47; N, 7.60. Found: C, 55.56; H, 3.57; N, 4.15. 



 

General procedure for synthesis of 3,4-disubstituted (E)-N-(Z)-4-ethylidene-1,3-oxathiolan-2-

ylidenes.  

(Z)-2-chloro-N-((Z)-4-(4-nitrobenzylidene)-1,3-oxathiolan-2-ylidene)aniline (5oa): To a solution of 1o 

(120 mg, 0.799 mmol) in ACN (1.2 mL) was added successively 1-chloro-2-isothiocyanato-benzene (2a) 

(135.1 mg, 0.799 mmol) and DBU (121.7 mg, 0.799 mmol) under nitrogen atmosphere at room 

temperature. The reaction mixture was stirred for about 1 hr and then quenched into ice-water (25 mL), 

extracted with MTBE (25 mL), and the organic layer washed with brine solution (25 mL), dried over 

Na2SO4 and filtered. Then the filtrate was stirred along with silica gel (500 mg) for 0.5 hr, filtered and 

concentrated at a reduced pressure to give 229.6 mg, 90% yield; yellow solid. 1H (400 MHz, CDCl3) δ 

8.22-8.20 (d, J = 8.4 Hz, 2H), 7.43-7.39 (m, 3H), 7.28-7.21 (m, 1H), 7.09-7.00 (m, 2H), 6.78 (s, 1H), 3.85 

(s, 2H); 13C {1H} NMR (100 MHz, CDCl3) δ 164.1, 147.4, 145.5, 143.7, 133.2, 130.4, 129.4, 127.9, 126.5, 

125.6, 124.1, 121.4, 118.3, 32.3; IR (KBr) υ max: 3022.2, 2859.0, 1669.1, 1481.4, 1205.0, 1102.4, 1195.7, 

853.2, 768.8, 667.0, 509.2 cm-1; MS (ESI): 347.02 (M+H)+; Anal. Calcd for C16H11ClN2O3S: C, 55.41; H, 

3.20; N, 8.08. Found: C, 55.82; H, 3.51; N, 8.42. 

 

(Z)-2-chloro-N-((Z)-4-(2,3-difluorobenzylidene)-1,3-oxathiolan-2-ylidene)aniline (5pa): 94 mg, 87% 

yield; light brown solid; 1H (400 MHz, CDCl3) δ 7.41 (d, J = 7.6 Hz, 1H), 7.26-7.22 (m, 1H), 7.11-7.00 (m, 

5H), 6.75 (s, 1H), 5.32 (s, 2H); 13C {1H} NMR (100 MHz, CDCl3) δ 162.7, 152.0, 149.4, 146.8, 145.3, 

134.0, 130.0, 127.2, 125.8, 125.3, 124.3, 123.1, 122.5, 116.7, 111.5, 75.8; IR (KBr) υ max: 3029.2, 2959.4, 

1769.1, 1487.4, 1185.0, 1062.4, 1015.7, 853.1, 768.5, 687.0, 522.2 cm-1; MS (ESI): 338.10 (M+H)+; Anal. 

Calcd for C16H10ClF2NOS: C, 56.89; H, 2.98; N, 4.15. Found: C, 56.96; H, 2.91; N, 4.05.  

 

(Z)-2-chloro-N-((Z)-4-(5-chloro-2-methoxybenzylidene)-1,3-oxathiolan-2-ylidene)aniline (5qa): 79 

mg, 77% yield; yellow solid; 1H (400 MHz, CDCl3) δ 7.40 (d, J = 6 Hz, 1H), 7.26-7.10 (m, 4H), 7.10-6.97 

(m, 1H), 6.78 (d, J = 8 Hz, 2H), 5.26 (s, 2H), 3.82 (s, 3H); 13C {1H} NMR (75 MHz, CDCl3) δ 179.5, 155.8, 

133.1, 132.9, 132.2, 131.4, 131.0, 130.8, 130.5, 130.1, 128.6, 128.1, 125.2, 124.3, 111.6, 55.6, 24.1; IR 

(KBr) υ max: 3005.2, 2009.4, 1869.1, 1487.4, 1205.0, 1062.4, 1015.7, 853.2, 768.8, 687.6, 504.2 cm -1; MS 



 

(ESI): 366.20 (M+H)+; Anal. Calcd for C17H13Cl2NO2S: C, 55.75; H, 3.58; N, 3.82. Found: C, 55.83; H, 

3.69; N, 3.92. 

 

(Z)-2-chloro-N-((Z)-4-(5-chloro-2-methylbenzylidene)-1,3-oxathiolan-2-ylidene)aniline (5ra): 89 mg, 

83% yield; pale yellow solid; 1H (400 MHz, CDCl3) δ 7.40 (d, J = 8 Hz, 1H), 7.26-7.20 (m, 1H), 7.14-7.05 

(m, 4H), 6.96 (d, J = 7.6 Hz, 1H), 6.61 (s, 1H), 5.26 (d, J = 1.2 Hz, 2H), 2.25 (s, 3H); 13C {1H} NMR (75 

MHz, CDCl3) δ 161.1, 147.2, 136, 134.6, 133.3, 131.8, 131.6, 130.1, 128.0, 127.7, 126.9, 126.5, 125.7, 

122.2, 117.7, 74.6, 19.3; IR (KBr) υ max: 3033.2, 2599.0, 1669.1, 1481.4, 1205.0, 1092.4, 1095.7, 853.2, 

768.1, 667.0, 500.2 cm-1; MS (ESI): 350.40 (M+H)+; Anal. Calcd for C17H13Cl2NOS: C, 58.29; H, 3.74; N, 

4.00. Found: C, 58.33; H, 3.79; N, 4.10. 

 

(Z)-2-chloro-N-((Z)-4-(4-methylbenzylidene)-1,3-oxathiolan-2-ylidene)aniline (5sa): 71.9 mg, 88% 

yield; yellow solid; 1H (400 MHz, CDCl3) δ 7.45-7.43 (m, 1H), 7.28-7.01 (m, 7H), 6.61 (s, 1H), 5.28 (s, 2H), 

2.35 (s, 3H); 13C {1H} NMR (100 MHz, CDCl3) δ 130.9, 125.1, 123.1, 122.4, 121.5, 120.9, 120.6, 119.6, 

118.5, 115.4, 113.4, 68.7, 14.2; IR (KBr) υ max: 3092.2, 2659.0, 1969.1, 1501.4, 1205.0, 1082.4, 1195.5, 

893.2, 748.8, 667.0, 529.2 cm-1; MS (ESI): 316.10 (M+H)+; Anal. Calcd for C17H14ClNOS: C, 64.65; H, 

4.47; N, 4.44. Found: C, 65.02; H, 4.56; N, 4.76. 

 

(Z)-N-((Z)-4-(5-chloro-2-methylbenzylidene)-1,3-oxathiolan-2-ylidene)-2-methoxyaniline (5td): 88 

mg, 89% yield; yellow solid; 1H (400 MHz, CDCl3) δ 7.16-7.09 (m, 4H), 6.92 (t, J = 6, 2.4 Hz, 3H), 6.57 (s, 

1H), 5.22 (d, J = 1.6 Hz, 2H), 3.83 (s, 3H), 2.24 (s, 3H); 13C {1H} NMR (100 MHz, CDCl3) δ 146.1, 151.1, 

137.1, 136.2, 134.6, 133.9, 131.8, 131.5, 127.9, 126.9, 125.7, 121.8, 121.0, 117.1, 111.8, 74.7, 55.7, 

19.3; IR (KBr) υ max: 3059.2, 2759.4, 1589.1, 1407.4, 1185.0, 1062.4, 1015.7, 853.1, 778.5, 687.0, 505.5 

cm-1; MS (ESI): 346.10 (M+H)+; Anal. Calcd for C18H16ClNO2S: C, 62.51; H, 4.66; N, 4.05. Found: C, 

62.42; H, 4.56; N, 4.01. 

   

(Z)-2-chloro-N-((Z)-4-((5-methylpyridin-2-yl)methylene)-1,3-oxathiolan-2-ylidene)aniline (5ua): 79 

mg, 81% yield; semi yellow solid; 1H (400 MHz, CDCl3) δ 8.39 (s, 1H), 7.43 (t, J = 7.6 Hz, 2H), 7.24-7.23 



 

(m, 1H), 7.10-7.00 (m, 3H), 6.56 (s, 1H), 5.32 (s, 2H), 2.29 (s, 3H); 13C {1H} NMR (100 MHz, CDCl3) δ 

167.0, 150.6, 149.6, 145.9, 137.5, 134.8, 131.4, 130.4, 128.0, 127.1, 125.6, 123.6, 123.0, 116.8, 75.2, 

18.7; IR (KBr) υ max: 3019.2, 2959.4, 1769.7, 1467.4, 1085.0, 1042.4, 1005.7, 823.1, 768.5, 687.8, 500.2 

cm-1; MS (ESI): 317.30 (M+H)+; Anal. Calcd for C16H13ClN2OS: C, 60.66; H, 4.14; N, 8.84. Found: C, 

60.77; H, 4.21; N, 8.91. 

 

General procedure for synthesis of 3-substituted 4-methylene-oxazolidine-2-thiones (6a-6e).  

4-methylene-3-phenyloxazolidine-2-thione (6a): To a solution of prop-2-yn-1-ol (180 mg, 0.321 mmol) 

in ACN (1.2 mL) was added successively 1-chloro-2-isothiocyanato-benzene (2a) (433 mg, 0.321 mmol) 

and DBU (500 mg, 0.321 mmol) under nitrogen atmosphere at room temperature. The reaction mixture 

was stirred for about 1 hr and then quenched into ice-water (25 mL), extracted with MTBE (25 mL), and 

the organic layer washed with brine solution (25 mL), dried over Na2SO4 and filtered. Then the filtrate was 

stirred along with silica gel (500 mg) for 0.5 hr, filtered and concentrated at a reduced pressure to give 

400 mg, 65% yield; semi yellow solid; 1H (300 MHz, CDCl3) δ 7.57-7.47 (m, 3H), 7.33-7.26 (m, 2H), 5.29 

(t, J = 5.1 Hz, 2H), 4.28 (q, J = 2.7 Hz, 1H), 4.09 (q, J = 2.7 Hz, 1H); 13C {1H} NMR (75 MHz, CDCl3) δ 

188.7, 143.9, 135.0, 129.9, 129.4, 128.1, 84.4, 71.6;  IR (KBr) υ max: 3013.2, 2859.4, 1869.1, 1407.4, 

1185.0, 1062.4, 1015.7, 833.1, 768.5, 687.0, 512.2 cm-1; MS (ESI): 192.00 (M+H)+; Anal. Calcd for 

C10H9NOS: C, 62.80; H, 4.74; N, 7.32. Found: C, 61.70; H, 4.42; N, 7.42. 

  

3-(4-(benzyloxy)phenyl)-4-methyleneoxazolidine-2-thione (6b): 72 mg, 76% yield; semi solid; 1H (300 

MHz, CDCl3) δ 7.46-7.35 (m, 5H), 7.26-7.7.20 (m, 2H), 7.13-7.10 (m, 2H), 5.27 (t, J = 5.1 Hz, 2H), 5.10 (s, 

2H), 4.27 (q, J = 2.5 Hz, 1H), 4.10 (q, J = 2.5 Hz, 1H); 13C {1H} NMR (75 MHz, CDCl3) δ 185.0, 159.3, 

144.1, 136.4, 129.2, 128.7, 128.2, 127.6, 116.0, 84.3, 71.5, 70.4;  IR (KBr) υ max: 3023.2, 2019.4, 1969.1, 

1407.4, 1195.0, 1062.0, 1015.7, 853.2, 768.2, 687.6, 500.2 cm-1; MS (ESI): 298.20 (M+H)+; Anal. Calcd 

for C17H15NO2S: C, 68.66; H, 5.08; N, 4.71. Found: C, 68.55; H, 5.17; N, 4.76. 

  

4-methylene-3-(o-tolyl)oxazolidine-2-thione (6c): 75 mg, 80% yield; semi yellow solid; 1H (300 MHz, 

CDCl3) δ 7.40-7.34 (m, 3H), 7.16 (m, 1H), 5.31 (t, J = 4.8 Hz, 2H), 4.26 (t, J = 4.8 Hz, 1H), 3.90 (t, J = 4.8 



 

Hz, 1H), 2.21 (s, 3H); 13C {1H} NMR (75 MHz, CDCl3) δ 188.0, 143.0, 136.4, 133.4, 131.8, 131.6, 130.3, 

129.9, 128.4, 127.9, 127.6, 127.5, 84.3, 71.7, 17.4;  IR (KBr) υ max: 3025.2, 2009.4, 1669.1, 1487.4, 

1205.0, 1062.1, 1015.7, 853.2, 798.8, 657.6, 509.9 cm-1; MS (ESI): 206.10 (M+H)+; Anal. Calcd for 

C11H11NOS: C, 64.36; H, 5.40; N, 6.82. Found: C, 64.25; H, 5.32; N, 6.91. 

  

3-(4-(tert-butyl)phenyl)-4-methyleneoxazolidine-2-thione (6d): 85 mg, 70% yield; semi yellow solid; 1H 

(400 MHz, CDCl3) δ 7.54 (dd, J = 2 Hz, 2H), 7.24 (dd, J = 2 Hz, 2H), 5.27 (t, J = 4.8 Hz, 2H), 4.26 (t, J = 

5.2 Hz, 1H), 4.13 (t, J = 5.2 Hz, 1H), 1.36 (s, 9H); 13C {1H} NMR (75 MHz, CDCl3) δ 188.8, 152.4, 144.1, 

132.2, 127.4, 126.8, 84.4, 71.5, 31.3; IR (KBr) υ max: 3020.2, 2009.4, 1839.1, 1497.4, 1205.0, 1022.1, 

1015.7, 856.1, 768.8, 687.6, 510.7 cm-1; MS (ESI): 248.20 (M+H)+; Anal. Calcd for C14H17NOS: C, 67.98; 

H, 6.93; N, 5.66. Found: C, 68.08; H, 7.02; N, 5.71. 

  

3-(2-methoxyphenyl)-4-methyleneoxazolidine-2-thione (6e): 70 mg, 60% yield; semi yellow solid; 1H 

(400 MHz, CDCl3) δ 7.48-7.44 (m, 1H), 7.26-7.22 (m, 1H), 7.11-7.07 (m, 2H), 5.34-5.24 (m, 2H), 4.22 (q, 

J = 7.2 Hz, 1H), 3.95 (q, J = 7.2 Hz, 1H), 3.84 (s, 3H); 13C {1H} NMR (100 MHz, CDCl3) δ 188.9, 155.1, 

143.2, 131.2, 129.9, 123.2, 121.4, 112.9, 83.7, 71.8, 55.9; IR (KBr) υ max: 3031.2, 2079.4, 1869.0, 1527.4, 

1205.0, 1032.4, 1002.7, 873.2, 768.8, 685.6, 501.0 cm-1; MS (ESI): 222.10 (M+H)+; Anal. Calcd for 

C11H11NO2S: C, 59.71; H, 5.01; N, 6.33. Found: C, 59.88; H, 5.18; N, 6.39. 
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