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Abstract: In this study, the authors have examined a single-channel electroencephalogram from Oz for identification of seven
visual stimuli frequencies with multivariate synchronisation index (MSI) and canonical correlation analysis (CCA). Authors
investigated the feasibility in three case studies with varying overlapped as well as non-overlapped window lengths. The visual
stimuli frequencies ≤10 Hz are considered in case study I and >10 Hz in case study II. Case study III contains frequencies of
both case studies I and II. All the case studies revealed that CCA outperforms MSI for reference signals constituting
fundamental, one subharmonics, and three super-harmonics. The results revealed that the accuracy of identification improves
with 50% overlap in both the algorithms. Further, recognition accuracy is studied with varying combination sub- and super-
harmonics for case study III with 50% overlap. The results revealed that CCA and MSI perform better with reference signals
constituting fundamental and twice fundamental frequency compared with traditional power spectral density analysis (PSDA). In
addition to recognition accuracy, the information bit transfer rate is also higher in CCA relative to MSI and PSDA.

1 Introduction
Steady-state visual evoked potential (SSVEP) is a continuous
sequence of oscillatory potential changes in the visual cortex, when
an observer is presented with a flickering or a repetitive visual
stimulus [1, 2]. The frequency of evoked potential is the same as
fundamental frequency (and its harmonics) of the flickering
stimulus. These signals appear in the occipital and parietal lobes of
the brain.

SSVEP-based brain–computer interfaces (BCI) have received
significant attention recently [3, 4]. Some applications include
SSVEP-based BCI for wheelchair control [5], spellers [6, 7], and
neural engineering [8]. The factors that have contributed to
SSVEP-based BCI interest is relatively less user training and its
high information transfer rate compared with other types of
electroencephalogram (EEG) signals. For acquiring SSVEP
signals, a subject is required to gaze at a flickering stimulus for a
prolonged period of time. The typical block diagram of BCI using
SSVEP is shown in Fig. 1. 

Recording SSVEP signal contains noise due to muscle activity,
lack of consistency during concentration, inability to gaze at a
screen for a prolonged period of time, unfamiliarity with the
experiment, or improper placement of electrode as the position
varies with the subject [9]. Further, when considering a large
amount of data, a compromise with time is inevitable.

To overcome these drawbacks, some solutions have previously
been proposed [10, 11]. These solutions deal with manipulating the
window lengths by biasing and overlapping. In Atyabi et al. [12],
the effect of subwindowing and overlapping has been studied,
concluding that there is a relation between the length of
subwindows and the impact of having extra samples for training
the classifier.

Frequency classification of SSVEP signals is a popular field of
research. There have been many algorithms proposed to perform
this task [13–16]. In Tello et al. [17], a comparative analysis
between different algorithms is performed using 12 channels and
different stimuli. The authors found that the multivariate
synchronisation index (MSI) performs best. In another study [18],
MSI and canonical correlation analysis (CCA) were compared for
the classification of three frequencies – 8, 9, and 10 Hz. The data
was acquired using an Emotiv Epoc headset consisting of 14
channels. MSI was found to be the better performer of the two. In
Tanaka et al. [19], a comparative study is performed using four
channels with the frequencies 7, 11, 13, 17, and 19 Hz. The authors
concluded that CCA was the better classifier for the frequencies
and channels considered.

A multichannel approach of frequency recognition can achieve
good classification accuracy, despite the fact that increases in the
cost also limit the applicability of user with ease. One of the
challenging tasks in SSVEP-based BCI is the accuracy in
recognition of multiple stimulus frequency with single channel
with better information transfer rate to improve the comfort of the
user. In this paper, the authors attempted to study the frequency
recognition with varying window length using two classifiers –
MSI and CCA. The performance of the classifiers is analysed
without overlap window to obtain optimal window size for good
recognition rate and with overlapped window for the improvement
of the information transfer rate. In previous implementations of
these algorithms [20–22], multiple EEG channels with a few
stimulus frequencies were used to assess accuracy. In this paper,
analysis was done with respect to a single-channel input from ten
subjects. Initially, window lengths of 1, 1.5, and 2 s are analysed
with the two approaches. It has been observed that the accuracy of
frequency identification improves with increase in window length.

Fig. 1  Classification accuracies for case study I for frequencies ≤10 Hz
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In order to obtain decision in lesser time with good accuracy, a
constant window size of 2 s is analysed with overlap of 25, 50, and
75%.

It has been found, CCA shows good accuracy in three different
case studies of data with reference signal constituting one
subharmonics and three super-harmonics. The performance of
CCA improves with increase in window length. MSI has shown a
good performance with short length data for case studies I and II,
however, less accurate than CCA. The results evinced that window
length of 2 s with 50% overlap performs well, without significant
difference for P < 0.05. In addition to the effect of window length,
the influence of harmonics of reference is also studied with 2 s
window length data with 50% overlap for one subharmonics with
0–3 super-harmonics as well as with 1–2 super-harmonics alone.
The results shown that fundamental with one super-harmonics
outperform various combinations of harmonics considered in CCA
and MSI. It has been found the subharmonics has the effect of
reducing the recognition accuracy. Also the recognition rate as well
as information rate in CCA is superior than MSI and traditional
power spectral density analysis (PSDA) using fast Fourier
transform (FFT).

2 Methodology
The discrimination of frequencies is studied under three different
case studies to identify an effective technique that discriminate
multiple frequencies from single-channel EEG data. The stimulus
frequencies have been divided into three case studies. In case study
I, low-frequency visual stimuli of 7.5, 8.57, and 10 Hz is
considered. In case study II, high-frequency visual stimulus of 11,
12, 13, and 14 Hz is considered. In case study III, both high-
frequency and low-frequency visual stimuli data are considered for
analysis.

2.1 Stimulator

The visual stimuli have been created using Psychophysics toolbox
in MATLAB 2012. The seven visual stimuli targets, with
frequencies 7.5, 8.57, 10, 11, 12, 13, and 14 Hz are coded based on
framed-based approach [23] as shown in Fig. 2. Each target is a
square of 3.5 cm × 3.5 cm and flickers in black and white colour
pattern with a uniform gap on either side. The stimuli have been
displayed on 18.5 inch HP V193 LCD monitor with a 60 Hz
refresh rate. 

2.2 Experimental set-up

In this study, the EEG signals are acquired in two protocols for the
seven visual stimuli. The study has been conducted after getting
approval from institutional human ethics committee. Ten healthy
volunteers with normal or corrected-to-normal vision participated
for this offline study in a room without electromagnetic shielding.
Subjects were seated 70 cm from the LCD screen and data was
acquired using Truscan EEG acquisition system manufactured by
Deymed Diagnostics. Signals are acquired using silver–silver
chloride electrodes placed at the Oz on the scalp with respect to the
reference electrode at the mastoid bone behind the left ear. The

ground electrode is placed at Nasion point on the forehead. The
subjects were directed to gaze at the centre of square target during
the signal acquisition.

In the first protocol, the subject was directed to gaze at one
target for a minute and given rest till the subject was ready for the
next target stimulus. In second protocol, the subject was directed to
gaze at each target stimulus for 20 s and the EEG signals were
recorded continuously for all the seven visual stimuli, starting from
13 Hz. The subjects were alerted to change between stimuli using
an auditory stimulus beep at every 20 s.

2.3 Data segmentation

All signals were sampled at a rate of 256 samples/s and were
filtered through a band-pass filter of 5–30 Hz. The performance of
identification is studied with and without overlap of the window
segment. The window segments of 1, 1.5, and 2 s without overlap
are considered to identify the effect of window length on frequency
discrimination. Further, window length of 2 s is studied with
overlap of 0.5 s (25% overlap), 1 s (50% overlap), and 1.5 s (75%
overlap) data to improve the information transfer rate.

2.4 Frequency classification

The CCA and MSI are used for the identification of visual stimulus
frequencies of the three case studies. The results of classification
are compared with PSDA using FFT. Further, the effect frequency
recognition is studied considering, one subharmonics with 0–3
super-harmonics, 1–2 super-harmonics in reference signal for a
window length of 2 s with 50% overlap.

2.4.1 Canonical correlation analysis: In CCA [24], the
reference signals of frequency corresponding to visual stimuli
frequencies are correlated with input EEG signal. The reference
signal which constitutes signals of the visual stimuli frequencies,
the sub- and super-harmonics of the same in the range of the pass
band between 5 and 30 Hz, i.e. one subharmonics and three super-
harmonics are obtained using the below equation
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In CCA, a statistical correlation between multidimensional
variables, i.e. the input EEG A(t) and the reference signal B(t) are
calculated using the below equation
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where a = ATWa and b = BTWb; Wa and Wb are the weight vectors
to be maximised.

This correlation is computed with the reference matrix B(t) for
all the seven stimulus frequencies f1, f2,…, fK with EEG data. The
stimulus frequency should satisfy the below equation

Fs = max ρ(a, b) (3)

Fig. 2  Seven visual stimuli pattern
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where ρ(a,b) represents the correlation coefficient between the two
signals.

2.4.2 Multivariate synchronisation index: In this method, the
synchronisation between the input SSVEP signal and a reference
signal is computed [25]. According to the degree of
synchronisation, an index with maximum synchronisation indicates
the frequency. The reference signal is computed using (1).

The synchronisation is measured between single-channel input
EEG signal (A) and the reference signal (B). Initially, a correlation
matrix between the two signals is calculated using

D11 =
1
M

AA
T (4)
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1
M

BB
T (5)

D12 = D21 =
1
M

AB
T (6)

To remove the effect of autocorrelation on the synchronisation
measure, a linear transformation is calculated (T)

T =
D11

( − 1/2) 0

0 D22
( − 1/2)

(7)

Subsequently, the transformed correlation matrix is calculated
using (7)
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Let λ1, λ2,…, λz be the eigenvalues of S. The normalised
eigenvalues are calculated as

λi′ =
λi

∑λ
=

λi

tr(S)
(9)

The synchronisation index between the signals is calculated as

Ri = 1 +
∑(λi′log(λi′))

log(P)
(10)

where P = N + Nh and Nh denotes the number of rows in the
reference signal B(t).

The synchronisation index is computed with respect to
reference signals of all stimulus frequencies, for every segment of
EEG window data. The stimulus frequency that the user is gazing
at will be determined as follows:

Q = max (Ri), where i = 1, 2, …, K . (11)

where K is the number of targeted stimuli frequencies.

3 Results and discussion
An efficient classification algorithm is an important factor that
contributes to the performance of a BCI system. We focused initial
study using reference signal of one subharmonics and three super-
harmonics with a single-channel data for identification of suitable
window based on length of EEG data as well as amount of overlap
in three case studies using CCA and MSI algorithms from ten
subjects. Figs. 3a to 5a show the classification accuracies for case
studies I–III under condition of with and without overlap window
segment. The CCA classifier significantly outperforms MSI with
case study III for P < 0.05 in overlapped as well as non-overlapped
window segments. A common phenomenon that is observed in all
the three case studies is that the classification accuracy increases as
the window size increases for both the algorithms. This can be
attributed to the fact that with the increase in window size, the
amount of data/information considered for classification increases.
Therefore, the average accuracy increases with increase in more
data/information. 

An important aspect to consider with window sizes is the
amount of time for the identification of frequency. There is a
significant compromise with time and information transfer rate.
Keeping these constraints, window size of 2 s is considered for
applying overlapped window analysis.

Figs. 3b to 5b show the classifier accuracies for different
lengths of overlap for case studies I–III. The analysis was
performed for three degrees of overlap, i.e. 25, 50, and 75%. The
overlap represents the percentage of older data that will be
considered for every epoch of classification. It has been observed
that the classifier accuracy is best with a 50% overlap in CCA as
well as MSI. In the case of CCA, the accuracy increases slightly
with 75% and decreases with MSI. Similar to non-overlapped
window, the CCA significantly outperforms MSI with case study
III for P < 0.05. In addition to window length, the harmonics of
reference signals also found to influence the frequency recognition
rate. Therefore, reference signal constituting 1 subharmonics, 0–3
super-harmonics, and 1–2 super-harmonics composition are
analysed with case study III. Fig. 6 shows the performance of CCA
and MSI with varying harmonics of reference signals. It is clear
from Fig. 6 that the presence of subharmonics deteriorates
frequency recognition in MSI as well with CCA. In MSI, the
performance with one super-harmonics is significantly outperform
other combination frequencies for P < 0.05. Further, there is no
significant difference in performance of CCA and MSI with one
super-harmonics of reference signals. However, the classification
accuracy of CCA is more than MSI. 

Further, the classification accuracy of CCA, MSI with one
super-harmonics is compared with PSDA in Fig. 7. The

Fig. 3  Classification accuracies for case study I for frequencies ≤10 Hz
(a) Without overlap, (b) With overlap
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information transfer rate has been calculated for the same condition
is shown in Fig. 8. With respect to the performance of the
algorithms, we observe that CCA performs better than MSI and
PSDA. MSI has previously been proven to outperform CCA [17],
when dealing with a small number of channels. However, with
single channel, it has been found that CCA outperforms MSI as
well as PSDA in accuracy as well as information transfer rate. The
average information transfer rate of CCA >100 bits/min. However,
the information transfer rate is <100 bits/min in MSI as well as
with PSDA. However, there is no significant difference in

recognition accuracy as well as information transfer rate of CCA
with MSI using one super-harmonics. An important observation
that was observed was the performance of MSI varied significantly
depending on the combination of stimuli frequencies as well as
reference signal frequencies considered. We observed that MSI
performed better when the stimuli were divided into different case
studies depending on their frequencies as opposed to when we
considered a single group for all the stimuli when subharmonics is
considered. CCA, on the other hand, showed a consistent

Fig. 4  Classification accuracies for case study II for frequencies >10 Hz
(a) Without overlap, (b) With overlap

 

Fig. 5  Classification accuracies for case study III with all frequencies
(a) Without overlap, (b) With overlap

 

Fig. 6  Classification accuracies for case study III with varying harmonics of reference signal
(a) CCA Technique, (b) MSI Technique
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performance irrespective of the cases and reference signal
frequencies considered. 

4 Conclusion
For single-channel EEG data, CCA has proven to be the better
classifier when compared with MSI and PSDA. The classifier
accuracy has been consistently greater for CCA for all the cases
that were analysed. From this study, we can conclude that the CCA
is a better frequency classification method than MSI, when dealing
with single-channel EEG data. We further propose that a 2 s
window size with an overlap of 50% is ideal for better
classification accuracy, without compromising computation time
and also minimising errors due to the subject's temperament during
the course of the experiment. Also, it is observed that the classifier
accuracy is significantly affected with the number of super-
harmonics and subharmonics. The recognition rate is good only
considering one superharmonic with 50% overlap for 2 s window
length.
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