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ABSTRACT

Vast volumes of raw data are generated from the digital world each day. Acquiring useful information 

and chief features from this data is challenging, and it has become a prime area of current research. 

Another crucial area is knowledge inferencing. Much research has been carried out in both directions. 

Swarm intelligence is used for feature selection whereas for knowledge inferencing either fuzzy or 

rough computing is widely used. Hybridization of intelligent and swarm intelligence techniques are 

booming recently. In this research work, the authors hybridize both artificial bee colony and rough 

set. At the initial phase, they employ an artificial bee colony to find the chief features. Further, these 

main features are analyzed using rough set generating rules. The proposed model indeed helps to 

diagnose a disease carefully. An empirical analysis is carried out on hepatitis dataset. In addition, a 

comparative study is also presented. The analysis shows the viability of the proposed model.

KeywoRDS
Approximation, Classification, Feature Selection, Modification Rate, Prediction, Reduct, Rough Set, Rule 
Generation

1. INTRoDUCTIoN

Information and communication technology and usage of the internet is the prime factor for the 

massive amount of data generated each day. These accumulated data is useless unless being analyzed 

to get some meaningful information. Processing of these data to get meaningful information is data 

analytics. Additionally identifying features affecting decisions is of challenging. Machine learning 

techniques are used to customize and supervise data to discover useful knowledge, rules and chief 

factors. The extracted knowledge and rules must be accurate, readable, comprehensible, and ease 

of understanding. Feature selection is a primary issue in machine learning, data mining and pattern 

recognition to preserve the meaning of information about a given problem. Additionally, it is 

imperative and aims to find the minimal subset of the original features. Simultaneously, it is a crucial 

pre-processing technique useful for data analysis, where only a subset from the original data features 

is chosen by to eliminate noisy, irrelevant or redundant features (Schiezaro & Pednini, 2013). These 

techniques are applied to all types of datasets to predict the main features and are an essential step 

used in classification, cluster analysis, and image retrieval. 
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Besides, data in healthcare industries is growing exponentially. Much research has been carried 

out in many directions such as context-aware remote e-healthcare (Sharma & Kumar, 2019a), service 

level agreement and energy cooperative cyber physical system (Sharma & Kumar, 2019b, Sharma 

et al, 2019, Sharma & Kumar 2019c), and multimedia healthcare data processing (Rathee et al, 

2019). Similarly much work has been carried out in feature selection and disease diagnosis. Many 

algorithms about feature selection have been proposed (Das & Liu, 1997; Jain & Zongker, 1997; 

Kohavi & John, 1997; Guyon & Elisseeff, 2003). Recently, evolutionary and swarm intelligence 

algorithms are employed to optimize feature selection combination is very important. With an optimal 

feature subset, it is possible to gain good prediction accuracies with low computational complexity 

(Palanisamy & Kanmani, 2012). A survey on six biologically inspired swarm algorithms, namely 

particle swarm optimization (PSO), ant colony optimization (ACO), artificial fish swarm algorithms 

(AFSA), artificial bee colony algorithms (ABC), firefly algorithms (FA) and bat algorithm (BA) 

and its application in feature selection is also carried out (bin & binti, 2014). Schiezaro & Pednini 

(2013) model the ABC algorithm for feature selection and classified different data sets. The model 

achieved a higher classification accuracy of 87.10% on reducing the number of features for hepatitis 

dataset and 98.26% for labour dataset (Forsati, Moayedikia & Keikha, 2012). It is experimented over 

a benchmark data sets and demonstrate that applying ABC in feature selection is a feasible method. 

Palanisamy & Kanmani (2012) have discussed ABC approach for optimizing feature selection. The 

model reduces feature size and improves in classification accuracy with low computational complexity 

(Shokouhifar & Sabet, 2010; Uzer, Yilmaz & Inan, 2014). 

Further, two major conflicting objectives of artificial bee colony optimization on feature 

selection is also discussed in the literature (Hancer et al, 2018). In 2019, an improved artificial bee 

colony technique based on elite strategy and dimension learning is introduced (Xiao et al, 2019). The 

improved binary artificial bee colony algorithm is analyzed over microarray data for feature selection 

(Wang & Dong, 2019). Similarly, an integrated model integrating artificial bee colony and gradient 

boosting decision tree is carried out for feature selection (Rao et.al, 2019). Furthermore with new 

versions of onlooker bee, natural selection methods for artificial bee colony is introduced for feature 

selection (Awadallah et al, 2019). But, all these feature selection methods fails to handle uncertainties. 

Simultaneously, rule generation while analysing real life problems is not addressed. 

On the other hand, the rough set of Pawlak (1982), established as a sound theory to resolve 

problems related to uncertainty, incomplete information and imprecise variety of applications. Shu 

& Shen (2014) addressed an incremental approach based on rough set for feature selection, and it 

has been applied to incomplete dynamic data. Further, the rough set has extended to fuzzy rough 

set (Dubois & Prade, 1990), rough set on fuzzy approximation space (Acharjya & Tripathy, 2008), 

rough set on intuitionistic fuzzy approximation space (Acharjya & Tripathy, 2007), rough set on 

two universal sets (Tripathy & Acharjya, 2013), intuitionistic fuzzy rough set on two universal sets 

(Acharjya & Tripathy, 2012), etc. for feature selection and knowledge acquisition. Also, the rough 

set is hybridized with formal concept analysis (Tripathy, Acharjya & Cynthya, 2013), rough set on 

fuzzy approximation space in hybridized with the soft set (Das & Acharjya, 2014), and knowledge 

acquisition is carried out. However, the optimization in feature selection is not being carried out 

through a reduction in attributes is being done. Therefore, it is essential to think of optimized swarm 

intelligence techniques that can minimize the number of attributes. Besides, the major drawback 

of rough computing is that it generates too many rules. Sometimes it is difficult to infer rules that 

are helpful for the problem taken into consideration (Saxena, Gavel & Shrivas, 2014; Swiniarski & 

Skowron, 2003; Zhong, Dong & Ohsuga, 2001).

Taking into account the above limitations, in this paper, we hybridize rough set with artificial 

bee colony. The prime objective of hybridization is to keep main attributes while optimizing features 

and inferencing rules. In the early stage, we employ the artificial bee colony to identify optimized 

features. Further these optimized features are used to generate rules using the rough set. Finally, we 
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compare both the rough set model and the hybridized model that integrates both artificial bee colony 

and rough set (ABCRS) regarding rule generation.

The article is articulated as follows. Section 2 talks about foundations of artificial bee colony and 

the optimal procedure of obtaining best features. Following section 2, fundamental of rough set is 

explored in section 3 to unfold the article. Explanation of the proposed model is discussed in section 

4. An empirical study on hepatitis disease is presented in section 5. Further result and analysis of 

the empirical study and a comparative analysis with rough set model is also carried out. The article 

is concluded in section 6.

2. FoUNDATIoNS oF ARTIFICIAL Bee CoLoNy

The proposed model of knowledge inferencing uses artificial bee colony in its first phase for feature 

selection. Feature selection finds the feasible subset of features from an information system. Traditional 

optimization algorithms are inefficient in selecting feasible subset of features from an information 

system because feature selection is a non-deterministic polynomial complete problem. Therefore, 

meta-heuristic algorithms are used for identifying feasible set of features. Much research has been 

carried out using bio-inspired computing algorithms (Kaur & Goyal, 2011). In this proposed model, 

we use artificial bee colony (ABC) algorithm for obtaining a feasible set of features without loss of any 

knowledge. Now, we state briefly the concepts and notations regarding artificial bee colony algorithm.

Artificial bee colony algorithm is a meta-heuristic algorithm for solving optimizing numerical 

problem (Karaboga, 2008). The fundamental concept behind the algorithm is that it simulates the 

foraging behaviour of honey bees. The algorithm has three phases such as employed bee, onlooker bee 

and scout bee. In the first two phases, bees exploit the sources by local searches in the neighborhood 

of the solutions selected. The employed bee phase follows deterministic selection whereas the 

probabilistic selection is followed in the onlooker bee phase. In scout bee phase, solutions that are 

not beneficial anymore for search progress are abandoned and new solutions are inserted instead 

of them to explore new regions in the search space. It is observed that, the algorithm has a well-

balanced exploration and exploitation ability. The following algorithm (Bao & Zeng, 2009) provides 

the general view of the artificial bee colony technique. The flow diagram of artificial bee colony for 

feature selection is depicted in Figure 1.

Algorithm (General Artificial Bee Colony)
1. Initialize population 
2. Repeat 
3.       Employ employed bee on their food sources 
4.       Employ onlooker bees on the food sources depending on 
their nectar amount 
5.       Employ scout bee to the search area for discovering new 
food sources  
6. Until (Requirements are met)

The artificial bee colony algorithm (Karaboga & Basturk, 2008; Karaboga & Celal, 2011; 

Karaboga & Akay, 2009) starts with initialization of food sources. The initial food source can be 

created randomly in such a manner that each of them must be a possible solution. The initial food 

source can be determined using equation (1), where i n= 1 2, , ,⋯  refers number of objects, 

j d= 1 2, , ,⋯  is the number of features to be optimized, and rand( , )0 1 generates a random values 

between 0 and 1.

q q rand q q
ij j j j
= + × −

min max min( , ) ( )0 1  (1)
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In employed bee phase, every employed bee search a new food source (solution) in their 

neighbourhood using equation (2), where for every food source q
i
, a new food source v

i
 is identified 

by modifying optimization feature j. The indices j, k are selected randomly other than i , and φ
ij

 is 

a real number between –1 and 1.

v q q q
ij ij ij ij kj
= + × −φ ( )  (2)

After a new food source v
i
 is identified, fitness ( fit ) is computed for every food source using 

equation (3), where f
i
 is the cost function. 

fit
f

f fi

f i

i i

i=

≥

+ <









+

1

1
0

1 0

    if  

if  
 (3)

Further compute the probability ( p
i
) of the ith food source using their fitness and probability 

function defined in equation (4). Using this probability value, the onlooker bees choose a food source 

for exploring further.

Figure 1. Flow diagram of artificial bee colony for feature selection
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The neighborhood of the food source is further explored like employed bee as discussed above 

by onlooker bees. In scout bee phase, the algorithm identifies any exhausted source to be abandoned. 

For this purpose, a variable ‘Limit’ is introduced. If the ‘Limit’ is greater than the ‘Maximum Limit’, 

then the food source is abandoned. Besides, a new food source is discovered by scout bee.

3. FUNDAMeNTALS oF RoUGH SeT

An information system is a two-dimensional system in which horizontal and vertical dimension refers 

to objects and attributes (features) respectively. It means that with every object of the universe is 

associated with some information and it leads to the underlying philosophy of the rough set. Same 

information characterized by various objects is indiscernible. The indiscernibility relation obtained 

using this way is the mathematical foundation to rough set theory. Rough set (Pawlak, 1982), is a 

mathematical approach for various purposes such as feature selection and extraction, and attributes 

reduction and mining decision rules. The main advantage is that it does not need any preliminary 

information about the data. Therefore, it classifies imprecise, uncertain or incomplete information 

even though it is present in data. Moreover, it helps in knowledge discovery using partition properties 

and the discernibility matrix. 

Let Q   be a finite non-empty set called the universe. Suppose R Q Q⊆ ×( )  is an equivalence 

relation onQ . The equivalence relation R defines the attributes P  partitions the universe Q  into 

disjoint equivalence classes known as elementary concepts. Every union of elementary concepts is 

known as definable set and Q R,( )  is called an approximation space. Further, we can characterize a 

target set Z Q⊆   by a pair of lower and upper approximations RZ  and RZ respectively as below.

RZ Y Q R Y Z= ∈ ⊆{ }∪ / :  (5)

RZ Y Q R Y Z= ∈ ≠{ }∪ ∩/ : φ  (6)

The R−  boundary of Z , BN Z
R
( )  is given by BN Z RZ RZ

R
( )= −( ) . We say Z  is rough 

with respect to R  if and only if RZ RZ≠  or equivalently BN Z
R
( )≠ φ . Thus, set Z  is rough 

with respect to R  if and only if it is not R−definable. The target set Z  is R−definable if 

BN Z
R
( )= φ .

3.1 Core and Reduct
One of the important concepts of the rough set is reduct and core. Reduct can minimize attributes 

and make object classification satisfy the full set of attributes. The object belonging to all reducts is 

known as the core. In general, core and reduct give the decision maker simple and easy information. 

If the attributes are dependent, using the dependency properties of attributes, we find all possible 

minimal subsets of attributes that have the same number of simple sets without loss of any knowledge 

in the reduced information system. To express mathematically, we need some auxiliary notations. 
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Let A P⊆ and p A∈ . The attribute p  is dispensable in A  if Q A Q A p/ /= −{ }( ) . Otherwise 

p  is indispensable inA . Set A  is independent if all of its attributes are indispensable. Reduct A '  
of A  is a subset of attributes of A  such that the equivalence class induced by A is same as the 

equivalence class induced by A ' , i.e., Q A Q A/ / '= . Thus, we may have many reducts in an 

information system. The attributes belonging to all reducts is known as the core. we define it as 

core A d A( )= ( )∩Re .

If P C D= ∪( ) , where C represents the set of conditional attributes and D represents the 

decisions, then the information system is termed as decision system. The positive region with respect 

to set of conditional attributes C is defined as POS D
C
( ) , where

POS D CX
C X Q D
( )

{ / }
=

∈
∪  

The degree of dependency between C and D is given as γ( , )C D  and is defined as in Equation 

(7).

γ( , )
| ( ) |

| |
C D

POS D

Q

C
=  (7) 

Let us consider a sample dengue information system as shown in Table 1. It consists of 12 objects 

Q q q q q= ⋅ ⋅ ⋅ ⋅ ⋅{ }1 2 3 12
, , , ,  with attributes P p p p p p

d
= { }1 2 3 4

, , , , , where p
1

 represents high Fever, 

p
2

 represents headaches, p
3
 represents muscle pain, and p

4
 represents fatigue. The attribute p

d
, 

represented as dengue is considered as the decision attribute. 

On employing indiscernibility relation over conditional attributes p p p
1 2 3
, , ,  and p

4
 we get the 

following classifications. From the classification it is clear that Q P Q P p
i

/ / ;≠ −{ }( )  i = 1 2 3 4, , ,  

and hence none of the attributes are superfluous.

Q P q q q q q q q q q q q q/ {{ , },{ , },{ , , },{ , , },{ },{ }}=
1 8 2 3 4 6 7 5 9 11 10 12

 

Q P p q q q q q q q q q q q/ ( { }) {{ , },{ },{ },{ , },{ , , , },{ }− =
1 1 8 2 3 4 6 5 9 11 12 7

,,{ }}q
10

 

Q P p q q q q q q q q q q q/ ( { }) {{ , },{ , },{ , , },{ , , },{ },{− =
2 1 8 2 7 3 4 6 5 9 11 10

qq
12
}}  

Q P p q q q q q q q q q q q/ ( { }) {{ , },{ },{ },{ , },{ , , },{ },{− =
3 1 8 2 3 4 6 5 9 11 7 100 12

, }}q  

Q P p q q q q q q q q q q q/ ( { }) {{ , },{ },{ },{ , , , },{ },{ },{− =
4 1 8 2 3 4 5 6 9 7 10 111 12

},{ }}q  

On considering Z q q q q q q q= { }3 4 5 6 10 11 12, , , , , ,
, we get PZ q q q q q= { , , , , };

5 9 10 11 12
and PZ q q= { , ,

2 3
 

q q q q q q q q
4 6 7 5 9 11 10 12
, , , , , , , } . Figure 2 depicts the classification of objects with respect to conditional 

attributes. The lower, upper approximation and boundary region is also presented.

3.2 Rule Generation
A decision rule in a decision system is of the form φ ψ→ ,  where φ  the set of conditional parameters 

and ψ  is the decision. The various measures of decision rule are support, strength, and accuracy of 

the rule. The support is defined as Supp Card( , ) (|| ||)φ ψ φ ψ= ∧  whereas strength is defined as 
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σ φ ψ( , )=  Supp Card( , ) / (|| || ).φ ψ φ
ψ

The accuracy of the rule is defined as in Equation (7), where 

N
Supp
( , )φ ψ  denotes the non-supporting objects of the rule φ ψ→ .

Accuracy
Supp

Supp N
Supp

=
+

| ( , ) |

| ( , ) ( , ) |

φ ψ

φ ψ φ ψ
 (8)

Now we briefly discuss decision rule generation procedure using rough set. The qualitative 

decision system is given as input and we get candidacy rules as output. The steps involved in the 

reduct computation and decision rule generation procedure is given below.

Algorithm (Computation of Reduct) 
1. Initialize reduct, Red with a null set; Red = {}
2. Repeat 
3.        Assign Red to T; T ←Red
4.        For each conditional attribute of C; ∀ ∈X C( - Red)
5.      Compute the degree of dependency with assumed reduct set 

Table 1. Sample dengue information system

Patients High Feaver Headaches M u s c l e  P a i n F a t i g u e D e n g u e

q
1 No No No Normal No

q
2 Yes No Yes High No

q
3 Yes Yes Yes High Yes

q
4 No Yes No High Yes

q
5 No No No Very High Yes

q
6 No Yes Yes Very High Yes

q
7 Yes No Yes High No

q
8 No No No Normal No

q
9 Yes Yes Yes Very High Yes

q
10 Yes Yes No Very High Yes

q
11 No Yes Yes Very High Yes

q
12 Yes Yes Yes Very High Yes
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T.
6.      If γ γ

Red { }∪
>

X T
D D( ) ( )

7.      Then T ← Red ∪{ }X
8.      Make T as new reduct; Red ←T
9. Until reduct, Red can define the decision class: γ γ

Red
( ) ( )D D

C
=

10. Return Red
Algorithm (Decision Rule Generation) 
1. Set decision i = 1
2. Compute a set of reducts considering all the condition 
parameters for each decision. 
3. Replace i i= +1. If all the objects have been chosen, then go 
to step 4. Else go to step 5. 
4. Compute the number of supporting objects of the decision rule 
Supp( , )φ ψ  after combining the identical reducts.
5. Compute the strength of each decision rule σ φ ψ( , ) .
6. Obtain the accuracy of each decision rule using Equation (8). 
7. Terminate the process and write the rules.
3.3 A Numerical Illustration of Rough Rule Generation
In this section, we explain the rough set rule generation procedure for the decision system presented 

in Table 1. The decision rules generated are given in Table 2. For example, rule 1 of the exemplary 

decision system presented in Table 1 can be expressed as: If fatigue ( p
4
) is normal, then there is no 

dengue. The strength of this rule is 50% whereas its accuracy is 100%.

Figure 2. Lower, upper and boundary region representation of rough set
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4. PRoPoSeD ReSeARCH DeSIGN

This section discusses on proposed research design. The proposed research design consists of 

two phases. In the initial phase, the proposed model of knowledge inferencing uses artificial bee 

colony to find the chief features. Second phase of the model employs rough set data analysis for 

rule generation. The proposed research design consists of data preparation module, rule generation 

module, and cross validation module. The data preparation module starts from problem identification 

to data partition. Identification of a problem is a critical task. Once, the problem is identified, data 

are collected. Further data cleaning technique is employed to process these data. Data cleaning task 

is done to remove missing attributes values. In this research work, we employ the integrated model 

that integrates artificial bee colony and rough set data analysis (ABCRS) technique to inference 

knowledge. The model is applied to hepatitis disease to inference knowledge. After data processing, 

the processed data is partitioned into training dataset of 55% and testing dataset of 45%. An overview 

of the proposed research design is depicted in Figure 3.

The rule generation module consists of artificial bee colony algorithm (ABC) and rough set rule 

generation (RS). The partitioned data is executed using artificial bee colony algorithm for identifying 

minimal features without impacting the diagnosis of hepatitis disease. Further, the rough set rule 

generation algorithm is employed to mine knowledge. The support, strength, and accuracy of each rule 

is obtained. The rules whose accuracy is more than the threshold of 65% are selected as candidacy 

rules. These candidacy rules are passed to cross validation module. 

The cross validation module validates the candidacy rules obtained in training phase using 5 fold 

cross validation. Confusion matrix is generated to identify the true positive (TP), true negative (TN), 

false positive (FP) and false negative (FN) to predict precision (Prec.) and recall (Rec.). Accuracy 

of proposed model can be calculated in cross validation module. A confusion matrix is constructed 

for each rule and the accuracy (Acc.) of each rule is obtained. The precision, recall, F-measure, and 

accuracy are computed by using the following equations (9), (10), (11), and (12). 

Precision (Prec.)=
+

| |

| |

TP

TP FP
 (9)

Table 2. Decision rules of the exemplary decision system presented in Table 1

Rule No. Description Support Strength Accuracy

1. If p
4

= normal, then p
d

 = No dengue 2 50% 100%

2. If p
1

 = yes and p
2

 = no, then p
d

 = No dengue 2 50% 100%

3. If p
2

 = no and p
3

 = yes, then p
d

 = No dengue 2 50% 100%

4. If p
2

 = no and p
4

 = high, then p
d

 = No dengue 2 50% 100%

5. If p
2

 = yes then p
d

 = dengue is yes 7 87.5% 100%

6. If p
4

 = very high then p
d

 = dengue is yes 6 75% 100%
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Figure 3. Proposed research design of ABCRS model



International Journal of Healthcare Information Systems and Informatics
Volume 16 • Issue 2 • April-June 2021

59

Recall (Rec.)=
+

| |

| |

TP

TP FN
 (10)

F-measure = 2×
×

+













Prec Rec.

Prec Rec.

.

.
 (11)

Accuracy (Acc.)=
+

+ + +

| |

| |

TP TN

TP FP TN FN
 (12)

5. AN eMPIRICAL STUDy oN HePATITIS DISeASe 

This section presents an empirical study on hepatitis disease. Hepatitis disease appears in liver. Liver 

is an organ which has a wide range of functions, including digestion, energy production, glycogen 

storage, detoxification, and regulation of blood glucose. Hepatitis locates in the cells of liver tissue 

leading to the loss of functioning of these cells. It is of five different types such as hepatitis A, hepatitis 

B, hepatitis C, hepatitis D, and hepatitis E. However, hepatitis B is the most common liver infection 

in the world. It is transmitted through contact with infectious body fluids. Injection drug use, having 

sex with an infected partner, or using of infected persons razors may cause of hepatitis B. The various 

symptoms are dark urine pale poop, loss of appetite, ascites, weakness, violation of blood clotting, 

headache, stomach bleeding, itching of skin, fever, and jaundice. For better visualization Figure 4 

Figure 4. Various symptoms of Hepatitis B disease
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depicts the various symptoms of hepatitis B disease. An early diagnosis of these diseases saves life 

of a patient. Therefore, it is essential to analyze such data for early detection of it. 

The classical major step towards it is feature extraction and classification. Thus, there is a need 

to extract the most significant features from hepatitis dataset for the diagnosis of the diseases. In this 

model, we use artificial bee colony to identify the most significant features. Further, in post phase 

we use rough set data analysis technique to find out the rules. This in deed will help us to detect the 

disease at an early stage.

The attributes that are considered for hepatitis disease and its range are listed in Table 3. The 

information on this dataset is obtained from UCI repository and some reputed hospitals of Tamilnadu, 

India. The dataset consists of 19 conditional attributes { p p p
1 2 19
, , ,… } and one decision attribute 

{ pd }. Further, the attributes that takes continuous values are classified according to domain experts. 

For example, bilirubin is classified into 4 categories such as 0.3 – 1.9; 2 – 3.9; 4 – 5.9; and 6 – 8. We 

denote these classes as low, medium, high and very high. We use symbols 1, 2, 3, 4 for low, medium, 

high and very high respectively while analysing the hepatitis decision system.

The hepatitis decision system collected from UCI repository contains information of 155 patients. 

Additionally, we have collected 237 data from reputed hospitals of Tamilnadu, India. In all together, 

we have 392 patients’ data. It is also observed that 73 patients’ data are incomplete and so discarded 

from the decision system. Finally, for further analysis we have considered 319 patients information. 

For better understanding, a sample hepatitis decision system of 10 objects is presented in Table 4. 

5.1 experimental Result Analysis
The experiments were conducted with a Laptop having configuration as Intel Core i5-4200U CPU 

1.60 GHz 2.30 GHz, 4 GB RAM, Windows 8 operating system, and Python. The total 319 patients’ 

data is divided into two parts such as training data of 175 (55%) and testing data of 144 (45%). The 

training data is processed for identifying best features using artificial bee colony. After 1000 iterations 

it is found that 8 features whose significance values are more than the trend line are selected. For 

better understanding it is depicted in Figure 5. The selected features are age ( p1 ), gender ( p2 ), 

spiders ( p11 ), ascites ( p
12

), varices ( p
13

), histology ( p
14

), bilirubin ( p
15

), and protime ( p
19

). 

Further, the other features are eliminated from the training data of the information system. The reduced 

information system is analysed using rough set data analysis. The rules that are generated from the 

reduced information system are presented in Table 5. The rules whose accuracy is more than the 

predefined threshold value of 65% are selected as candidacy rules. These candidacy rules are further 

tested with testing dataset of 144 objects. Further confusion matrix is created.  

From the above rules it is clear that, 4 rules such as rule 4, 12, 13 and 16 are having accuracy 

less than 65% and hence discarded from the decision rules. The rest 15 rules are further analysed 

with testing dataset of 144 objects to compute accuracy. The testing dataset consists of 69 live cases 

and 75 die cases. Further, the confusion matrix is computed and is presented in Table 6. From Table 

6, it is clear that ABCRS hybridization gives accuracy of 96.2%.

5.2 K-Fold Cross Validation
This section computes the accuracy of the proposed model ABCRS by using K-fold cross validation. 

The total number of objects of testing dataset is divided into 5 folds randomly. First 4 folders contain 

29 objects whereas 5th folder contains 28 objects. For each folder we compute the precision, recall, 

F-measure, and accuracy. Folder 1 contains 14 live cases and 15 die cases of the dataset. Folder 2 

contains 15 live cases and 14 die cases of the dataset. Folder 3 contains 16 live cases and 13 die 

cases. Folder 4 contains 11 live cases and 18 die cases whereas folder 5 contains 13 live cases and 

15 die cases. Confusion matrix of all the folders are computed. The following Table 7 depicts the 

confusion matrix of Folder 1. Similarly, the confusion matrix for all the folders are computed. The 
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consolidated result of precision, recall, F – measure, and accuracy is presented in Table 8. For better 

visualization, Figure 6 depicts the various measures of 5 folders.

5.3 Comparative Analysis
In this section, we compare our results with traditional rough set (Pawlak, 1982) model. The training 

dataset of 175 objects are analyzed using rough set with all features of the information system. The 

total number of rules generated using rough set is 37. For better understanding the rules generated 

using rough set is presented in Table 9. The proposed ABCRS hybridized technique generates 19 

which is 48.6% less than the total number of rules generated using rough set. 

Table 3. Attribute representation table of hepatitis disease

Attribute Range Classification Attribute Range Classification

Age ( p1 )
[7 – 78] 7  -  25 ;  Low 

25 – 45; Medium 

46 – 65; High 

≥ 66; Very High 

Gender ( p2 )
-- M a l e  ( 1 ) 

F e m a l e  ( 0 )

Steroid ( p3 )
-- N o  ( 0 ) 

Y e s  ( 1 ) Antivirals ( p4 )
-- N o  ( 0 ) 

Y e s  ( 1 )

Fatigue ( p5 )
-- N o  ( 0 ) 

Y e s  ( 1 ) Malaise ( p6 )
-- N o  ( 0 ) 

Y e s  ( 1 )

Anorexia ( p7 )
-- N o  ( 0 ) 

Y e s  ( 1 ) Liver big ( p8 )
-- N o  ( 0 ) 

Y e s  ( 1 )

Liver firm ( p9 )
-- N o  ( 0 ) 

Y e s  ( 1 )

Spleen palpable (

p
10

)

-- N o  ( 0 ) 

Y e s  ( 1 )

Spiders ( p11 )
-- N o  ( 0 ) 

Y e s  ( 1 ) Ascites ( p
12

)
-- N o  ( 0 ) 

Y e s  ( 1 )

Varices ( p
13

)
-- N o  ( 0 ) 

Y e s  ( 1 ) Histology ( p
14

)
-- N o  ( 0 ) 

Y e s  ( 1 )

Bilirubin ( p
15

)
[ 0 . 3 

–  8 ]

0.3 – 1.9; Low 

2 – 3.9; Medium  

4 – 5.9; High 

6 – 8; Very High

Alk phosphate (

p
16

)

[26 – 

295]

26 – 96; Low 

9 6 . 1 – 1 4 7 ; 

M e d i u m 

1 4 7 . 1  – 

1 9 4 ;  H i g h 

1 9 4 . 1 –

295;Very High

SGOT ( p
17

)
[ 1 4  – 

6 4 8 ]

14 – 98; Low 

9 8 . 1  –  1 8 2 ; 

M e d i u m 

1 8 2 . 1  – 

2 7 8 ;  H i g h 

2 7 8 . 1 –

648;Very High

Albumin ( p
18

)
[2.1 – 

6.4]

2.1 – 3.5; Low 

3 . 6  –  4 . 8 ; 

M e d i u m 

4.9 – 6.4; High

Protime ( p
19

)
[ 0  – 

1 0 0 ]

0 –  39;  Low 

3 9 . 1  –  5 8 ; 

M e d i u m 

58.1 – 78; High 

7 8 . 1 – 1 0 0 ; 

V e r y  h i g h 

Hepatitis ( pd )
-- D i e  ( 0 ) 

L i v e  ( 1 )
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Table 4. Sample information system of hepatitis disease

Objects p1 p2 p3 p4 p5 p6 p7 p8 p9 p
10

p11 p
12

p
13

p
14

p
15

p
16

p
17

p
18

p
19

pd

q1 1 1 1 1 1 0 0 1 0 0 0 0 0 0 1 1 1 2 3 1

q2 1 2 1 0 1 1 1 0 1 1 1 0 0 0 1 2 1 2 1 1

q3 2 2 0 1 1 1 0 1 1 0 0 0 0 0 2 4 1 2 2 0

q4 2 2 1 0 1 0 0 1 0 1 1 1 0 1 1 2 1 1 2 0

q5 3 1 0 0 1 0 0 1 0 1 1 0 1 1 1 1 1 2 2 1

q6 4 1 1 0 1 1 0 1 1 0 1 0 0 0 1 2 2 2 2 1

q7 3 2 1 0 1 0 0 1 1 1 0 1 1 1 2 3 1 1 1 0

q8 3 2 0 0 1 1 0 1 0 0 1 1 0 1 3 1 1 1 1 0

q9 3 2 0 0 1 1 0 1 1 1 1 0 0 1 1 2 2 2 1 0

q
10 3 1 1 0 1 0 0 1 1 0 1 0 0 0 1 3 1 1 1 1

Figure 5. Significance of features of hepatitis and setting of trend line
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Table 5. Decision rules of hepatitis disease using proposed ABCRS hybridization

Rule No. Description Support Strength Accuracy

1
If p1 = High, p11 = Yes, p

14
= Yes, and p

19
= 

Low then pd = 0 .

8 38.46% 100%

2 If p11  = No and p
13

 = Yes then pd = 0 . 5 15.38% 100%

3
If p1  = Medium, p

12
 = Yes and p

15
 = Low then 

pd = 0 .

7 15.38% 100%

4
If p1 = Medium, p11  = No, p

13
 = Yes and p

19
 = 

High then pd = 0 .

2 2.99% 63%

5
If p

12
 = No, p

15
 = Medium and p

19
= Medium 

then pd = 0 .

5 7.69% 100%

6
If p1 = Medium, p

14
= Yes and p

19
 = Low then 

pd = 0 .

7 15.38% 100%

7 If p
13

 = Yes and p
19

 = High then pd = 0 . 5 7.69% 100%

8 If p
13

= No and p
19

= High then pd =1 23 31.34% 100%

9
If p

12
= No, p

15
= Low and p

19
= Medium then 

pd =1

21 28.36% 100%

10 If p1 = Low then pd =1 5 7.46% 100%

11 If p11 = Yes and p
19

= Very high then pd =1 5 2.99% 100%

12
If p1 = Low, p

12
= Yes and p

15
= Medium then 

pd =1

5 1.49% 55%

13 If p1 = Low and p
13

= Yes then pd =1 3 1.49% 57%

14 If p1 = Medium and p
13

= Yes then pd =1 5 2.99% 100%

15 If p
12

= Yes and p
13

= Yes then pd =1 3 1.49% 100%

continued on following page
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Table 6 Computation of accuracy for ABCRS hybridization model

Description TP FN FP TN Prec. Rec. F-Measure Acc.

Hepatitis = Live p
d
= 1 64 1 4 75 0.941 0.984 0.962 96.5%

Hepatitis = Die p
d
= 0 69 2 4 69 0.945 0.972 0.958 95.8%

Total 133 3 8 144 0.943 0.978 0.960 96.2%

Table 7. Accuracy of ABCRS Model of Folder 1

Description TP FN FP TN Prec. Rec. F-Measure Acc.

Hepatitis = Live p
d
= 1 13 0 1 15 0.928 1.000 0.962 96.5%

Hepatitis = Die p
d
= 0 14 0 1 14 0.933 1.000 0.965 96.5%

Total 27 0 2 29 0.931 1.000 0.964 96.5%

Table 8. Consolidated Measures of all Folders According to ABCRS Model

Model TP FN FP TN Prec. Rec. F-Measure Acc.

1 27 0 2 29 0.931 1.000 0.964 96.5%

2 27 1 1 29 0.964 0.964 0.964 96.5%

3 27 0 2 29 0.931 1.000 0.964 96.5%

4 27 0 2 29 0.931 1.000 0.964 96.5%

5 25 2 1 28 0.961 0.925 0.943 94.6%

Rule No. Description Support Strength Accuracy

16
If p

12
= Yes, p

13
= No and p

15
= Medium then 

pd =1

5 1.49% 57%

17
If p1 = High, p11 = No and p

12
= No then 

pd =1

9 13.43% 100%

18 If p
14

= No and p
15

= Low then pd =1 . 47 64.18% 100%

19

If 
p
12 = No and 

p
15 = Very high then 

pd =1 5 1.49% 100%

Table 5. Continued
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It is observed that, 4 rules out of 37 rules are having accuracy less than the predefined threshold 

of 65% and hence discarded. Based on the 33 rules, further on considering testing dataset of 144 

objects, we have computed the confusion matrix for both the classes of hepatitis disease. The confusion 

matrix according to rough set model is presented in Table 10.

On comparing Table 6 and Table 8, we identified that ABCRS hybridization model gives accuracy 

of 96.2% whereas the rough set model gives accuracy of 92.0%. For better visualization, precision, 

recall and accuracy of both the models is depicted in Figure 7. Thus, the hybridized ABCRS model 

gives better accuracy of 4.2% over rough set model.

6. CoNCLUSIoN

Data are generated every moment at a higher speed. Additionally, it contains uncertainties. Analyzing 

those data to get some meaningful information is challenging. To this end in this paper, we have 

hybridized artificial bee colony with rough set (ABCRS) for knowledge inferencing. The proposed 

model, ABCRS, is analyzed over hepatitis dataset and compared with traditional rough set model. 

The proposed model, ABCRS, gives accuracy of 96.5% and 95.8% for the class hepatitis – live and 

hepatitis – die respectively. In overall it gives accuracy of 96.2%. At the same time rough set model 

gives accuracy of 92.4% and 91.6% for the class hepatitis – live and hepatitis – die respectively. The 

overall accuracy of rough set model is 92%. Therefore, it is clear that the proposed model ABCRS 

has given 4.2% better accuracy than the rough set model. Besides the proposed model, ABCRS, 

generates only 19 rules during rule generation phase whereas rough set generated 37 rules during 

rule generation phase. It indicates that, the proposed model, ABCRS, minimizes the rule generation 

procedure. It generates 48.6% less rules than traditional rough set model. While analyzing in real 

scenario, it is a great help to the physicians to take right decisions. The proposed model hybridizes 

rough set and artificial bee colony for feature selection and rule generation. The proposed work can 

be extended to fuzzy rough hybridization of artificial bee colony. Similarly, rough set can also be 

hybridized to other bio-inspired computing techniques.
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Figure 6. Various measures of all folders according to ABCRS model
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Table 9. Decision rules of hepatitis disease using proposed rough set model

Rule 

No.

Description Support Strength Accuracy

1 If p
1

 = High, p
3

 = Yes, and p
13

 = Yes then p
d
= 0 4 30.7% 100%

2 If  p
1

 = High, p
6

 = Yes, and  p
19

 = Low then p
d
= 0 5 38.4% 100%

3 If  p
1

 = High,  p
13

 = Yes, and p
18

 = Low then p
d
= 0 4 30.7% 100%

4 If p
5

 = Yes, p
16

 = Yes, and p
19

 = Low then p
d
= 0 4 30.7% 100%

5 If p
6

 = Yes,  p
7

 = No, and p
19

 = Low then p
d
= 0 7 53.8% 100%

6 If p
6

 = Yes, p
16

 = Yes, and p
19

= Low then p
d
= 0 4 30.7% 100%

7 If p
7

 = No,  p
12

 = Yes, and  p
19

 = Low then p
d
= 0 5 38.4% 100%

8 If p
8

 = Yes, p
12

 = Yes, and  p
13

 = Yes then p
d
= 0 4 30.7% 100%

9 If  p
9

 = Yes,  p
19

 = Low, and  p
14

 = Yes t hen p
d
= 0 4 30.7% 100%

10 If p
12

 = Yes,  p
13

 = Yes, and  p
18

 = Low then p
d
= 0 4 30.7% 100%

11 If p
12

 = Yes,  p
17

 = Yes, and  p
19

 = Low then p
d
= 0 4 30.7% 100%

12 If  p
3

 = Yes, and  p
14

 = No then p
d
= 0 7 40.3% 100%

13 If p
4

 = No, and  p
14

 = No then p
d
= 1 3 46.2% 100%

14 If p
6

 = No, and  p
14

 = No then p
d
= 1 4 47.7% 100%

15 If p
9

 = No, and  p
14

 = No then p
d
= 1 8 41.7% 100%

16 If p
13

 = No, and  p
19

 = High then p
d
= 1 3 31.3% 65.00%

17 If  p
15

 = Yes, and  p
14

 = No then p
d
= 1 4 64.1% 100%

18 If  p
16

 = Yes, and p
14

 = No then p
d
= 1 5 49.5% 100%

19 If  p
1

 = Medium,  p
3

= Yes, and  p
10

 = No then p
d
= 1 4 34.3% 100%

20 If  p
1

 = Medium,  p
3

 = Yes, and  p
12

 = No then p
d
= 1 5 37.3% 100%

continue on following page
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Table 9. Continued

Rule 

No.

Description Support Strength Accuracy

21 If  p
1

 = Medium,  p
6

 = No, and p
16

 = Yes then p
d
= 1 4 35.8% 65%

22 If  p
3

 = Yes,  p
10

 = No, and p
13

 = No then p
d
= 1 8 43.2% 100%

23 If  p
3

 = Yes,  p
11

 = No, and  p
12

 = No then p
d
= 1 6 38.8% 100%

24 If  p
3

 = Yes,  p
11

 = No, and  p
13

 = No then p
d
= 1 6 38.8% 100%

25

If  
p
3  = Yes,  

p
12  = No, and  

p
13  = No then 

p
d
= 1

3 49.2% 100%

26

If  
p
3  = Yes,  

p
12  = No, and  

p
15  = Yes then 

p
d
= 1

4 49.2% 100%

27

If  
p
3  = Yes,  

p
13  = No, and  

p
16  = Yes then 

p
d
= 1

3 32.8% 65%

28

If  
p
3  = Yes,  

p
13  = No, and  

p
18  = Medium then 

p
d
= 1

4 32.8% 100%

29

If  
p
3  = Yes,  

p
15  = Low, and  

p
18  = Medium then  

p
d
= 1

4 34.3% 100%

30

If  
p
6  = No,  

p
9  = No, and  

p
11  = No then 

p
d
= 1

4 35.8% 100%

31

If  
p
6  = No,  

p
9  = No, 

p
11  = No and  

p
16  = Low then 

p
d
= 1

8 41.7% 100%

32

If  
p
6  = No,  

p
13  = No,  

p
11  = No and  

p
16  = Low then 

p
d
= 1

4 46.2% 100%

33

If 
p
6   = No,  

p
15  = Low, and  

p
16  = Low then 

p
d
= 1

4 46.2% 100%

34

If  
p
9  = No,  

p
11  = No, and  

p
12  = No then 

p
d
= 1

5 44.7% 100%

35

If  
p
9  = No, 

p
11  = No, and 

p
18   = Medium then 

p
d
= 1

4 32.8% 65%

36

If  
p
11  = No,  

p
12  = No, and  

p
16  = Low then 

p
d
= 1

6 53.7% 100%

37

If 
p
11   = No,  

p
16  = Low, and  

p
18  = Medium then 

p
d
= 1

6 38.8% 100%
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Table 10. Computation of accuracy for RS model

Description TP FN FP TN Prec. Rec. F-Measure Acc.

Hepatitis = Live pd =1 58 4 7 75 0.892 0.935 0.913 92.4%

Hepatitis = Die pd = 0 63 3 9 69 0.875 0.954 0.912 91.6%

Total 121 7 16 144 0.883 0.945 0.913 92.0%

Figure 7. Various measures of Both ABCRS and RS model
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