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Abstract

A nonlinear singularly perturbed boundary value problem depending on a parameter is considered. Two numerical methods are

applied to solve this problem. First, we solve the problem using backward Euler finite difference scheme on layer adapted meshes.

Then, Richardson extrapolation technique is applied to improve the accuracy of the computed solution. Numerical experiment is

carried out to validate the theoretical estimates.
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1. Introduction

Consider the following singularly perturbed boundary value problem (BVP) depending on a parameter:

{
εu′(x) + f (x, u, λ) = 0, x ∈ Ω = (0, 1),

u(0) = s0, u(1) = s1,
(1)

where 0 < ε ≪ 1 is small and known as the singular perturbation parameter, λ known as the control parameter and

s0, s1are given constants. Here, f (x, u, λ) is assumed to be sufficiently smooth and satisfying

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

f (x, u, λ) ∈ C3([0, 1] × R2),

0 < α ≤
∂ f

∂u
≤ α∗ < ∞ (x, u, λ) ∈ [0, 1] × R2,

0 < m ≤
∣∣∣∂ f

∂λ

∣∣∣ ≤ M < ∞ (x, u, λ) ∈ [0, 1] × R2.

(2)

With these assumptions, the BVP (1) possesses a unique solution having a boundary layer of width O(ε) near x = 0

(refer [1,9,10]) . The parameter λ has no connection with the eigenvalue of the nonlinear differential equation. Since

there are two unknowns, two boundary conditions are given in (1) to determine it exactly.
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Parameterized boundary value problems have been considered for many years. Existence and uniqueness of the

solution for BVP (1.1) was first considered by Pomentale[9]. Jankowski and Lakshmikantham [5], Liu and Mcare

[6] constructed a monotonic iterative methods to solve this problem. But the above mentioned papers were only

concerned with the regular cases. In recent years, many researchers considered the singular perturbation cases for

this problem. Amiraliyev and Duru [1] gave a uniform finite difference method on a standard Shishkin mesh for

BVP (1.1) and shown that the method is first order convergent up to a logarithmic factor (O(N−1 ln N)). Cen [3]

considered a hybrid difference scheme that combines upwind scheme on the fine mesh with the midpoint upwind

scheme on the coarse mesh. Xie et. al. [16] used boundary layer correction technique for solving the parameterized

problem. Turkyilmazoglu [15] constructed a methodology based on the homotopy analysis technique to approximate

the analytic solution.

In this work, we have solved the BVP (1) by backward Euler difference scheme on layer adapted meshes. Then, we

have successfully applied the Richardson extrapolation technique on the computed solution to enhance the accuracy.

Throughout this paper, ‘C’ denotes a generic positive constant independent of both ε and N that can take different

values at different places. Here, we denote g(xi) = gi & ‖γ‖ = max |γ(x)|, γ ∈ C([0, 1]).

2. Numerical Schemes

We shall consider two different numerical schemes on arbitrary nonuniform mesh ΩN : 0 < x0 < x1 < . . . < xN ,

and hi = xi−1 − xi.

2.1. The Backward Euler Scheme

The backward Euler scheme for (1) is given as:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
T NUN

i
≡ ε

UN
i
− UN

i−1

hi

+ f (xi,U
N
i
, λN) = 0 , 1 ≤ i ≤ N − 1,

UN
0
= s0, UN

N
= s1,

(3)

2.2. Post-processing technique

To increase the accuracy of the difference scheme (3), following the idea of Natividad and Stynes [8], we consider

a new nonuniform mesh Ω2N : 0 < x̃0 < x̃1 < . . . < x̃2N and h̃i = x̃i−1 − x̃i, which is obtained by bisecting each interval

of the original mesh ΩN . Now, we define backward Euler scheme on the mesh Ω2N as:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
T̃ 2NŨ2N

i
≡ ε

Ũ2N
i
− Ũ2N

i−1

hi

+ f (x̃i, Ũ
2N
i
, λ2N) = 0 , 1 ≤ i ≤ 2N − 1,

Ũ2N
0
= s0, Ũ2N

2
N = s1.

(4)

We are interested in the extrapolated solution defined on the mesh ΩN by U
N

i = 2Ũ2N
i
−UN

i
, for i = 1, 2, . . . ,N; which

we expected will improve the accuracy of the approximation and results in a better approximation than obtained by

(3) and also it will enhance the order of convergence.

3. Layer-adapted meshes

Numerical methods using standard finite difference schemes on uniform meshes are inadequate for solving SPPs

(refer [4,7,11,14]). This issue can be resolved by using layer adapted meshes. These meshes can be divided into two

categories: a priori mesh, for which a prior information about the location and the width of the solution is required

and a posteriori mesh, for which we do not need such information.
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3.1. Shishkin type meshes

Let τ denotes transition point defined by, τ = min{ 1
2
, 2ε
α

ln N}, which divide ΩN into two subdomains. On [0, τ], the

mesh will be fine and on [τ, 1] the mesh will be coarse. On [0, τ], let our mesh be given by piecewise continuously

differentiable and monotonic increasing function φ such that φ(0) = 0 and φ(1/2) = ln N then the mesh point is given

by,

xi =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

2ε

α
φ(ti), for ti =

i
N
, i = 0, 1, . . . ,N/2,

1 −

(
1 −

2ε

α
ln N

)
2(N − i)

N
, for i = N/2 + 1, . . . ,N.

(5)

From this definition we see that for standard Shishkin mesh (S-mesh) hi = h =
2τ

N
, i = 0, . . . ,N/2 and hi = H =

2(1 − τ)

N
, i = N/2 + 1, . . . ,N and N−1 ≤ H ≤ 2N−1. To define Bakhvalov-Shishkin mesh (B-S-mesh), let us consider

a new increasing function ‘ψ’ that is closely related to φ and defined by φ = − lnψ which satisfies ψ(0) = 1 and

ψ( 1
2
) = N−1, then

ψ(t) = e(−2 ln N)t ( S-mesh) (6)

ψ(t) = 1 − 2(1 − N−1)t (B-S-mesh) (7)

3.2. Adaptive grid

Adaptive grid is one of the special kind of non-uniform mesh. A commonly used technique to generate adaptive

grid is based on equidistribution of an arbitrary non-negative function M(u(x), x) defined on [0, 1]. The monitor

functions are usually depends on the gradient of the solution. A grid ΩN is said to be equidistributed if

∫ x j

x j−1

M
(
u(s), s

)
ds =

∫ x j+1

x j

M
(
u(s), s

)
ds, j = 1, 2, . . . ,N − 1, (8)

The solution of (8) along with a discretized version of the BVP (1) produces numerical approximation to the solution

of the BVP (1).

4. Error estimates

Proposition 1. Let {u(x), λ} and {UN
i
, λN} be the exact solution and discrete solution obtained by the backward Euler

method on layer adapted meshes (defined in Section 3) respectively. Then, there exists a constant C such that

‖ui − UN
i ‖ ≤ CN−1 ln N, |λ − λN | ≤ CN−1 (S-mesh)

‖ui − UN
i ‖ ≤ CN−1, |λ − λN | ≤ CN−1 (B-S-mesh)

‖ui − UN
i ‖ ≤ CN−1, |λ − λN | ≤ CN−1 (adaptive grid)

Proof. One can refer [1, Theorem 1] for S-mesh, [2, Theorem 1] for B-S-mesh and [12] for adaptive grid.

Proposition 2. Let {u(x), λ} and {U i, λ
N} be the exact solution and discrete solution obtained by the Richardson

extrapolation technique on layer adapted meshes (defined in Section 3) respectively. Then, there exists a constant C

such that

‖ui − U i‖ ≤ CN−2ln2N (S-mesh)

‖ui − U i‖ ≤ CN−2 (B-S-mesh)

‖ui − U i‖ ≤ CN−2 (adaptive grid).

Proof. The estimates on S-mesh and B-S-mesh one may refer [13] while the inequality for adaptive grid is being

carried out, but the numerical result obtained validate the theoretical estimate
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Fig. 1. Comparison of nodal errors on S-mesh.

5. Numerical Results

Here, we consider a test problem to show the applicability and efficiency of the methods on layer adapted meshes.

Example 1. Consider the following parameterized BVP:

⎧⎪⎪⎨⎪⎪⎩
εu′(x) + 2u − exp(−u) + λ = 0, x ∈ Ω = (0, 1) ,

u(0) = 0, u(1) = 1.
(9)

Since the exact solution is not available for the BVP (9), we have used interpolation to calculate the error. Define

Û2N
i

piecewise linear interpolation to UN
i

in ΩN . The maximum pointwise error EN
ε,u and the rate of convergence rN

ε,u

is defined as:

EN
ε,u = ‖U

N
i − Û2N

i ‖, rN
ε,u = log2

⎛⎜⎜⎜⎜⎝
EN
ε,u

E2N
ε,u

⎞⎟⎟⎟⎟ (10)

Table 1 presents the maximum point wise error and corresponding rate of convergence for ε = 1e−8, which is enough

to show the singularly perturbed nature of the BVP (9). It shows that after extrapolation nodal error is substantially

decreased while the rate of convergence is doubled. Figures 1, 2 and 3 are the graphs of the maximum point-wise errors

along with the theoretical rate of convergence on loglog scale for S-mesh, B-S-mesh and adaptive grid respectively.

A comparative study shows that the numerical solution before and after extrapolation on the S- mesh leads to larger

error than on the B-S-mesh and the adaptive grid. On B-S-mesh and adaptive grid numerical approximation obtain is

first order convergence before extrapolation and second order convergence after extrapolation, which are optimal in

these cases. But to generate B-S- mesh we need to have a prior information about the location and width of the layer.

Advantage of the adaptive grid and B-S mesh over the S-mesh is evident from the theoretical estimates obtained as

well as from the numerical results shown. The numerical results are the clear illustration of the error estimates.
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