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Two different measures of operator entanglement of two-qubit gates, namely, Schmidt strength and linear entropy, 

are studied. While these measures are shown to have one-to-one relation between them for Schmidt number 2 class 

of gates, no such relation exists for Schmidt number 4 class, implying that the measures are inequivalent in general. 

Further, we establish a simple relation between linear entropy and local invariants of two-qubit gates. The 

implication of the relation is discussed. 

 

 

I. INTRODUCTION 

As entangled states offer a wide variety of applications in teleportation, cryptography, 

computation and quantum game theory, much of the theoretical studies on quantum information 

processing revolve around the entanglement characterization [1]. Equally, nonlocal two-qubit 

operators (gates) are also investigated in detail as they are capable of producing entanglement 

when acting on a state. A few characterizing tools have been developed to understand the 

nonlocal features of quantum gates. One such tool is entangling power, which quantifies the 

average entanglement produced by a gate when acting on product states [2, 3]. The concept of 

entangling power has been studied with various motivations [4-6]. 

Nonlocal attributes of two-qubit gates are uniquely associated with local invariants, 

which are unaffected by local operations [7]. From the canonical decomposition, a two-qubit 

gate is uniquely represented by three geometrical points as well. By connecting local invariants 

and geometrical points of a two-qubit gate, it is found that all nonlocal gates form an irreducible 

geometry of tetrahedron (known as Weyl chamber). It is also known that exactly half of the 

nonlocal gates are capable of producing maximally entangled state when acting on some 

separable states, and they are called as perfect entanglers. Geometrically, the perfect entanglers 

form a polyhedron within the Weyl chamber [8].  

 On other hand, a quantum operator itself may be represented in Hilbert-Schmidt space. 

For a two-qubit gate, this space is four dimensional. From this perspective, entanglement of an 

operator is also relevant to quantify the nonlocal attributes. While entanglement production of an 

operator is widely studied, the entanglement of an operator is addressed in a limited way. In this 
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work, we consider two-qubit gates which are represented in an operator-Schmidt decomposition 

form. In this representation, the number of nonzero (Schmidt) coefficients of a gate is called as 

Schmidt number. It is known that local gates have Schmidt number 1 and nonlocal gates have 

Schmidt number 2 or 4 [9]. Entanglement of an operator is usually quantified by two measures, 

namely, Schmidt strength  [9] and linear entropy  [2, 3]. We shall note that the 

linear entropy of an operator is related, though not in a simple way, to the entangling power [2, 

3].  

In this paper, we attempted to check if the above two measures of operator entanglement 

are equivalent. We find that there exists a one-to-one relation between   and  for 

Schmidt number 2 class of gates. However, it is shown numerically that no such relation between 

the measures seem to exist for Schmidt number 4 class, implying that  and  are 

inequivalent measures of operator entanglement. Expressing linear entropy in terms of 

geometrical points, we find the gates having maximum linear entropy, and they lie on one edge 

of the Weyl chamber. Further, we obtained a simple relation between linear entropy and local 

invariants, signifying the role of local invariants in measuring the operator entanglement.  

 

II. PRELIMINARIES 

A. Geometry 

An arbitrary two-qubit gate U  SU(4) can be written in the following form, which is  

known as canonical decomposition [10]: 

                         (1) 

where  are Pauli matrices and  SU(2)⊗SU(2). Two unitary operators U,  

SU(4) are called locally equivalent if they differ only by local operations: U = k1U1k2. A class of 

gates differ from U only by local operations is referred as local equivalence class . Makhlin 

introduced the notion of local invariants which uniquely characterize the local equivalence class 

[7, 8]. Local invariants  and a point [ 321 ,, ccc ] corresponding to the gate  are related as 

[8] 

                    (2a) 

                   (2b) 
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From this relation, for given local invariants , the point [ 321 ,, ccc ] in a 3-torus geometry 

(with period  ) is identified. In other words, the gate    or its equivalence class  is uniquely 

characterized by the point [ 321 ,, ccc ] as well. The symmetry reduced 3-torus takes the form of 

tetrahedron (the Weyl chamber). A two-qubit gate is called a perfect entangler if it produces a 

maximally entangled state when acting on some separable input state [7, 8]. Perfect entanglers 

constitute a polyhedron within the Weyl chamber, as shown in Fig. 1.  

An alternate representation of two-qubit gate  is the operator-Schmidt decomposition  

                                       (3) 

where  are called as Schmidt coefficients and  are orthonormal operator bases for 

system  [9]. In this representation, the number of nonzero Schmidt coefficients of an 

operator is defined as Schmidt number. It is known that local gates have Schmidt number 1 and 

nonlocal gates have Schmidt number 2 or 4 [9]. Using the geometrical points of the edges, 

Schmidt coefficients of six edges of tetrahedron (Weyl chamber) and nine edges of polyhedron 

are already computed [11].  

 

FIG. 1. Tetrahedron OA1A2A3 (Weyl chamber) is the geometrical representation of nonlocal two-qubit gates. 

Polyhedron LMNPQA2 (shown in dashed lines) corresponds to the perfect entanglers. The points L, M, N, P, and Q 

are midpoints of the tetrahedron edges OA1, A2A1, A1A3, OA3, and OA2 respectively. The points ]0,0,2/[L ,

]0,2/,2/[2 A  and ]2/,2/,2/[3 A  correspond to CNOT, Double-CNOT and SWAP gates respectively. 

The origin represents the local gate. The line LA2 represents special perfect entanglers.  
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B. Operator entanglement 

Here, we define various measures of operator entanglement. Since the Schmidt 

coefficients satisfy ,   form a probability distribution. Exploiting this property, 

Schmidt strength (a measure of operator entanglement) is defined as the Shannon entropy of the 

distribution , 

    ,                       (4) 

such that  [9]. While  for local gates,  for the edge 

A2A3 [11]. In other words, local gates are not entangled and the gates on the edge A2A3 are 

maximally entangled.  

 Following Ref. [2], we define linear entropy of an operator U, 

                                       (5) 

where  is referred to as Hilbert-Schmidt scalar product and  is the 

permutation operator defined as  on a four-qubit system. For two-

qubit gates, the above expression can be rewritten as 

   .                      (6) 

In terms of Schmidt coefficients, the linear entropy is defined as 

    ,                        (7) 

such that . While  for local gates,  for the edge A2A3. That 

is, the gates lie on the edge A2A3 are maximally entangled in this measure as well. Some well 

known gates lying on the edge A2A3 are SWAP and DCNOT  . 

However, it is not known if any gates other than the edge A2A3 are also maximally entangled. 

Another measure of operator entanglement is concurrence , which is defined only for 

Schmidt number 2 gates in the following way [12]: 

    .                                                                     (8) 

One can show that  

    ,                         (9) 

implying the one-to-one relation between the two measures for Schmidt number 2 class of gates.  
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III. SCHMIDT STRENGTH AND LINEAR ENTROPY 

Having defined various measures of operator entanglement, in this section we dwell on 

Schmidt strength  and linear entropy  for a variety of gates. It is known that 

controlled unitary gates (the edge OA1 in the Weyl chamber) correspond to Schmidt number 2 

class and all other gates correspond to Schmidt number 4 [11]. In what follows, we obtain a 

simple relation between  and  for Schmidt number 2 gates. Since 

 Since  satisfies the relation , we have 

    and  . 

Substituting the above expressions for Schmidt coefficients in Eq. (4), we have  

         

                 (10) 

and the same is plotted in Fig. 2, showing the one-to-one relation between the two measures. 

Further, we observe from Eq. (9) and (10) that all the three measures of operator entanglement, 

namely, Schmidt strength, linear entropy, and concurrence, are equivalent for Schmidt number 2 

gates.  

Since the relation between the above measures for Schmidt number 4 class of gates is 

nontrivial, here we compute these measures for all the geometrical edges of two-qubit gates 

whose Schmidt coefficients are already known [11]. In what follows,  versus  are 

plotted for the four edges of Weyl chamber [the edge OA1 corresponds to controlled unitary 

gates; for the edge A2A3,  and  and nine edges of polyhedron. Figure 2 

shows the plot for the edges of Weyl chamber, from which we observe that there exists a one-to-

one relation between the two measures for each edge.  

Plot of  versus  for nine edges of the polyhedron is shown in Fig. 3. Since 

the polyhedron edges LQ and LM are locally equivalent to each other, they possess same form of 

 ( ). Similarly, the edges A2M and A2Q are also locally equivalent and they assume the 

same form of  ( ). Interestingly, the measures have same form of  ( ) for the 

edges QP and MN as well, though the edges are not locally equivalent to each other. This can be 

understood partially in terms of local invariants of the edges as discussed in the following 

section. Here also we find that there exists a one-to-one relation between the two measures for 

each edge of the polyhedron. Nevertheless, for the edge LQ, as increases  

decreases.  
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                                     FIG. 2.   Vs.  for the Weyl chamber edges. 

 

 

FIG. 3.   Vs.  for the polyhedron edges. 

 

In order to analyze the general behavior of the measures,  and  are 

computed for arbitrary two-qubit gates distributed uniformly in the geometrical space, and they 

are plotted in Fig. 4. It is clear from the plot that, in general, the Schmidt strength and linear 

entropy do not possess a one-to-one relation between them. Further, the correlation function 

between the measures is . The two Weyl chamber edges OA1, OA3 and special perfect 
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entanglers, LA2 form the boundaries in the  plane of two-qubit gates. This shows that, in 

general, there exists no simple relation between the two measures of operator entanglement.  

 

FIG. 4.   Vs.  for arbitrary two-qubit gates. 

 

IV. LINEAR ENTROPY AND LOCAL INVARIANTS 

As linear entropy is easily computable and is related to the entangling power, in this 

section we study the linear entropy of two-qubit gates in detail. Considering the nonlocal part of 

two-qubit gate U as given in Eq. (1), from Eq. (6) the linear entropy can be expressed as 

.                   (11) 

Here we have an expression for operator entanglement in terms of the geometrical points              

[ 321 ,, ccc ], which is useful for the following analysis. From Eq. (11), it is easy to see 

that , the maximum value, only for  with arbitrary . In other words, 

the gates where  constitute the edge A2A3 for which linear entropy is 

maximum. It implies that the gates lying only on the edge A2A3 are maximally entangled and no 

other two-qubit gates are maximally entangled. Similarly, only for , 

which refers to the local gate. 

After some algebraic simplifications, the above expression can also be written as  

                       (12) 

Thus we arrive at a simple relation between linear entropy and the local invariants. From this 

relation, it is clear that the gates having the same  and  must necessarily possess the same 
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linear entropy, implying that the gates are equally entangled. For example, the edges QP and MN 

of polyhedron are such that their  and  are the same [13], resulting in the same linear 

entropy. Further, the above expression also facilitates to understand the operator entanglement of 

perfect entanglers. It is known from our earlier studies that the local invariants of perfect 

entanglers are such that  and  [14]. In other words, the linear 

entropy of perfect entanglers are such that , where the minimum and 

maximum values correspond to the gates Q and A2, respectively (see Fig. 1). Therefore, DCNOT 

is the only perfect entangler which is maximally entangled. 

 Further, the linear entropy of an operator , where S is SWAP, is found to be  

                       (13) 

The entangling power of an operator  is defined as the average entanglement produced 

when it acts on all possible input product states distributed uniformly in the state space [2]. The 

entangling power is related to the linear entropy as [3, 12] 

                        (14) 

where   By substituting Eq. (12) and Eq. (13) in the above equation, we have  

   ,                      (15) 

which is already obtained in our earlier study on entangling power [14]. The last relation implies 

that the gates with the same  possess the same entangling power. From Eqs. (12) and 

(15), the local invariants associated to a gate are found to quantify the average entanglement 

produced and the operator entanglement. Thus, the local invariants are related to two different 

nonlocal attributes of an operator, namely, the entanglement production and operator 

entanglement.  

 

V. CONCLUSION 

In this paper, we study two different operator entanglement measures of two-qubit gates, 

namely, Schmidt strength and linear entropy. For Schmidt number 2 gates, we have established a 

simple one-to-one relation between the measures. It is known for Schmidt number 2 gates that 

entangling power is proportional to the linear entropy [4], which is shown to possess one-to-one 

relation with Schmidt strength. Hence, the entanglement production and operator entanglement 

are proportional only for Schmidt number 2 class of gates. In other words, if a Schmidt number 2 

class of gate is more entangled, it produces more entanglement on the states. However, our 
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numerical calculation indicates that such a relation between the measures does not exist for 

Schmidt number 4 gates. This implies that, in general, Schmidt strength and linear entropy are 

not equivalent measures of operator entanglement.  

 Further, we have studied linear entropy in more detail as it is related, though not in a 

simple way, to the entangling power of a gate. In particular, we are able to express linear entropy 

in terms of geometrical points of a gate. From the expression, we identify the gates having a 

maximum linear entropy and they lie on one geometrical edge ( ) of the Weyl chamber. In 

other words, all the maximally entangled gates lie on the edge  of the Weyl chamber. The 

above expression also facilitates to obtain a simple relation between linear entropy and local 

invariants. The relation implies that gates having the same  and  must necessarily possess 

the same linear entropy. From the relation, we deduce for perfect entanglers that 

, with Q (see Fig.1) and DCNOT  possessing minimum and maximum entropy 

respectively. Further, the relation between linear entropy and local invariants suggests that linear 

entropy is more useful than the Schmidt strength in quantifying the nonlocal attributes of an 

operator. 

 It is known that entanglement production of a gate, as measured by the entangling power, 

and operator entanglement, as measured by linear entropy, are different approaches in 

charactering nonlocal attributes of a gate. In this work, the two approaches are shown to be 

related to the local invariants. Thus the local invariants play a central role in the investigations of 

nonlocal two-qubit gates.  
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