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Measuring Concentration of Distances -An Effective
and Efficient Empirical Index
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Abstract

High dimensional data analysis gives rise to many challenges. One such that has come to gain a lot of
attention recently is the concentration of distances (CoD) phenomenon, which is the inability of distance
functions to distinguish points well in high dimensions. CoD affects almost every machine learning and data
analysis algorithm in high dimensions. In this work, we present a novel efficient and effective empirical index
that not only illustrates whether a distance function tends to concentrate for a given data set, but also enables
us to measure the rate of concentration and allows us to compare different distance functions vis-á-vis their
rate of concentration. As opposed to existing empirical indices, the proposed empirical measure uses only the
internal characteristics of a given data set and hence is applicable on real data sets, which was hitherto not
possible.

Index Terms—Dimensionality Curse, Concentration of Distances, Concentration Function, Dispersion Function.
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1 Introduction

The term ’Big Data’ has come to be related to any data
whose characterics can be classified among one of the
following 5 V’s: Volume, Variety, Velocity, Veracity and
Value. While the first of the five V’s, namely, Volume is
largely taken to refer to the amount or size of data, yet
another aspect related to volume is that of Dimensionality
[39].

Data sets grow in their complexity not only due to
their size but also due to the addition of more features
or dimensions to the data. Given a data set X , while
Volume refers to the cardinality ♯X of the data set X ,
dimensionality refers to the space in which X itself is
embedded.

Evolution of new data types such as images, videos,
audio, gene expression data, etc., lead us to work with data
in high dimension, thus forcing us to deal with the so called
Dimensionality Curse (DC), a term that has come to refer
to some non-intuitive phenomena that occur while dealing
with data in high dimensions.

1.1 The Dimensionality Curse

The term curse of dimensionality, was first introduced
by Bellman [5] while discussing optimisation problems
involving high dimensions. However, recently, this term has
come to denote or refer to many, often counterintuitive,
challenges faced in high dimensions.

There are many aspects of the DC and their effects
are still only being explored and is currently a hot topic
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of research. This is also clear from the many papers that
continue to appear, see for instance, [2], [8], [23], [31]. Two
of the well-known aspects of the DC are:

(i) Combinatorial explosion in Search Space, where the
search space grows exponentially due to the increase
in the number of variables [5].

(ii) Hughes Phenomenon - which refers to the need for at
least a sub-exponential growth in the number of data
points as dimension increases for many of the data
analysis algorithms to be consistent, see for instance,
[19], [27].

However, recently, many other aspects of the DC have
also been discovered and are being investigated. For in-
stance, the Hubness Phenomenon, which was firstly re-
ported by [4] and later on investigated by Radovanovic et
al. [28], [29], [36], which refers to the formation of hubs, i.e.,
a subset of data points which are more popular as nearest
neighbors than other data points.

Yet another major aspect of the DC that has recently
come to the fore is the Concentration of Distances phe-
nomenon, which will form the main focus of this work.

1.2 Concentration of Distances

Concentration of Distances (CoD), also referred to as
Concentration of Norms in the literature, refers to the
inability of distance functions to distinguish points well
in high dimensions. To measure the closeness between any
two objects/points we need the concept of a distance or
its dual concept of similarity. However, as the dimension
increases all the points appear to be approximately at
the same distance and the distance function seems to lose
its discriminative power. This phenomenon is called the
concentration of distances.

Let X = {x1, x2, ..., xN} ⊂ R
m be a set of N data points

from the m-dimensional Euclidean space. Let q ∈ R
m be
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(a) N = 1000, m = 1, . . . , 20 (b) N = 1000, m = 10, . . . , 100 (c) N = 1000, m = 100, . . . , 1000

Fig. 1. Concentration exhibited by the Euclidean distance when moving from low to high dimensions - kM (−−), km(−), kA(− · −)

an arbitrary but fixed query point and consider a distance
function ρ to calculate the distances between points in X -
for instance, ρ could be the Euclidean distance (see (2) in
Section 2). Let x− and x+ be the nearest and farthest
points to q, i.e., x− = arg minxi∈X ρ(xi, q) , x+ =
arg maxxi∈X ρ(xi, q) . As the dimension m → ∞, one finds
that ρ(q, x−) ≈ ρ(q, x+), which means that the distance
of a query to the farthest point approaches the distance of
the query to its nearest point. Since ρ(q, x−) ≤ ρ(q, xi) ≤
ρ(q, x+) for 1 ≤ i ≤ N , all distances to q begin to
concentrate and are confined to a small domain. In other
words, we can say that all the points in X are almost at
the same distance to q. Thus the distances become less
discriminative as the dimension grows and the distances
between any two points begin to converge.

1.3 An Empiricial Illustration

Let us compare the Nearest Neighbour (NN) distances of an
arbitrary query point with the average of pairwise distances
of a given data set. Let X = {xi}

N
i=1 be N data points.

Let Ymax, Ymin, Yavg denote the maximum, minimum and
average of the Nearest Neighbour Euclidean distances. For
instance, if zi denotes the NN distance of xi for each
i = 1, . . . , N , then Ymax = max{zi : 1 ≤ i ≤ N}. We
calculate Ymin, Yavg, similarly. Let YX denote the average
of all pairwise distances in X .

Let kM =
Ymax

YX

denote the normalised maximum

NN distance w.r.t. the average of all pairwise distances.
Similarly, let km and kA denote the normalised minimum
and average NN distances w.r.t. the average of all pairwise
distances.

In Figs. 1(a) – (c), we plot the above three indices
for N = 1000 data points generated from Uniform dis-
tribution, viz., X ∼ U ([−1, 1]m), for varying dimensions,
m = 1, . . . , 1000. The plots allow us to make the following
observations:

• In low dimensions, we see that km ≪ 1 and there is
enough separation between km and kM , i.e., there is
sufficient contrast present and hence points are well
separated, see Fig. 1 (a).

• In medium dimensions, i.e., up to 100 dimensions, 0 ≪
km < kA < kM , which means that the minimum NN

distances are beginning to increase and one can already
see the presence of CoD, see Fig. 1 (b).

• However, as dimension increases, km → 1, kM ∼ kA

and km ∼ kA, i.e., the normalised maximum NN
distances and the normalised minimum NN distances
both converge to the normalised average NN dis-
tances. There is not much contrast present between
the distances, i.e., all the distances seem to concentrate
around the average value of the pairwise distances.
Thus all points become almost equidistant to each
other, see Fig. 1 (c).

• A 3D surface plots of these indices for different values
of m and N , see Fig. 2, shows that increasing N does
not change the observed trend.

Fig. 2. Plots of the surfaces of km (bottom most), kA, kM (top most)
for different values of m and N .

1.4 Why is CoD important?

The concept of distance, or its dual notion of similarity,
is all-pervasive and plays a central role in almost every
algorithm or method in data analysis, from classification
to clustering to similarity searches to pattern recognition.
In many of these applications and algorithms, the distance
functions which are useful in low dimensions are no longer
effective in high dimensions, largely due to the affecting
role of the CoD phenomenon. There are many domains
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where data are high dimensional and, thus, CoD poses an
immediate and serious threat to their applicability to real
world scenarios.

Let us consider searching, which is one of the most
fundamental tasks used in every stream. The basic aim of
similarity searching is to find an object or a set of objects
similar to the given query object. For instance, in face
recognition, one needs to search for a picture that is similar
to the given query face in a database of images. A picture
is made up of hundreds of thousands/millions of pixels and
hence is a high dimensional object. Similarity searching
methods, typically employ some kind of a distance function
to measure the closeness between two objects. However, as
shown above, due to the high dimensionality of the data, all
pairwise distances can converge and hence our search might
return a lot of candidates similar to our query object. This
clearly puts a question mark on the usefulness of distance
functions in high dimensions, see also [1], [18], [21].

Many nearest neighbour searching algorithms become
computationally quite expensive in high dimensions [7], [6],
[10], [16], [20], [32]. However, it is made even more difficult
by CoD. In fact, CoD raises the issue of whether or not
the nearest neighbour is meaningful [9] in high dimension.
Thus, in high dimensions, not only the efficiency of an
algorithm is at stake, but also its effectiveness.

1.5 Motivation for this work

Since the seminal paper of Beyer et al. [9] on the con-
centration of distances, studies that deal with this phe-
nomenon typically employ an index to illustrate their point.
There exist 3 major indices that are often used in such
works, viz., the relative contrast ξ, relative variance γ
and the concentration function α. While all these indices
are excellent illustrators of whether a distance function
ρ exhibits concentration or not, they do have their own
merits and drawbacks. On the one hand, while both ξ, γ
are empirical indices, and are hence easy to calculate, the
relative contrast ξ is not amenable for theoretical analysis,
while both ξ, γ are not conducive to measure the level or
rate of concentration. On the other hand, the concentration
function α overcomes some of these drawbacks, but is
extremely computationally intensive to calculate.

Given a data set X and a set of distance functions
ρi, there does not exist any index, so far, that is able
to compare them and suggest or indicate their suitability
w.r.t. their level of concentration on X . Thus there is a
need for an efficient empirical index that orders a given set
of distance functions w.r.t. their suitability, vis-á-vis their
level of concentration. This forms the main motivation of
this submission.

1.6 Main Contributions of this work

The main contributions of this work are twofold. Firstly,
we propose a novel efficient and empirical index function,
called the Dispersion Function λρ, that not only illustrates
whether a distance function ρ exhibits concentration or
not but also enables us to measure the rate at which it
concentrates. This differs from the concentration function
αρ in two aspects, viz.,

(i) λρ is far less computationally intensive than αρ,

(ii) λρ being an empirical measure can be calculated on
any given data set X . Further, λρ only makes use of
the internal characteristics of the given data set X
and hence, unlike αρ, λρ can be calculated even if the
underlying distribution of X is unknown.

Secondly, based on the dispersion function λρ, we have
proposed an index τρ which enables us to compare dis-
tances and indicate their suitability w.r.t. their level of
concentration on X .

2 Indices to Illustrate and/or Measure CoD

As discussed in Section 1, distances do tend to concentrate
in higher dimensions. The illustration in Section 1.3 was
done for Eucidean distances, i.e., distances calculated based
on what is often referred to as an L2 distance, since it
is a member of the family of Minkowski’s Lp-distances
for p ∈ [1,∞), given as follows for a pair of vectors
x = (x1, x2, . . . , xm), y = (y1, y2, . . . , ym) ∈ R

m:

‖x‖p =

(

m
∑

i=1

|xi|
p

)
1
p

, (1)

Lp (x, y) = ‖x − y‖p =

(

m
∑

i=1

|xi − yi|
p

)
1
p

. (2)

Note that Lp is a metric [11].
It can be easily shown that the above indices, viz.,

kM , km, kA, behave similarly when we use a different Lp-
distance, i.e., they all still do converge. However, the
following questions arise:

(i) Even if all Lp-distances concentrate, do they all
concentrate in the same manner? In which case, can one
talk about the rate of concentration?

(ii) Are there indices that allow comparison between
different distance functions w.r.t. their concentration? Are
they calculable empirically? Are they also amenable for
theoretical studies?

Since the seminal paper on this topic by Beyer et al.
[9], there have been many studies dealing with the above
posers. In this section, we give a brief yet substantive review
of these works and the indices proposed therein, highlight
their advantages and indicate the contexts in which they
are not readily applicable, thus leading up to the motivation
behind this work.

2.1 Fixing the notation

We introduce some notations and concepts which will be
used in the rest of the paper.

• The triple (Ω, ρ, µ) will denote a measurable metric
space, where Ω is the domain, ρ is the metric on Ω and µ
is a probability measure on Ω.

• Further, the measure µ we consider will always be ab-
solutely continuous and hence we can associate a distri-
bution R which will be used to obtain a finite sample of
N -points X = {x1, x2, . . . , xN} ⊂ Ω. We will then write
X ∼ R to denote that the data set X ⊂ Ω has been
generated using the distribution R. Often the quadruple
(Ω,X , ρ, µ) is termed as a Similarity Workload, see [25],
[26].
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• We assume that there always exist a 0 ∈ Ω designated
as the origin of the domain Ω. This is almost always true
since usually Ω ⊆ R.

• µ∗ will denote the counting measure, i.e., if X is finite,
µ∗(X ) = ♯X , the cardinality of X .

• Note that if Ω ⊆ R
m, then we will also use the notation

Ωm,Xm for added emphasis. In such cases, the other
quantities like µm, ρm,Rm, etc., are appropriately de-
fined.

• By ‖ · ‖ we denote a real valued function on Ω, i.e, ‖ · ‖ :
Ω → R, which is taken to measure the distance of an
x ∈ Ω to the origin 0 ∈ Ω, i.e., ‖x‖ = ρ(x,0). To remain
consistent with earlier works, we term ‖x‖ to be the norm
of the vector x, even when ‖ · ‖ does not satisfy all the
properties of a norm, as is common in the literature.

• Dm
max (Dm

min) denotes the maximum (minimum, resp.) of
the norms in a given data set Xm of N points, i.e., the
distance of the farthest (nearest, resp.) point in Xm to
the origin w.r.t. the metric ρ:

Dm
max = max{‖xm

i ‖ = ρ(xm
i ,0) : xm

i ∈ Xm} ,

Dm
min = min{‖xm

i ‖ = ρ(xm
i ,0) : xm

i ∈ Xm} .

• E[Z] and var[Z] will denote the expectation and variance
of a random variable Z.

2.2 Existence of CoD: Theoretical Analysis

Towards discussing the questions raised in Section 2 above,
we begin by recalling the seminal result of Beyer et al. [9],
wherein they discussed the existence of meaningful nearest
neighbours in high dimension. Their result showed that un-
der some reasonable assumptions on the data distribution
R, distance functions do concentrate.

Theorem 2.1 ( [9], Theorem 1). Let (Ωm, ρm, µm) be an
m-dimensional measurable metric space, let Xm =
{xm

1 , xm
2 , . . . , xm

N} be a finite sample of N points such
that xm ∼ Rm and Dm

max, D
m
min are as defined above.

Further, let E[‖xm‖] and var[||xm)||] be finite and
E[||xm||] 6= 0. If

lim
m→∞

var

(

‖xm‖

E‖xm‖

)

= 0 , (3)

then for all ε > 0,

lim
m→∞

P [Dm
max ≤ (1 + ε)Dm

min] = 1 . (4)

The above result points out that nearest neighbor searching
is not meaningful when the variance of the ratio of the
distance between any two random points, drawn from the
data distribution, and the expected distance between them
converges to zero as dimension goes to infinity. This, in
essence, means that almost all points are equidistant to the
query point.

Theorem 2.1 clearly discusses only a sufficient condition
for concentration, i.e., the distance to the nearest neighbor
and the distance to the farthest neighbor tend to converge,
in a probabilistic sense, as the dimension m increases. In
other words, we get a poor contrast if the spread between
the points tends towards 0. However, the question of
whether this condition is also necessary was not known.
Almost after a decade after the work of Beyer et al., the
converse of Theorem 2.1 was proved by Durrant and Kabán,
see [12], Theorem 2, pg. 387.

TABLE 1
Some Important Notations

Ω Non-empty Domain
ρ Distance Function

X ⊂ Ω Data set
ξρ Relative Contrast w.r.t. ρ

γρ Relative Variance w.r.t. ρ

αρ Concentration Function w.r.t. ρ

λρ Dispersion Function w.r.t. ρ

Lp p-th Minkowski norm p ≥ 1
Fp Fractional norm - Lp with p ∈ (0, 1)
µ∗ Counting Measure
|X | Cardinality of the dataset X
µ∗

X
Normalised Counting Measure w.r.t. |X |

2.3 Some Indices to Illustrate CoD

Based on the theoretical results of Beyer et. al., [9] proving
the existence of CoD in high dimensions, two indices have
been proposed to study the tendency of concentration
among different distances.

2.3.1 Relative Contrast - An Index to Illustrate CoD

The first of them is the Relative Contrast proposed by
Aggarwal et al. [3].

Definition 2.2 ([3], Pg. 422). Let us consider an m-
dimensional similarity workload, (Ωm,Xm, ρm, µm).
The Relative Contrast (RC), w.r.t. ρ, is defined as

ξρ(m) =
Dm

max − Dm
min

Dm
min

. (RC)

Defining relative contrast thus, Aggarwal et al. [3]
showed that when ρ is any of the Minkowski norms Lp

for p ∈ [1,∞), ξLp
(m) → 0 as m → ∞. Interestingly, based

on the bounds obtained for ξLp
(m) they argued that if the

exponent p ∈ (0, 1) in (1) then such p-norms, which they
called fractional norms and were denoted byFp, were better
than Minkowski distances Lp. It should be mentioned that
when p ∈ (0, 1) then the fractional distances Fp are not
norms, or even a metric, since they do not satisfy the
triangle inequality. Thus in the sequel, we refer to all such
functions with the more general term distance functions.

2.3.2 Relative Variance - Another Index to Illustrate CoD

While Aggarwal et al. [3] took their motivation from (4) of
Theorem 2.1 to propose ξρ, François et al. [15] proposed yet
another index, but this time taking their cue from (3) of
Theorem 2.1, to demonstrate if a distance function suffers
from the concentration phenomenon or not.

Definition 2.3 ([15], pg. 877). Given an m- dimensional
similarity workload, (Ωm,Xm, ρm, µm), the relative
variance of the distance function ρ is defined as:

γρ(m) =

√

V ar (‖xm‖)

E (‖xm‖)
,

where, as usual, ‖x‖ = ρ(x,0) .

The relative variance γρ illustrates the concentration of
distances by comparing the spread with the expectation of
the distances. If γρ has a small value then it indicates that
distances are concentrated and a large value for γρ denotes
a good amount of spread between the distances. In some
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sense it is similar to relative contrast, as ξρ also compares
the measure of spread to the measure of location.

In fact, Theorem 2.1 and its converse can be restated as
follows based on the above indices: If the relative variance
is not tending to zero then the relative contrast will also
not converge to zero and therefore one does obtain a good
separation between points.

Remark 2.4. Following are some of the merits and demerits
of the indices ξρ and γρ:

⊕ It does illustrate the concentration of distances well.
Fig. 3(a) plots the relative contrast of the Euclidean
distance L2 on the set X consisting of N data
points, where X ∼ U ([−1, 1]m) and N = 100m.
It is clear from the plots that in low dimensions,
viz., m = 1, . . . , 10, ξL2

is quite high, while even
in medium dimensions, viz., m = 10, . . . , 100, ξL2

starts to fall drastically and in high dimensions, viz.,
m = 100, . . . , 1000, ξL2

is almost zero. γρ, like ξρ, does
illustrate the concentration of distances well. Once
again, Fig. 3(b) illustrates that in low dimensions
γL2

is far away from zero, but in medium to large
dimensions γL2

starts to approach zero faster.
⊕ Both ξρ and γρ are empirically calculable and hence are

applicable on any distance function.
⊖ ξρ is not amenable for theoretical analysis, as finding the

distributions of minimum and maximum pairwise dis-
tances in a data set with given probability distribution
for most distances is extremely complicated. Even in
the case of Lp and Fp norms only some loose bounds
have been obtained and when N is finite. Where
γρ overtakes ξρ is in its amenability for theoretical
analysis, as is clearly demonstrated by François et
al. [15]. Note, however, that theoretical analysis can
become difficult with arbitrary distance functions.

⊖ Both ξρ and γρ illustrate the concentration of a par-
ticular distance in the asymptotic case as m → ∞.
However, given two distances, say ρ1, ρ2, and a specific
data set Xm (thus the dimensionality m is fixed), it
is not clear if the values ξρ1

(m) and ξρ2
(m) allow us

to compare the distances ρ1, ρ2 vis-á-vis their concen-
tration. Note that ξρ, γρ are not strictly decreasing
functions of m.

2.4 A theoretical Index to Measure CoD

While ξρ and γρ illustrate the concentration phenomenon
well, they do not give any information on the rate at which
a distance function concentrates. Recent studies, see Pestov
[25], have started considering a more general mathematical
function to measure concentration.

Definition 2.5 (cf. [37] ,[24], [25]). Let us be given a
measurable metric space (Ω, ρ, µ). The concentration
function αρ : R

≥0 →
[

0, 1
2

]

is defined as follows:

αρ(ε) =

{

1 − inf
{

µ(Aε) : A ⊆ Ω & µ(A) ≥ 1/2
}

, ε > 0 ,
1
2 , ε = 0 ,

where Aε = {x ∈ Ω : ρ(x, a) < ε for some a ∈ A} .

The value αρ(ε) gives an upper bound on the measure of
the complement to the ε-neighborhood Aε of every subset

A of measure greater than or equal to 1
2 . It can be easily

seen that αρ is a decreasing function. Thus, the rate of
concentration of a distance function ρ, in the considered
workload, is measured based on the rate at which αρ

decreases.
If a distance function ρ concentrates, the concentration

function αρ approaches zero faster. The smaller the value
of ε at which αρ(ε) = 0, the faster the distance function
concentrates. In fact, the rate at which αρ decreases is
illustrative of the fact that the pairwise distances, as
measured by ρ, concentrate near their mean/median value.

In Example 2.6, we consider some simple measurable
metric spaces (Ω, ρ, µ) and plot their respective concentra-
tion functions in Fig. 3(c), which shows that αρ does mea-
sure the rate of concentration, i.e., how fast a given distance
ρ concentrates in a domain of interest Ω with respect to the
data distribution obtained from the measure µ.

Example 2.6.

(i) Let us consider the space (Ω1, ρ, µ), where Ω1 =
[0, 1] ∪ [2, 3], ρ is the usual metric on R, viz., the
L1 metric and µ is the Lebesgue measure. The corre-
sponding concentration function αΩ1

L1
(– • –) is plotted

in Fig. 3(c).
(ii) Let us now consider the domains Ω2 = [0, 1]∪ [1.1, 2.1]

and Ω3 = [−0.6,−0.1] ∪ [0, 1] ∪ [1.1, 1.6], while ρ, µ
remain the same. The corresponding concentration
functions αΩ2

L1
(– ∗ –) and

αΩ3

L1
(– + –), respectively, are plotted in Fig. 3(c).

Following are some of the merits and demerits of the
concentration function αρ:

⊕ Not only does α illustrate the concentration of distances,
it also allows us to measure it. In Example 2.6, we saw
that the L1 distance behaves differently for different
domains, even though the measure of the underlying
domains µ(Ωi) was the same.

⊕ The concentration function has been used in the analysis
of many a measurable metric space to obtain theoret-
ical bounds, see, for e.g., the monograph of Ledoux
[24].

⊕ Given a measurable space, (Ω, µ) of an arbitrary but
fixed dimension m, one can visually compare different
distance functions ρi based on the rate at which the
corresponding αρi

tends to zero.
⊖ However, given two distances, say ρ1, ρ2, it is not clear

if the functions αρ1
and αρ2

can be strictly ordered,
based on the usual point-wise ordering of functions.
Thus even if αρ1

(ε) < αρ2
(ε), there can exist an ε′ 6= ε

such that αρ1
(ε′) > αρ2

(ε′). Thus other than the visual
cues, purely based on αρi

’s it is not apparent how to
compare distances w.r.t. their concentration.

⊖ Further, if we do not know the underlying distribution
of a particular dataset a priori, i.e., if µ is unknown,
we cannot determine αρ theoretically.

⊖ While it is amenable for certain kind of theoretical
analysis, as an empirical index αρ is highly compu-
tationally expensive. For large sets calculating αρ is
very cumbersome as we need to find every subset
of Ω with measure at least half. In fact, using the
counting measure µ∗

X , given a set with cardinality N ,
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(a) ξL2
, N = 100m (b) γL2

, N = 100m (c) α
Ωi
L1

Fig. 3. (a) Relative Contrast and (b) Relative Variance of the Euclidean distances as dimensions increase, see Remark 2.4. (c) Concentration

functions α
Ω1

L1
(− • −), αΩ2

L1
(− ∗ −), αΩ3

L1
(− + −) of Example 2.6.

TABLE 2
Comparison between the indices ξρ, γρ and αρ : (EC) - Empirical

Calculations, (TA) - Theoretical Analysis, (MC) - Measuring
Concentration, (CD) - Comparing Distances.

Index
Suitable for

(EC) (TA) (MC) (CD)
ξρ X × × ×
γρ X X × ×
αρ × X X ×

the number of subsets with measure greater than 1
2 is

equal to

N
∑

k= N
2

NCk = 2N−1 .

2.5 Motivation for this work - Need for an Efficient
Empirical Index to Measure CoD

It is clear from the discussions so far that, on the one hand,
ξρ, γρ are best suited in empirical settings and are efficiently
calculable, but αρ does not enjoy these properties. On
the other hand, αρ can be useful in comparing distances
w.r.t. their concentration, while neither ξρ nor γρ gives us
that information. Table 2 summarises the properties of the
above indices against these parameters, from whence we
see the need for an efficient empirical index, á la ξρ, γρ, and
that which would measure the concentration and hence
allow us to compare between different distance functions, á
la αρ. Our approach towards defining this index stems from
the concept of stability of queries. In the next sections, we
discuss these in detail and come up with an empirical index
that upper bounds αρ, which is also comparatively easier
to calculate than αρ.

3 A Novel Efficient Empirical Index to Measure CoD

In this section, we recall the concept of stability of range
queries and discuss the stability of workloads. Based on
these discussions, we present our novel index that not only
illustrates and measures concentration, but with the help
of which we will also be able to compare distances vis-á-vis
their concentration.

3.1 Stability of a Query

Let (Ω,X , ρ, µ) be a given similarity workload. Let a query
q ∈ Ω and an ε ∈ R+ = [0,∞) be given. By a range-
query problem we refer to the determination of the set of
all points in X that are within ε units away from q, i.e., we
need to find the ε-neighbourhood of q in X :

S = N(q, ε) = {x′ ∈ X : ρ(x′, q) ≤ ε} .

In [9], the authors discuss when a range-query is stable by
defining the stability of a range-query as follows:

Definition 3.1 ([25], Pg. 48, cf. [9], Definition 1). Given a
query point q ∈ Ω and an ε ∈ R+, a range-query is said
to be ε-unstable if

µ∗
X (N(q, (1 + ǫ) ∗ δ)) ≥

µ∗
X (X)

2
,

where, δ = min{ρ(q, x) : x ∈ X}, the NN-distance of q.

In other words, as formulated initially in [9], a range-query
is said to be unstable if most of the data set is covered
within the ε-δ sphere of the query q. The subsequent
quantification to half (from most) of the data set in
Definition 3.1 was done by Pestov [25].

Taking a cue from Definition 3.1, we discuss the stability
of a particular workload and propose an index that will help
us in achieving our goals.

3.2 The g-δ-Count

Let NN = {1, 2, . . . , N}. Let X be a given data set whose
cardinality is N , i.e., ♯X = N .
Consider an x ∈ X and let δ denote the NN distance of x.
For a g ∈ R+, let us define the g-δ count of the point x as

C(x, gδ) = µ∗
X (N(x, gδ)) .

Clearly, C(x, gδ) gives the fraction of the number of data
points in the g-δ neighborhood of x. Note that µ∗

X is the
normalised counting measure, i.e., for an A ⊂ X and |X| <

∞ we have µ∗
X (A) =

|A|

|X|
.

For small values of g, if the C(x, gδ) values of most of
the x ∈ X are high, then one surmises that more points
lie in the dilated g-δ neighborhood of each x ∈ X and
hence the data are distributed very close to each other



7

and the relative distances between the data points will be
small. Thus, C(·, gδ) does keep track of the concentration
of points. Specifically, given a dataset, even without the
information of the distribution of the dataset, C(·, gδ) is
computable and hence further analysis is possible.

Now, we define C∗, the complement of C as follows:

C∗(x, gδ) = 1 − C(x, gδ) .

C∗(x, gδ) gives the fraction of the data set that the point x
is not able to arrest through its dilated g-δ neighborhood.

Clearly, if C(x, gδ) is large for a point x then C∗(x, gδ)
will be small. Thus, when g is relatively small, small values
of C∗(·, gδ) for most of the data set would indicate that
distances are concentrating and vice versa. Note, however,
that the above observation is valid only if a large number
of points have small values of C∗(·, gδ). For instance, if
C∗(·, gδ) values are very large for only a minority of the
data points, it does not mean that the distances are not
concentrating. It may happen that these points are outliers
and rest of the data points that are not captured by these
outliers are closely packed. Therefore, we need to check the
overall behavior of all the data points. Taking cue from this
observation, we propose a novel index that will help us to
accomplish our objective in the next section.

3.3 The Dispersion Function - λρ

Consider the similarity workload (Ω,X , ρ, µ∗
X ). If δi is the

NN distance of an xi ∈ X , let δ0 denote the maximum of
the NN distances in X , i.e.,

δ0 = max
xi∈X

{δi} = max
xi∈X

{

min
xj∈X

ρ(xi, xj)

}

. (5)

Definition 3.2. Let us consider the similarity workload
(Ω,X , µ∗

X , ρ) and let δ0 be as defined in (5). The
dispersion function λρ : [−1,∞) → [0, 1] is defined as
follows:

λρ(ε) = avg
xi∈X

{C∗(xi, (1 + ε)δ0)} , (6)

where avg is the the usual statistical average of the
values.

What does the dispersion function λρ really indicate?
For a given ε > 0, λρ returns the average of the fraction
of the data set that is not captured by a data point in its
dilated (1+ε)δ0 neighborhood. Thus, when N is large, high
values of λρ indicate that a large part of the data set are
such that most of the data are lying at a distance greater
than (1 + ε)δ0 to each of them. If we take ε to be small,
data are at least δ0 distance away and so data will still be
well separated. Thus, essentially, λρ can be considered as
a statistical measure of the dispersion as measured by the
distance function ρ. As will be shown in the next section,
where we discuss its properties, the dispersion function λρ

does have many desirable properties, one of which is that
it forms an upper bound for the concentration function αρ

when the distance function under consideration is known
to concentrate; thus if λρ decreases at a faster rate, then so
does αρ.

From the definition of λρ and the discussion above, the
following remarks are readily verifiable:

TABLE 3
Real Data sets

Dataset Xi Dimension m ♯ of datapoints N

Splice 60 1000
Protein 357 6621
Colon Cancer 2000 62
Gisette 5000 6000
Duke 7129 44
Dexter 20000 300

⊕ λρ is an empirical function and illustrates the concen-
tration of distances well.

⊕ λρ is calculable for arbitrary distances.
⊕ λρ, like αρ, is calculable for any data set with fixed

dimensionality.
⊕ Even if we do not know the underlying distribution of a

particular dataset a priori, i.e., even if µ is unknown,
we can still determine λρ.

However, it is not immediately clear whether λρ, like αρ,
measures the rate of concentration or allows us to compare
distance functions w.r.t. their concentration. We take this
up in detail in the next section.

4 Empirical and Theoretical Analysis of λρ

In this section, we discuss the properties and characteristics
of the dispersion function λρ. We begin by empirically
plotting λρ for different distance functions ρ, on both
synthetic and some real data sets and make some evi-
dential observations based on them, some of which are
also validated theoretically later on. Following this, we
discuss the behaviour of the dispersion function on distance
functions and show how λρ can help in distinguishing
distance functions based on their concentration. Finally,
we do a comparative study between λρ and αρ.

4.1 Studies on Synthetic and Real Datasets

Let Ω = [−1, 1]m be the m-dimensional unit hyper cube.
We consider two data sets X1,X2 of cardinality N , where

• X1 is a set of N uniformly distributed points in Ω, i.e.,
X1 ∼ U ([−1, 1]m),

• X2 is a set of N points generated using a normal
distribution with mean 0 and variance 0.09, on each
of the m dimensions, so as to ensure that X2 ⊂ Ω, i.e.,
X2 ∼ N (0, 0.3).

For the distance function ρ, we consider the Minkowski
distance functions Lp for p = 1, 2, 3,∞ and the fractional
distances Fp for p = 0.04, 0.25. We consider the following
two sets of synthetic workloads W1 = (Ω,X1, ρi) and
W2 = (Ω,X2, ρi), where ρi is one of the 6 distance functions
listed above. We typically took the number of data points
N = 10K, restricted largely due to the computational
power available, and plotted the λρi

values for m = 10, 100
and 1000. In Figs. 4 (a)–(c) we plot the graph of different
λρi

as ε varies from −1 to 3 in steps of 0.1.
One of the main advantages of λρ over αρ is that it

could be applied to real data sets, where usually there is
no a priori knowledge about the underlying distribution.
We consider the UCI data sets given in Table 3, i.e., the
sets of workloads (Xi, ρj , µ

∗
X ), where ρj , j = 1, 2, . . . , 6 are
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(a) Gaussian, N = 10K, m = 10 (b) Gaussian, N = 10K, m = 100 (c) Uniform, N = 10K, m = 1000

Fig. 4. Plot of λρi
for different workloads - see Section 4.1.

the same set of 6 Minkowski distance functions considered
above. The superimposed plots of λρj

for four of the
workloads, with m ≥ 2000, is given in Figs. 5 (a)–(d).

From Figs. 4 (a) – (c) and Figs. 5 (a) – (d) we see that λρ

is a decreasing function of ε. The following result demon-
strates theoretically the above empirical observation.

Theorem 4.1. Given a similarity workload (Ω,X , ρ, µ), λρ is
a decreasing function, i.e., ε1 ≤ ε2 −→ λρ(ε1) ≥ λρ(ε2).

Proof: Let ε1 ≤ ε2 for ε1, ε2 ∈ [−1,∞) and δ0 > 0
be as defined in (5). Then,

(1 + ε1)δ0 ≤ (1 + ε2)δ0

=⇒N(xi, (1 + ε1)δ0) ⊂ N(xi, (1 + ε2)δ0) (∀i)

=⇒µ∗
X (N(xi, (1 + ε1)δ0)) ≤ µ∗

X (N(xi, (1 + ε2)δ0)) (∀i)

=⇒C(xi, (1 + ε1)δ0) ≤ C(xi, (1 + ε2)δ0) (∀i)

=⇒1 − C(xi, (1 + ε1)δ0) ≥ 1 − C(xi, (1 + ε2)δ0) (∀i)

=⇒C∗(xi, (1 + ε1)δ0) ≥ C∗(xi, (1 + ε2)δ0) , (∀i)

from whence, we obtain λX (ε1) ≥ λX (ε2) , since avg is a
monotonic operation.

4.2 Suitability of Distance Functions based on λρ

Once again, from Figs. 4 (a) – (c), the rate of descent of
λρ does indicate the rate of concentration. The faster it
falls, the more is the concentration. For instance, from the
above plots, it does appear that Fractional distances (F.04)
concentrate at a much slower rate than the other distance
functions considered.

However, before comparing distance functions, perhaps
an even more fundamental question that needs to be
addressed is the following: Given a workload, what is a
suitable distance function and how does λρ enable us to
identify it? It is clear that, in the context of this work, a
distance function ρ is suitable if it does not concentrate
much. In other words, a ρ is suitable if all pairwise dis-
tances do not converge around a single value and provide
good contrast. Since λρ measures this in terms of nearest
neighbour (NN) distances, what is expected of a suitable
distance function is that the NN distances of a large number
of data points should be far less compared to that of the

largest NN distance1. In the following, we attempt to place
this intuitive idea in a more formal setting.

Definition 4.2. Let (Ω,X , ρ, µ∗
X ) be a given similarity work-

load and λρ be the corresponding dispersion function.
We define ε+

ρ , ε−ρ as follows:

ε+
ρ = sup{ε ∈ [−1,∞) | λρ(ε) = 1} , (7)

ε−ρ = inf{ε ∈ [−1,∞) | λρ(ε) = 0} . (8)

In other words, ε+
ρ , ε−ρ are the values at which the

dispersion function λρ begins and completes its descent.
As we show below, both the point of decrease and the
interval length play a role in classifying a distance function
as suitable or not for a given workload.

Based on ε+
ρ , ε−ρ the following observations can be made:

• Clearly, ε+
ρ ≤ 0. To see this, let x0 ∈ X be the data

point that has the maximum NN distance, i.e., its
nearest neighbour is at a distance δ0. Hence, for any
ε > 0, we have C(x0, (1 + ε)δ0) > 1, since x0 contains
(at least) its nearest neighbour and hence λρ(ε) 6= 1.

• If ρ is a suitable distance function, i.e., ρ does not
concentrate much for the given workload, then clearly
δ0 ≫ δi for a large portion of the data set X . This
would imply that even for ε ∈ [−1, 0), (1 + ε)δ0 > δi

for a large portion of the data set and hence ε+
ρ ≪ 0.

• Let λρ be a slowly decreasing function and hence the
interval [ε+, ε−] is large. This would mean that even for
ε ≫ 0 a large number of data points do not capture
much of the rest of the data set in their (1 + ε)-δ0

neighbourhood. Or equivalently, that their (1 + ε)-
δ0 count is much lesser than N indicating that ρ is
still able to provide a good contrast for the considered
workload and hence ρ is a suitable distance function.

1. Note that, in the presence of outliers or in noisy data, δ0
can dominate other δi and make λρ less interpretable. However, in
such scenarios, in some sense, one could contend that there is no
concentration of distances. Further, taking δ0 to be any other internal
operation of the δi’s, say for instance avg(δi) did not seem to change
the trend of the λρ curves, especially in the context of comparing
distances based on λρ.
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(a) Colon Cancer, N = 62, m = 2000 (b) Gisette, N = 6000, m = 5000

(c) Duke, N = 44, m = 7129 (d) Dexter, N = 300, m = 20000

Fig. 5. Plot of λρi
for some UCI data sets listed in Table 3

• Let us consider a workload in high dimensions with a
distance function that is known to concentrate. Then
δ0 ≈ δi for almost every data point xi and hence

C(xi, (1 + ε)δ0) =
1

N
≈ C(xi, (1 + ε)δi) , and

C∗(xi, (1 + ε)δ0) ≈ C∗(xi, (1 + ε)δi) =
N − 1

N
≈ 1 .

(9)

Thus, λρ is almost a constant at 1 for ε ∈ [−1, 0),
i.e., ε+

ρ ≈ 0. Further, even for small values of ε > 0,
(1+ ε)δ0 > δi for a large number of data points xi and
hence the rate of decrease of λρ is very steep.

Thus, given a similarity workload, a suitable distance
function ρ is such that either ε+

ρ ≪ 0 or the interval [ε+
ρ , ε−ρ ]

is large, while if both ε+
ρ ≈ 0 and the interval [ε+

ρ , ε−ρ ] is
small, it shows that the ρ concentrates for W and is not so
suitable.

Note that both these phenomena are noticeable from
Fig. 4, where at low dimensions λρ does begin to decrease
when ε ∈ [−1, 0) but at a slower rate (see Figs. 4(a) & (b)),
while at higher dimensions λρ is almost a constant at 1 and
dips steeply (see Figs. 4(c) ). Further, from Table 4, the
following can be observed:

(i) At low dimensions (m = 10), the ε+
ρ values are far

lesser than zero, in fact, ε+
ρ values are closer to −1.

Also the intervals [ε+
ρ , ε−ρ ] are large, indicating that all

the considered distance functions seem suitable.
(ii) At medium dimensions (m = 100), we see a gradual

shift in the ε+
ρ values, which are now closer to zero

than −1. We also see a shrinking in the lengths of the
corresponding [ε+

ρ , ε−ρ ] intervals.
(iii) At high dimensions (m = 1000), the behaviour of λρ

is way different. For all the distance functions, both
the ε+

ρ ≈ 0 and the lengths of the corresponding
[ε+

ρ , ε−ρ ] intervals are small. Clearly, this indicates that
all the 6 distance functions seem not so suitable for the
considered workloads.

Based on Table 4 above, our analysis shows that
Fractional distance functions (F.04) concentrate at a much
slower rate than other Minkowski distance functions. This
observation is in tune with what many studies have re-
ported earlier, see, for instance, [3]: that smaller values of
p in the Minkowski distance functions seem to concentrate
less. In fact, as we show in Section 5.1, the values in Table 6
for some real workloads also seem to confirm their claim.

4.3 Relation between αρ and λρ

From the above discussion, it does appear that αρ and λρ

exhibit some similarities. In fact, comparing λρ and αρ the
following commonalities can be observed:
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TABLE 4
Suitability of Distance functions on the basis of λρ - Synthetic Workloads

Dataset m N Indices F0.04 F0.25 L1 L2 L3 L∞

Gaussian 10 1000
ε+
ρ - 0.7 - 0.8 - 0.7 - 0.8 - 0.8 - 0.7

ε−ρ 2.9 1.9 1.2 1. 1. 1.3

[ε+
ρ , ε−ρ ] 3.6 2.7 1.9 1.8 1.8 2.0

Gaussian 100 10000
ε+
ρ - 0.4 - 0.4 - 0.4 - 0.3 - 0.3 - 0.4

ε−ρ 0.5 0.4 0.3 0.2 0.2 0.7

[ε+
ρ , ε−ρ ] 0.9 0.8 0.7 0.5 0.5 1.1

Uniform 1000 10000
ε+
ρ - 0.1 - 0.1 - 0.1 - 0.1 - 0.1 - 0.1

ε−ρ 0.1 0.1 0.1 0.0 0.0 0.0

[ε+
ρ , ε−ρ ] 0.2 0.2 0.2 0.1 0.1 0.1

(i) Both αρ and λρ not only illustrate but also can mea-
sure the rate of concentration of distance functions.

(ii) Unlike ξρ and γρ, which indicate the presence of
concentration as a function of or dependent on increase
in dimensions, both αρ and λρ make use of the internal,
and hence fixed, characteristics of the workload to do
the same.

(iii) Both αρ and λρ are non-increasing functions and
hence can offer insightful comparisons on the rate
of concentration of different distance functions for an
arbitrary but fixed workload under consideration.

However, αρ and λρ are not without their share of
differences as enumerated below:

(i) αρ is a purely theoretical index while λρ is an empirical
index.

(ii) Unless the underlying distribution is known, calcu-
lation of αρ is not possible, whereas λρ can still be
determined. Hence λρ can be applied on real data sets
to glean some useful information on the distances that
could be considered when applying data analysis algo-
rithms on them. This was already seen in Section 4.2.
Also see Section 5.

(iii) In fact, the suitability of αρ to be employed as an
empirical measure in practice is largely questionable.
For instance, calculating αρ even for smaller data sets
is extremely cumbersome. Recall that to find subsets

with measure greater than 1
2 requires

N
∑

k= N
2

Ck ≈ 2N−1

computations. However, to evaluate λρ one only needs
to work with N singleton subsets. In fact, the compu-
tational complexity of determining αρ is of O(N2N−1),
while that of λρ is only of O(N2 log N). See the
Appendix for more details. Thus determination of λρ

is computationally far less expensive than αρ.
(iv) However, an advantage that αρ enjoys that is not

available to λρ is the following: αρ - being a theo-
retical index - is amenable for theoretical analysis,
for instance, to obtain lower and upper bounds for
a given workload when the underlying measurable
metric space (Ω, ρ, µ) is well defined. See [24] for some
interesting existing results.

While the above discussion was based largely on em-
pirical observations, the question that naturally arises is
the following: Is there a relation between λρ and αρ? The
following result shows that, given a similarity workload
where the distance ρ is known to concentrate, λ remains an

upper bound of α.

Recall, from Section 4.2, that if a ρ concentrates, then
both ε+

ρ ≈ 0 and the interval [ε+, ε−] is narrow. Further,
since, δ0 ≈ δi for most of the data points xi, from (9)

max
xi∈X

C∗(xi, (1 + ε)δ0) ≈ avg
xi∈X

C∗(xi, (1 + ε)δ0) . (10)

Theorem 4.3. Let (Ω,X , ρ, µ∗
X ) be a given similarity work-

load, where X ⊂ Ω is finite and µ∗
X is the normalised

counting measure and the distance function ρ is known
to concentrate for this workload. Let ε ∈ [−1,∞) and
δ0 be as defined in (5). Let us denote by r = (1 + ε)δ0.
Then,

(i) αρ(r) ≤ λρ

(

r

δ0
− 1

)

.

(ii) αρ(r) = 0, for any r > r−, where r− = (1 + ε−ρ )δ0.

Proof: Firstly, note that r is a function of ε and
hence as ε varies from [−1,∞), we have that r varies over
[0,∞) = R+ and hence αρ(r) is well-defined.

(i): Let ε ∈ [−1,∞) be arbitrary but fixed and r be as
defined above. Let A be the collection of all the subsets of
X having measure greater than half, i.e.,

A =

{

A ⊂ X : µ∗
X (A) ≥

1

2

}

.

Let Ar = {x ∈ X : ρ(x, a) ≤ r for any a ∈ A}, be the
r-neighborhood of A for r ≥ 0. Since (1 + ε)δi ≤ (1 + ε)δ0

for every ε ∈ [−1,∞) and i = 1, 2, . . . , n, for any arbitrary
but fixed A ∈ A and for every xi ∈ A, we have

N(xi, (1 + ε)δi) ⊂ N(xi, (1 + ε)δ0) ⊂ Ar

=⇒ µ∗
X (N(xi, (1 + ε)δi)) ≤ µ∗

X (N(xi, (1 + ε)δ0)) ≤ µ∗
X (Ar)

=⇒ C(xi, (1 + ε)δi) ≤ C(xi, (1 + ε)δ0) ≤ µ∗
X (Ar) (∀i)

=⇒ CA = min
xi∈A

C(xi, (1 + ε)δ0) ≤ µ∗
X (Ar) .

Now, since

inf
A∈A

CA = inf
A∈A

{

min
xi∈A

C(xi, (1 + ε)δ0)

}

= min
xi∈X

C(xi, (1+ε)δ0) ,
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and from (10), we have the following implications:

min
xi∈X

C(xi, (1 + ε)δ0) ≈ avg
xi∈X

C(xi, (1 + ε)δ0) ≤ inf
A∈A

µ∗
X (Ar)

=⇒ 1 −

(

min
xi∈X

C(xi, (1 + ε)δ0)

)

≥ 1 − inf
A∈A

{µ∗
X (Ar)}

=⇒ max
xi∈X

(1 − C(xi, (1 + ε)δ0)) ≥ sup
A∈A

{µ∗
X (A

c

r)}

=⇒ max
xi∈X

{C∗(xi, (1 + ε)δ0)} ≥ sup
A∈A

{µ∗
X (A

c

r)}

=⇒ max
xi∈X

{C∗(xi, r)} ≥ sup
A∈A

{µ∗
X (A

c

r)}

=⇒ λρ(ε) = λρ

(

r

δ0
− 1

)

≥ αρ(r) .

(ii): Follows from part (i).

Remark 4.4.

(i) From Theorem 4.3, clearly λρ forms an upper bound
for αρ. Hence, for a given workload, if λρ itself falls very
steeply to 0, then αρ will fall faster, which indicates
that the rate of concentration of the distance function
under consideration will be very high.

(ii) It should also be noted that λρ is a tighter tail bound
for αρ and is largely a loose bound for smaller values
of ε, i.e., as r, equivalently ε increases, λρ bounds αρ

tighter. In fact, if ρ is known to concentrate, then αρ

falls steeply between r+ = (1 + ε+
ρ )δ0 and r− = (1 +

ε−ρ )δ0.
(iii) Also note that, if λρ falls at a slower rate, i.e., the

interval [ε+
ρ , ε−ρ ] is large, no conclusions can be made on

αρ and hence on whether the distance function under
consideration concentrates or not.

5 Comparing Distance Functions using λρ

In Section 4.2, we discussed how to recognise the suitability
of a distance function ρ for a given workload based on its
dispersion function λρ. However, let us be given a workload
and two distance functions ρ1, ρ2 whose dispersion func-
tions, viz., λρ1

, λρ2
, show similar trends, say for instance,

ε+
ρ1

≈ ε+
ρ2

and / or the lengths of the intervals [ε+
ρ1

, ε−ρ1
]

and [ε+
ρ2

, ε−ρ2
] could be the same. It is not yet clear how to

compare them based on these parameters.
Further, one may not always be able to give an ordering

(say, the usual point-wise ordering of functions) between
λρ1

and λρ2
, see for instance, Figs. 5 (a) and (d). Earlier,

from Figs. 4 (a) – (c), based on the rate of descent of λρ

we surmised that it does appear that Fractional distances
(F.04) concentrate at a much slower rate than the other dis-
tance functions considered, which also coincided with many
earlier studies that reported that smaller values of p in the
Minkowski distances seem to concentrate less. However,
note that the above observation is purely based on visual
illustrations. Also, we do not yet have a satisfactory result,
á la if 0 < p < q < ∞ then λLp

< λLq
, either empirically

or theoretically. In addition, the rate of decrease of λρ can
be different over different intervals.

Nevertheless, our motivation is to propose an empirical
index that would not only visually illustrate and measure
the rate of concentration, but also allow us to compare
between different distance functions on a given workload.

Towards this end, given a workload (Ω,X , ρ, µ∗
X ), we

propose another empirical index τρ that assigns a real value
to every distance function ρ based on λρ, with the help of
the parameters ε+

ρ , ε−ρ proposed in Definition 4.2.

Definition 5.1. Given a similarity workload (Ω,X , ρ, µ∗
X )

and the corresponding dispersion function λρ, let us
define the index τρ as follows:

τρ =

∫ ε−ρ

ε+
ρ

λρ(ε) dε . (11)

It is clear that τρ calculates the area under λρ over the
interval [ε+

ρ , ε−ρ ]. In the discrete case, with uniform step size

for ε, τρ can be calculated as τρ =

ε−ρ
∑

ε=ε+
ρ

λρ(ε) .

Table 5 tabulates the τρi
values for the synthetic work-

loads and distance functions ρi considered in Section 4.1. It
is clear from the descending order of values of τρi

that the
observation/claim made in earlier works that Fractional
distances (F.04) concentrate at a much slower rate still
seems to hold true.

In Fig. 6, we give the calculated τρ values (at the i-the
iteration) and its variance (upto the i-the iteration) for ρ =
L1,L2,L∞, based on repeated sampling (100 realisations)
from the same high-dimensional distribution X ∼ U (0, 1)

m

with m = 100 and N = 10, 000. The relatively small and
almost constant values of the variance of τρ shows that
concentration of distances is rather a stable phenomenon
in high dimensions and that τρ does present one way of
determining it consistently.

Fig. 6. τρ values and its variance for the following distance functions,
viz., L1(− · −), L2 (−) and L∞ (−−).

While the index τρ does induce an ordering on the
considered distance functions, the question that arises now
is this: Can it provide any more interesting or revealing
information other than endorsing some general claims?
What role does the ordering based on τρ play in the
algorithms applied on these real workloads? In the next
section, we try to address these questions.

5.1 Ordering based on Class Variable Accuracy

Aggarwal et al. [3], based on their study of the concentra-
tion of Minkowski distances Lp, strongly advocated the use
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TABLE 5
Comparing Distance functions on the basis of τρ - Synthetic workloads

Dataset m N F0.04 F0.25 L1 L2 L3 L∞

Gaussian 10 1000 18.04 14.92 11.02 11.20 11.00 10.76
Gaussian 100 10000 7.12 6.42 5.54 4.38 4.22 7.10
Uniform 1000 10000 2.54 2.89 2.02 1.99 1.97 2.00

of these distances where the parameter p ∈ (0, 1) instead of
the usual p ∈ [1,∞).

Towards empirical validation of their claim, they con-
sidered the following UCI data sets, given in Table 6, i.e.,
the sets of workloads (Xi, ρj , µ

∗
X ), where ρj , j = 1, 2, . . . , 7

are the following Minkowski distance functions with p =
0.1, 0.5, 1, 2, 4, 10,∞. They determine the ’Class Variable
Accuracy’ βij for each of the above workloads as follows:

Step 1: Remove the class label information from the
data.

Step 2: Fix an xk ∈ Xi and search for ℓ nearest
neighbours based on ρj .

Step 3: Among these ℓ neighbours count those that
belong to the same class as xk, say βk

ij .
Step 4: Repeat Step 3 for all xk ∈ Xi and find βij =

∑

k

βk
ij .

Step 5: Repeat Steps 2 – 4 for different ρj .
Step 6: Repeat Steps 2 – 5 for different data sets Xi.
Based on the decreasing order of βij , they ranked the

above 7 distance functions as follows:

F0.1 ≻ F0.5 ≻ L1 ≻ L2 ≻ L4 ≻ L10 ≻ L∞ . (12)

In Table 6 we present the corresponding τρ values for
these work loads. Clearly from the τρ values we observe
that the ordering given in (12) is exactly the one obtained
for descending values of τρ.

5.2 Comparison of Secondary Distance Measures

So far, we have considered only the Minkowski norms.
Recently there have been attempts to employ Secondary
Distance measures, so called since these are themselves
derived from other primary distance measures, typically
the Minkowski metrics. These have been shown to work
well, especially, in mitigating some aspects of DC in many
Machine Learning problems like clustering and classifica-
tion, see for instance, [17], [13], [33], [34].

We consider the following five secondary distance mea-
sures in this work, viz., the Shared Nearest Neighbour
(SNN) [17], Local Scaling (LS) [38], Mutual Proximity
(MP) [30], Non-iterative Contextual Dissimilarity Measure
(NICDM) [22] and Hubness-aware SNN (HSNN) [35].

5.2.1 On Some Synthetic Data Sets

In this section, we consider the 10 synthetic datasets
employed in [35]. These are high-dimensional Gaussian
mixture data with high class overlap. Each of these data
sets is 100-dimensional with 10-classes consisting of more
than a thousand points each 2. According to [35] these data
sets exhibit substantial hubness and hence are very difficult
for k-NN classification.

2. Available at http://ailab.ijs.si/nenad tomasev/datasets/

Fig. 7. Plot of τρi
for the 10 Synthetic Datasets considered in [35]

The τρ values were calculated for each of the 10 data sets
and all the above five secondary distance measures, with
the primary distance being the Euclidean distance. The
superimposed τρ values for the above 6 distance measures
is given in Fig. 7. Larger the τρ value greater is the
suitability of the distance function ρ. It is clear that our
studies also validate the arguments of the authors in [35]
that secondary distances demonstrate great potential in
correcting hubness-related problems.

5.2.2 On Real Data Sets

In this section, we consider the 6 UCI data sets listed
in Table 7, which were chosen not only for their high
dimensionality but also since a few of them, due to their
intrinsic hubness, have been employed in many works,
see for instance [14], and hence provides for meaningful
comparative analysis. Further, they also provide a good
mix of datasets, where for Datasets 1 & 2 we have N ≫ m,
while for Datasets 3,5 & 6, m ≫ N and for Dataset 4,
m ≈ N .

The τρ values for the above secondary distances on these
data sets are presented in Table 7. The largest values are
given in bold 3.

In [14], the authors have made a comparative study
of the suitability of three secondary distance functions,
viz., MP, LS and SNN, on the Datasets 1,2,4 & 6 given
in Table 7, w.r.t. their classification accuracy. It is worthy
to note that the ranking of the distance functions based on
τρ and classification accuracy remain identical, except in
the case of Dataset 1 where the ranks of MP and LS are

3. It is interesting to note that it does appear that distances that
can handle one aspect of the Dimensionality Curse, say the hubness
phenomenon or the CoD, may not necessarily be good at handling
other aspects.
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TABLE 6
Comparing Minkowski Distance functions on the basis of τρ - Some UCI Data sets considered in [3]

Dataset m N F0.10 F0.50 L1 L2 L4 L10 L∞

Musk 167 476 85.79 41.18 34.38 25.59 19.03 15.13 15.85
Breast Cancer WDBC 30 569 11.62 10.58 6.54 6.54 6.37 6.23 6.20

Ionosphere 34 351 18.79 11.46 8.46 8.09 9.28 11.34 13.84
Segment 19 210 21.94 8.94 4.21 3.55 3.35 3.32 3.31

TABLE 7
Comparing Secondary Distance functions on the basis of τρ - Real

workloads

Dataset L2 NICDM SNN HSNN MP LS
Splice 6.69 2.42 9.67 0.48 52.73 15.46

Protein 5.43 3.08 6.69 0.0009 10.4 20.85
Cancer 5.77 20.51 34.75 18.05 39.26 25.17
Gisette 1.8 2.77 10.12 1.23 84.117 7.87
Duke 3.34 27.46 31.56 26.8 29.69 43.97

Dexter 11.3 50.1 36.23 0.47 90.37 181.4

interchanged 4. We have used the same parameter values
for all the secondary distance measures as employed in [14],
i.e., r = 10 in SNN, q = 10 in LS and used 1 − · to obtain
the distances from the similarities.

6 Conclusion

In this work, we began by discussing the concentration of
distances phenomenon. Our examination of the different
indices that either illustrate or measure this phenomenon
revealed the need for an efficient empirical index that
would not only illustrate but also measure the rate of
concentration and enable comparison of distance functions
with regards to their suitability in real workloads. With
this as the motivation for this work, we have proposed a
novel yardstick called the dispersion function λρ which is
an empirical measure.

Based on the dispersion function, we have also intro-
duced an index τρ that allows us to compare distances with
regards to their suitability in real workloads, thus helping
us to achieve our twin objectives. Further exploration of
both λρ and τρ on some real workloads that have been used
in existing studies seem to validate the usefulness of both
the dispersion function λρ and the index τρ in judging the
suitability of a distance function for a given workload.

So far the theory of concentration of norms has been
well studied and explored but always in a non-positive way.
From Sections 2.3.1 and 2.3.2, we see that Euclidean norms
and other Minkowski-type distances do not behave well in
high dimension. In fact, we have that all the Minkowski-
type distances concentrate, but only at differing rates. The
current work differs from existing studies in the following
important ways:

(i) To the best of the authors’ knowledge, this is the
first empirical index to measure the rate of concentration
of a distance function, while other empirical indices only
illustrate the effect and that too only as a function of
increasing dimensions.

4. Note, however, that the classification accuracies of these two dis-
tances on Dataset 1 are almost the same at 77.2 & 77.9, respectively.

(ii) This work not only tries to determine whether a
distance function concentrates for a given workload, but
also proposes an index to compare distances and suggest
their suitability.

This work can, and should be, seen as yet another ex-
ploratory but a positive study on this phenomenon. Clearly,
a more theoretical analysis of the dispersion function is in
order, which we intend to take up in the near future.

Appendix
Complexity Considerations: αρ vs. λρ

In this section we study the time complexity of calculating
αρ vs. λρ for a given data set X and a distance function ρ.

Let K =

{

A ⊆ X | ♯A ≥
N

2

}

. Let us fix an ǫ > 0. For

an x ∈ X , let ♯
(

[Nǫ(x)]C
)

denote the number of elements
that are at a distance greater than ǫ from x w.r.t. ρ and,
further, for an A ∈ K, let AC

ǫ denote the complement of the
ǫ-dilation of A.
To calculate αρ(ǫ) = sup

A∈K

{

♯
(

AC
ǫ

)}

we proceed as follows:

Step 1: There are

N
∑

k= N
2

NCk = 2N−1 elements in K and hence

finding K is of the order 2N−1.
Step 2: We calculate ♯

(

[Nǫ(x)]C
)

as follows:

– Sort the pairwise distance matrix, which is of
N2 log N complexity.

– For the fixed ǫ > 0, for each x ∈ X - whose sorted
pairwise distances to other data points is a row in
the distance matrix - the complexity of determining
♯([Nǫ(x)]C) is N log N .

Step 3: Let us fix an A ∈ K. Now the cardinality of ǫ-dilation
of A is given by ♯

(

AC
ǫ

)

=
∑

x∈A

♯
(

[Nǫ(x)]C
)

. Hence

the complexity of finding ♯
(

AC
ǫ

)

for each A ∈ K is
N
∑

k= N
2

NCk · k ≈ N · 2N−1.

Step 4: Finally, the complexity of finding the sup
A∈K

♯
(

AC
ǫ

)

is

of the order 2N−1.

Thus, on the whole, the complexity of calculating αρ(ǫ),
for a given ǫ > 0 is the sum of the above, viz., 2N−1 +
N2 log N + N log N + N2N−1 + 2N−1 and hence is of the
order O(n · 2N−1).
From Definition 3.2, we have λρ(ε) = avg

xi∈X

{C∗(xi, (1 +

ε)δ0)} = avg
xi∈X

{N(1+ε)δ0
(x)} . Its time complexity can be

calculated as follows:
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Step 1: To find δ0, we once again sort the pairwise distance
matrix and find the maximum of the column 2 which
is of order N2 log N + N .

Step 2: Finding C∗(x, (1 + ε)δ0) has the same complexity as
that of finding N(1+ε)δ0

(x), which is N log N .
Step 3: Now averaging over all x ∈ X is of linear order.

Thus the total time complexity of calculating λρ(ǫ)is of the
order O(N2 · log N). Note that the costliest step in this
algorithm is that of calculating δ0. However, if one were
to use an approximate nearest neighbour search method,
then the complexity can be brought down considerably.
For instance, if one employs the LSH, keeping the width
parameter ’k’ and the time taken for evaluation ’t’ are
kept fixed, its complexity is O

(

N1+p
)

, with p ≪ 1. Thus
the overall complexity of calculating lambda is O

(

N1+p
)

,
which is near linear complexity.
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