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Abstract. Callus tissue formed during bone fracture healing is a mixture of different tissue 

types as revealed by histological analysis. But the structural characteristics of mineral crystals 

within the healing callus are not well known. Since two-dimensional (2D) scanning small-

angle X-ray scattering (sSAXS) patterns showed that the size and orientation of callus crystals 

vary both spatially and temporally [1] and 2D electron microscopic analysis implies an 

anisotropic property of the callus morphology, the mineral crystals within the callus are also 

expected to vary in size and orientation in 3D. Three-dimensional small-angle X-ray scattering 

(3D SAXS), which combines 2D SAXS patterns collected at different angles of sample tilting, 

has been previously applied to investigate bone minerals in horse radius [2] and oim/oim 

mouse femur/tibia [3]. We implement a similar 3D SAXS method but with a different way of 

data analysis to gather information on the mineral alignment in fracture callus. With the 

proposed accurate yet fast assessment of 3D SAXS information, it was shown that the plate 

shaped mineral particles in the healing callus were aligned in groups with their predominant 

orientations occurring as a fiber texture. 

1.  Introduction 

As a functionally important tissue in all vertebrates, bone supports the body weight, enables functional 

movement and protects internal organs [4]. For these purposes, compact bone is known to have a fairly 

complicated hierarchical structure down to the nano level which contributes to its outstanding 

mechanical performances [5-8]. Although the structural features of bone are relatively well understood, 

the structural and mechanical properties of the fracture callus formed during bone fracture healing are 

not yet clear at a similar scale. It is observed by histology that during the formation, maturation and 

resorption of a callus, there are various types of tissue involved [9, 10]. Yet due to the spatially 

anisotropic and temporally dynamic property of callus composition, it is difficult to obtain accurate 

information of the callus characteristics in a three-dimensional manner [11-13].  

XIV International Conference on Small-Angle Scattering (SAS09) IOP Publishing

Journal of Physics: Conference Series 247 (2010) 012031 doi:10.1088/1742-6596/247/1/012031

c© 2010 IOP Publishing Ltd 1



 

 

 

 

 

 

From material composition point of view, mature bone mainly consists of two phases: organic 

phase (collagen) and inorganic phase (mineral). Both components as well as their interactions 

determine the mechanical behavior of bone [14]. One frequently used technique for the investigation 

of bone mineral crystals is small angle X-ray scattering (SAXS) [15, 16]. The advantage of this 

technique is that sample preparation is relatively easy and delicate local texture of the specimen can be 

acquired quantitatively. But the drawback is that only a cross section of the overall scattering pattern 

from the illuminated sample volume is able to be detected. This would lead to a considerable loss of 

information or could even result in misleading interpretation from the data, if the mineral crystals are 

expected to have a highly anisotropic behavior like in the fracture callus. 

To overcome this drawback, three-dimensional (scanning and rotational) small angle X-ray 

scattering (3D SAXS), which was previously applied to investigate bone minerals in horse radius [2] 

and oim/oim mouse femur/tibia [3], is used here to reveal the spatial distribution of mineral crystal 

size and orientation in mineralized callus tissue of a sheep osteotomy model. Although the 3D-data 

accumulation is similarly realized through a controlled sample rotation as in those earlier studies, in 

the current work we propose a different routine of data analysis. The simple but effective 

representation of 3D SAXS data and the reconstruction of 3D SAXS patterns enable a direct 

visualization of mineral alignment in the investigated sample volume, which provides insight into the 

3D structural properties of the callus material as well as their relation with its mechanical performance. 

2.  Materials and Methods 

2.1.  Sample Preparation 

The sample investigated in this study comes from an earlier study [17] on fracture healing in a large 

animal model (female Merino sheep) of a 3 mm osteotomy stabilized with a monolateral external rigid 

fixator. Longitudinal section of bone/callus sample was harvested at 3 weeks time point of healing, 

fixed, dehydrated with ethanol, and embedded in polymethylmethacrylate (PMMA) without 

decalcifying. Using a low speed diamond saw (Buehler Isomet, Buehler GmbH, Duesseldorf, 

Germany), a 200 µm section was cut from the embedded block for 3D SAXS evaluation. Experimental 

regions of interest (ROIs) were chosen within the periosteal callus on the medial side of the proximal 

fragment (figure 1). The positions of ROIs were defined to have comparison with the previously 

reported structural properties of the callus [1]. 

 

 

Figure 1. Regions of interest were chosen in the periosteal callus 

formed at 3 weeks of healing, on the medial side of the proximal 

fragment. Altogether five positions (ROI 1 to 5, marked in yellow) 

with a same transversal distance from the adjacent cortex were 

experimentally evaluated by 3D SAXS. Backscattered electron image 

(figure a) and Safranin Orange/von Kossa staining (figure b) show an 

abundant but anisotropic bone formation within the callus. 
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2.2.  SAXS Measurements 

3D small-angle X-ray scattering was done with a laboratory SAXS instrument (Nanostar, Bruker AXS, 

Karlsruhe, Germany). X-ray beam (Cu-Kα, λ = 0.1542 nm) is generated with a rotating Cu anode 

generator (M06XCE– SRA, Mac Science, Japan) operated at 4 kW (40 kV, 100 mA) and is collimated 

by a double pinhole system (first pinhole diameter 100 µm, second pinhole diameter 300 µm). Sample 

is mounted on a translation stage with three degrees of freedom (translation axes x and y within the 

sample plane and rotation axis z perpendicular to the beam). 2D scanning (scanning small-angle X-ray 

scattering, sSAXS) over the sample is realized via automatic movement of the sample stage in x and y 

directions with a resolution of 200 µm (real space resolution) which is equivalent to the thickness of 

sample slice as well as the beam diameter at the sample position (focal plane). 3D SAXS is done by 

additionally applying a sample rotation along z axis. The scattering pattern is collected with an 

accumulation time of 3600 seconds on a two-dimensional CCD detector of 1024×1024 pixels with 

pixel size of 105.26 µm (reciprocal space resolution) placed at a distance of 600 mm behind the 

specimen. All the chambers are evacuated to avoid air scattering. A schematic overview of the whole 

experimental setup is shown in figure 2. 

 

 

Figure 2. Schematic view of the experimental set-up, which is typically the same for 

3D SAXS. Similar to 2D sSAXS, movement of the sample is possible in x and y 

directions. But additionally, the sample is rotated around the vertical axis z by an 

angle ω to gain texture information in the third dimension. 

 

In this study, the sample was rotated around the vertical axis z in steps of 15° from -45° to 45°, 

leading to seven rotation angles. For each rotation angle ω (-45° ≤ ω ≤ 45°), a 2D X-ray radiograph 

(absorption image) of the whole sample was generated by using a pin-diode. Regions of interest 

chosen to be located along a vertical line were marked by two parallel sharp knife edges attached onto 

the sample, and the corresponding x-y motor positions were defined for SAXS measurements 

according to the seven radiographs. 2D SAXS patterns were by this means always collected at the 

same five positions on the specimen as illustrated in figure 1 for all the rotation angles, which enables 

the reconstruction of the five 3D SAXS patterns in reciprocal space. 

The calibration of the beam center and scattering distance was done at each angle ω by measuring a 

silver behenate (AgBh) standard sample. 2D SAXS patterns were all corrected for transmission rate 

derived from radiography, background scattering (empty beam) and detector noise reduction (dark 

current). 

2.3.  Data Analysis 

2.3.1.  1D normalization. Particularly due to the change of effective sample thickness (along the beam 

direction) during sample rotation, a normalization factor (NF) has to be calculated from the series of 

2D SAXS patterns acquired at the same sample position to correct the change in SAXS intensity 

caused by the change in illuminated sample volume. This was realized by integrating a total SAXS 
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intensity of the 2D SAXS pattern along a vertical line across the beam center (v axis in figure 3b, or z 

axis in figure 3d, both in reciprocal space). Practically a radial integration was applied to the circulator 

sectors of -0.5° < χ < 0.5° and -179.5° < χ < 180.5° within a fixed radial range (50 pixels < r < 420 

pixels, 0.34 nm-1 < q < 2.83 nm-1, 0.5° < 2θ < 4.2°) at all seven ω angle positions. χ is the azimuthal 

angle as defined in figure 3d. q is the modulus of the scattering vector defined as θ
λ
π

sin=q
4

, where 

2θ is the scattering angle and λ is the X-ray wavelength. Inner radius r1 was set to be 50 pixels for 

avoiding scattering influence from the beam stop, and outer radius r2 was set to be 420 pixels for 

keeping the integrated region inside the detector range. The integrated intensities within circulator 

sectors of -0.5° < χ < 0.5° and -179.5° < χ < 180.5° were then averaged to obtain a constant K(ω) 

depending only on the rotation angle of the specimen. The ratio NF(ω) = K(ω) / K(0) was taken as a 

normalization factor for each scattering pattern obtained at any given rotation angle ω. Table 1 gives a 

summary of the normalization factors for all the five regions of interest at all the seven rotation angles. 

 

 

Figure 3. Sample rotation in real space (figure a) is characterized by the 

rotation angle ω. Measured SAXS pattern (figure b) representing reciprocal 

space is characterized by the angular position φ (figure c) of the detector with 

respect to the sample, and additionally by the azimuthal angle χ which lies in 

the detector plane (figure d). 
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Table 1. Normalization factors NF(ω) of the five regions of interest on the sample 

at different rotation angles (-45° ≤ ω ≤ 45° with a step of 15°).  

 NF (ROI 1) NF (ROI 2) NF (ROI 3) NF (ROI 4) NF (ROI 5) 

ω = 45° 1.4375 1.3716 2.0033 1.2581 1.2163 

ω = 30° 1.0244 1.6131 1.3503 1.1230 0.9953 

ω = 15° 1.0504 1.1827 1.3110 1.1637 0.9722 

ω = 0° 1.0000 1.0000 1.0000 1.0000 1.0000 

ω = -15° 0.9307 1.2313 1.3722 0.7827 0.8379 

ω = -30° 0.7882 1.7248 1.2627 1.7890 0.7852 

ω  -45°  = 1.0236 1.8978 1.6243 1.9608 0.9563  

 

Using this normalization procedure ensures that the SAXS intensity does not change with rotation 

in the direction of the rotation axis. In this way, we correct for the changes in effective sample volume 

when the section is rotated. The limitation of this procedure is, however, that the projection of the X-

ray beam on the specimen also changes with rotation. Hence, the procedure is only exact if the 

nanostructure (as studied by SAXS) stays approximately the same within the different probing 

volumes when the rotation angle ω varies. Figure 4 describes the intensity profiles (azimuthally 

integrated) of the first ROI before and after normalization. 

 

Figure 4. Intensity profiles (azimuthally integrated) of the first region of interest before (left) and 

after (right) normalization using the factors in Table 1. The measured intensity was initially the 

highest at ω = ±45° because rotation induced an increase of the illuminated sample volume. This is 

corrected by the normalization. 

 

2.3.2.  2D representation. For small-angle X-ray scattering the Ewald sphere can be considered to be 

flat. Therefore scattering patterns at different rotation angle ω correspond to cross sections of the 3D 

SAXS “ellipsoids” in reciprocal space at different angular position φ. Considering that ω is the angle 

between the sample plane and the detector plane (figure 3), we have φ = -ω.  

For each of the five ROIs at the sample, 1D I(χ) profiles were deduced for different ω positions 

(φ positions) by azimuthal integration of all the 2D SAXS patterns within the fixed radial range from 

r1 to r2 around the direction of the incoming X-ray beam. I(χ, φ) was then plotted in a 2D manner to 

illustrate the orientation of the scattering pattern in 3D. Normalization factors (Table 1) were used to 

scale the whole I(χ) spectrum for normalizing I(χ, ω) at χ = 0° and χ = 180°. I(χ) values at unavailable 

ω positions (φ positions) were linearly interpolated. 
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2.3.3.  3D visualization. Assume that n 2D measurements g1(u,v), g2(u,v),…, gn(u,v) with detector 

coordinates u and v (figure 3b) were acquired at angular positions φ1, φ2,…, φn respectively, and the 

angular positions satisfy -45° ≤ φ1 <φ2 < …< φn ≤ 45° (figure 3c and 3d). Then the value of each voxel 

in the reconstructed volume, f(x,y,z), can be calculated as (figure 3c and 3d): 
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In these equations, x0, y0 and z0 define the center position (origin) of the reconstructed volume and i 

is the number of 2D measurement which satisfies 1 ≤ i ≤ n-1. The 3D spherical volume with the 

dimension of d = 840 pixels was reconstructed by equation (1) from the series of 2D measurements 

done at different sample rotation angle ω. Normalization factors for normalizing I(χ, ω) in the 

previous section were also used here to scale the intensity of the raw SAXS patterns before coordinate 

conversion. 

To interpret the directionality of the reconstructed 3D volume with 2D plots, integral values for all 

the ray directions with different azimuth angles φ (φ1 ≤ φ ≤ φn) and inclination angles χ (0° ≤ χ < 360°) 

from the origin of the volume were calculated (figure 3d), with 1° interval for both φ and χ. In order to 

avoid the anisotropic shadow from the beam stop and to balance the integral length for all the 

directions, the rays within the lengths of inner radius r1 (50 pixels) and outer radius r2 (420 pixels) 

from the origin (beam center) were integrated. r1 and r2 were chosen such to match the effective q 

range (0.34 nm-1 < q < 2.83 nm-1) defined before. The integrations along such ray paths were 

calculated with Siddon ray tracing algorithm [18].  

3.  Results and Discussion 

Figure 5 illustrates the 2D orientation figure I(χ, φ) of all the five investigated sample volumes (200 

µm × 200 µm × 200 µm each) at the five ROIs.  

In all the five ROIs, apart from the existence of two periodic maximums appearing along the χ axis 

with a spacing of 180° due to the complete symmetry of the 3D SAXS ellipsoid, it turns out that there 

are also more than one global maximum along the φ axis. The intensity maps always show two 

separate groups of intensity concentration in this direction, indicating an overlaying of two ellipsoids 

in 3D reciprocal space. This agrees with results from previous sSAXS measurements which reveal in 

some cases a 2D SAXS pattern of spark instead of oval [1]. 

The dash lines (marked in black) in I(χ, φ) figures correspond to stacks of mineral crystals with 

different amount (relative value of normalized intensity) and orientation (peak position of normalized 

intensity) within the illuminated sample volume. It can be seen that each dash line is made up of a 

series of neighboring maximums (with respect to the other intensities at the same φ position) reflecting 

a gradual change of the preferred mineral orientation. Knowing that the directionality of SAXS pattern 
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in reciprocal space is perpendicular to the orientation of mineral crystals in real space, it can be further 

concluded that the 3D SAXS pattern has a tendency of being an oblate spheroid.  

 

 

Figure 5. 2D orientation figure I(χ, φ) of the five ROIs. Normalized 

intensities are shown with colour-coding. 

 

Figure 6 demonstrates the integral values for different φ and χ angles of one ROI with 2D 

orientation figure I(χ, φ), calculated from the reconstructed 3D volume using the Siddon ray tracing 

algorithm. Compared to the I(χ, φ) plot got from direct linear interpolation (figure 5, ROI 1), the 

obtained I(χ, φ) orientation figure here (figure 6) has higher intensity caused by finer integration 

scheme. And in the latter figure, the calculation procedure from 1D to 3D and back to 2D has led to 

some artifacts at φ = 0°, χ = 0°, and χ = ±180°. Nevertheless the two results are basically in good 

agreement with each other. The global maximum of the directionality occurs at the position of φ = -

30.0° ± 7.5° and χ = 285° ± 2°. This means, if without the need of 3D visualization, a direct plotting of 

the 2D orientation figure I(χ, φ) should be precise enough and maybe even better (free from artifacts) 

to depict the mineral alignment in 3D. 

 

 

Figure 6. 2D orientation figure I(χ, 
φ) of the first ROI, calculated from 

the reconstructed 3D volume with 

Siddon ray tracing algorithm. 

Normalized intensities are shown 

with colour-coding. 
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Based on one of the proposed models of mineralized fibrils [19], SAXS-pattern direction 

(orientation in reciprocal space, red arrows in figure 7) of the mineral crystal stacks should form a 

normal plane of the fiber direction (orientation in real space, perpendicular to the plane of figure 7). 

The general idea is that the X-ray beam (due to the size of its cross-sections) covers many mineralized 

collagen fibrils (with a typical diameter in the order of 100 nm) where the mineral crystals (plates 

viewed edge-on in figure 7) are oriented differently in different groups of fibrils. This leads to a SAXS 

pattern in the shape of an oblate ellipsoid. The direction of the ellipsoid axis can be read from the 

patterns in figure 5 and corresponds to the perpendicular to the broken line. Since the ellipsoid is not 

perfect in the sense that the intensity varies around the rotation axis (that is, along the broken line in 

figure 5), we conclude that there is a certain texture in the orientation distribution of the crystals. Maps 

such as the ones described in figure 5 can be used to quantify their orientation distribution.  

 

 
Figure 7. Illustration of circular dispersion of crystals 

in normal bone illuminated by a 200 µm beam (not 

drawn to scale), adapted from a previously proposed 

model of mineralized fibrils [19]. Fiber orientation in 

real space (not depicted) is perpendicular to the plane of 

the paper, and the red arrows show mineral orientations 

in reciprocal space for mineral crystals within the beam 

area indicated by solid blue ring. 

 

4.  Conclusion 

In this study, a simple and effective method to visualize and interpret the 3D directionality of SAXS 

results obtained from sheep fracture callus is presented. Interpretation of the 3D directionality via 2D 

plotting gives accurate information of the mineral orientation within bony structure at specific 

positions of the sample. 3D reconstruction of the full SAXS patterns in reciprocal space enables 

quantitative determination and visualization of the global directionality of the overall SAXS pattern. 

As a main result of the current study concerning the structural properties of callus minerals, it was 

shown that the mineral particles were aligned in stacks with their predominant orientations lying in a 

single plane perpendicular to the fiber direction. 
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