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INT. J. ELECTRONICS, 1998, VOL. 84, NO. 3, 203±214

Monte Carlo calculation of velocity-®eld characteristics in II±VI

compound semiconductors

A. DUTTA² , P. S. MALLICK² and D. MUKHOPADHYAY²

The velocity ®eld characteristics of II±VI compound semiconductors at 77 K have
been obtained by the Monte Carlo simulation technique. The results agree with the
available experimental data and with those obtained by solving the Boltzmann
Transport Equation analytically. The simulation technique is described in detail
and various aspects regarding the convergence of the simulation are discussed. The
carrier distribution function has also been obtained from the simulation. The e�ects
of the various simulation parameters, as well as those of the ionized impurity
concentration, on the mobility values for the di�erent semiconductors are
discussed and results are presented.

1. Introduction

In recent times, the Monte Carlo simulation technique has been extensively used
for the calculation of electrical conductivity characteristics in semiconductors. In this
technique, the motion of the carrier inside the semiconductor under the in¯uence of
an applied electric ®eld is simulated in a computer through the use of random
numbers. A single carrier is followed through a large number of two-step, free
¯ight-collision interaction cycles until ®nally the time average of any of the estima-
tors used to characterize the motion reaches a steady state that is not evolving any
further with time. Under such a condition, the ergodicity of the process can be
invoked to describe the motion of the carrier ensemble from the study of the motion
of the single carrier over a su�ciently long time. This ensures that both the spatial
and temporal stabilization of the energy distribution function of the carriers have
been achieved and the computed time average of the estimator actually represents
the true average value of the corresponding physical quantity.

The analytical methods for obtaining the conduction properties in semiconduc-
tors involving the solution of the Boltzmann transport equation (BTE) under a large
applied electric ®eld condition is beset with many complications. Under high ®eld
conditions, the important scattering mechanisms in compound semiconductors are
neither elastic nor randomizing and the usual relaxation time approximation cannot
be used for solving the BTE. Various approximations, not all of which can be
justi®ed, have been used to obviate this di�culty under high-®eld conditions. The
Monte Carlo technique provides a better and more rigorous solution in such a
situation. This being a simulation process, no attempt is made to solve the BTE,
nor is the energy distribution function of the carriers approximated by any simpli®ed
and analytically manageable function. This technique has been extensively used to
obtain the velocity±®eld characteristics of III±V compound semiconductors (Fawcett
et al., 1970). The velocity-®eld characteristics of II±VI compound semiconductors,
on the other hand, have not been studied systematically or in any great detail using
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the Monte Carlo technique. We present in this paper, the detailed Monte Carlo
technique for obtaining the velocity±®eld characteristics in some of the II±VI com-
pound semiconductors like ZnO, ZnS, CdS, CdSe and CdTe.

Section 2 describes the approximations used for incorporating the non-parabo-
licity of the band structure in the simulation. Section 3 gives the calculation of the
rates of the di�erent scattering processes involved. Section 4 describes the Monte
Carlo simulation technique and discusses the various aspects regarding the conver-
gence of the simulation, the accuracy and reproducibility of the estimator and com-
puter time involved. Finally, in § 5, we present the results on electron mobility in the
di�erent II±VI compound semiconductors and discussions thereof.

2. Band structure and dispersion relation

The II±VI compound semiconductors discussed here are large bandgap materials
with a direct bandgap. The minimum of the conduction band is situated at the centre
of the Brillouin zone and the other subsidiary minima in the conduction band are so
far removed in energy from the central conduction band minimum that their e�ect
on the velocity±®eld characteristics can be neglected in the ®eld range considered
here. The non-parabolicity of the conduction band is also not very pronounced,
because of the large energy bandgaps.

For the semiconductors considered here, we have assumed a simple non-para-
bolic band structure such that the E±k relationship is given by (Nag 1980)

g(E) =
2k2

2m*
where

g(E) = E(1 + aE)

a=
1

Eg ( 1 - m*

m0 )
2

1 -
EgD

3(Eg + 2
3 D ) (Eg + D)( )

In the above approximation the relationsÐnamely (i) E as a function of k; (ii) k

as a function of E; and (iii) ¶g/¶E as a function of EÐare explicit and hence their
incorporation in a Monte Carlo program is straightforward.

3. Scattering rates

The free ¯ight of a carrier through the lattice is disturbed by collisions with lattice
vibrations and impurity atoms. Let, at an instant of time t, the wave vector of the
carrier be k. If the carrier su�ers a collision at time t its wave vector changes from k

to kÂ.
The scatterings that have been considered here are scattering by ionized impurity

atoms, by polar optical phonons and by acoustic phonons through deformation
potential coupling and through piezoelectric interaction.

Each of these collisions is characterized by the scattering rate Si(k) which is the
number of collisions of type i per unit time per unit volume in the k space.

Si(k) =
Vc

8p3 ò
2p |Mi(k,kÂ)|

2
d(Ek - Ek

Â
) dk

Â
(1)

where Vc is the crystal volume.
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Mi(k,kÂ) is the matrix element for the ith scattering mechanism for scattering
from the k state to the k

Â state, and may be written as

|Mi(k,kÂ)| = [Ai(|k - k
Â|)]

2
G(k,k

Â
)

G(k,kÂ) is the overlap function, an Ai is the matrix element without the overlap
function and is given, for the di�erent scattering mechanisms, by (Nag 1980)

Aimp =
Ze2

Vce

1

|k - k
Â
|2 + ¸- 2

Aao = E1( 2Vcqxq )
1 /2

(eq·q)Sc(q,¸) (nq + 1
2 6 1

2)
1 /2

Apz =
|e|hpz

e ( 2Vcqxq )
1 /2

Sc(q, )̧ (nq + 1
2 6 1

2)
1 /2

Apop =
|e|
q ( 1

·a
- 1

·0 ) ( x1

2Vce0 )
1 /2

Sc(q,¸) (nq + 1
2 6 1

2)
1 /2

where ¸ is the Debye screening length, E1 is the acoustic phonon deformation
potential coupling constant, hpz is the piezoelectric constant, x1 is the longitudinal
polar optical phonon frequency, q = |k - kÂ|, Z is the ionicity of an impurity atoms,
assumed unity and

Sc(q,¸) =
q

2

q2 + ¸- 2 is the screening factor

Substituting the appropriate matrix element, we get the rates of the di�erent
scattering processes as follows.

3.1. Ionized impurity scattering

Simp(k) = CimpFimp(k,¸)gÂ(Ek)k- 3 (2)
where

Cimp =
Z2e4Nim*

8pe2h3

Fimp(k,¸) = 2[ (a + be + ce
2)

e2 - 1
+ c] - (b + 2ce) ln ( e + 1

e - 1 )
where

e = 1 +
1

2k2
¸

2

3.2. Polar optical phonon scattering

Spop(k, )̧ =

e2
x1( 1

·a
- 1

·0 )
8p2

e0
å
+,- ò

|k - k
Â|

2
G(k,kÂ)

[|k - k
Â|

2
+ ¸- 2]

(n1+ 1
2 6 1

2)d(Ek- Ek
Â
6 hx1) dkÂ

(3)
where

n1 =
1

exp ( HD

TL ) - 1
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Using the property of the d function, substituting for dk
Â and integrating over the

entire k-space, we get

Spop(k,¸) = Cpop( 1

k
2 ) å

+,-
k6Fpop(k,¸)gÂ(Ek 6 x1) (n1 + 1

2 6 1
2)

where k6 are the wave vectors corresponding to Ek 6 x1

Cpop =
e2

x1m*

4pe0 ( 1

·a
-

1

·0 )
Fpop =

1

4 f 2 [4af
2

+ 2bf (g + 2d) + cg(g + 4d)]ln ( g + 2 f

g - 2 f )
- 1

f [2bf + c(g + 2d) +
2df {4f (a + c) + 2bg}

g2 - 4 f 2 ]
where f = k6 /k, g = 1 + f

2
+ 2d.

3.3. Acoustic phonon scattering

Sac(k, )̧ =
E

2
1KBTL

4p2
q s2 ò |k - kÂ|

2
G(k,kÂ

)

[|k - k
Â|

2
+ -̧ 2]2

d(Ek - Ek
Â
) dkÂ

= CacFac(k, )̧gÂ(Ek)k (4)

Cac =
E2

1KBTLm*

pq
3s2

Fac = a +
c

3
+ 2bd + 2cde +

d(a + be + ce2)

e + 1

- (ad + be + 2cde2 + 1
2 bd2) ln ( e + 1

e - 1 )
3.4. Piezoelectric phonon scattering

Spz(k,¸) =
e

2 2
pz

8p2
e

2
qs2 ò

|k - k
Â|

2
xq

[|k - k
Â|

2
+ ¸- 2]2

G(k,kÂ
)d(Ek - Ek

Â
6 x1) (nq + 1

2 6 1
2) dkÂ

= CpzFpz(k,¸)gÂ(Ek)
ï
ï
ï
ï

1

k

ï
ï
ï
ï

(5)

Cpz =
e

2 2
pzKBTLm*

2pq
3s2

e
2

Fpz = ( c - b- 2ce +
a + be + ce

2

e + 1 ) - (a + be + ce
2

+ 2cde) ln ( e + 1

e - 1 )
The variation of the various scattering rates with energy in CdS at 77K is shown

in Fig. 1 together with the variation of the total scattering rate for an ionized
impurity concentration of 10

15
cm- 3

. It is to be noted that, in Monte Carlo calcula-
tions, the polar optical phonon emission and absorption are treated as two separate
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processes. It is found that the total scattering rate decreases rapidly with energy up to
the optical phonon energy when optical phonon emission takes place, and the total
scattering rate increases at this energy. The total scattering rate then decreases as all
the scattering rates (except that for acoustic phonons) are, in general, decreasing
functions of energy. Above an energy of about 3eV the total scattering rate, how-
ever, increases with energy due to increasing occurrence of acoustic phonon scatter-
ing. In an actual simulation a maximum energy value is chosen such that the electron
energy almost never reaches that high value and the Rees’ parameter, G, is taken to
be the total scattering rate at that chosen maximum energy. This choice obviously
requires an a priori knowledge of this variation of the total scattering rate with
energy in the material. The type of variation of the total scattering rate as described
above is characteristic of the II±VI compound semiconductors and is the same for all
the semiconductors considered here.

4. The Monte Carlo simulation procedure

The carrier is presumed to start with an initial wave vector k0. Under the in¯u-
ence of the external electric ®eld, it accelerates and continues its motion in what is
called its free ¯ight. The duration of this free ¯ight is estimated by a (pseudo)
random number r0 distributed uniformly between 0 and 1. The time at which the
collision takes place is given by

tc = - ( ln r0) /G (6)

Monte Carlo calculation in II±VI compound semiconductors 207

Figure 1. Variation of the various scattering rates with energy in CdS at 77 K together with
the variation of the total scattering rate for an ionized impurity concentration of
1015 cm- 3: (1) P.O. Abs.; (2) P.O. Emi.; (3) impurity; (4) piezo; (5) acoustic; (6) total.
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where Gis the chosen Rees’ parameter. Ghas been rendered constant over the energy
range considered by including a self-scattering term such that the sum of all the real
scattering rates plus the self-scattering rate remains constant over the entire energy
range considered. It has been shown that the steady-state value obtained by includ-
ing the self-scattering term is indeed the value corresponding to the real scatterings
(Rees 1969). The wave vector of the carrier at the end of the free ¯ight is k and this is
computed using the laws of classical mechanics.

Once tc is determined, one may plot the trajectory of the electron from 0 to tc by
using the laws of newtonian mechanics. Thus

x = ( /m*)kx0(tc - t0)

y = ( /m*)ky0(tc - t0)

z = ( /m*)[kz0(tc - t0) + (eE /2 ) (tc - t0)
2]

where kx0, ky0, kz0, are the x, y and z components of k0 at t = t0, and the polar axis z
has been chosen as the direction of the applied ®eld.

Having determined the instant at which the free ¯ight has terminated, we now
have to determine the type of collision that has terminated the free ¯ight. The
various scattering rates Si corresponding to the various scattering mechanisms for
the carrier with wave vector k are computed by using the equations as detailed
earlier. Next, another random number r1 is used to ascertain which one of the n
scattering mechanisms, including the self-scattering process, has been operative. The
jth mechanism is chosen to terminate the free ¯ight, if

å
j

i=1

Si

å
n

i=1

Si

< r1 <
å
j+1

i=1

Si

å
n

i=1

Si

(7)

Having determined the kind of scattering, the energy and the wave vector of the
electron after a real collision are determined from the conservation of the energy and
the momentum. The energy of the electron after collision is given by E + DE, where
DE is the change in energy induced by the collision and E is the energy of the
electron immediately before the collision. It is given by

E = 2k2(tc) /2m*

For acoustic, piezoelectric and ionized impurity scatterings DE is taken equal to
zero while for polar optical phonon scattering it is equal to x1.

The magnitude of the electron wave vector after the collision is then given by

ki = [2m*(E + DE)]1 /2
/ (8)

This value of the wave vector is taken as the initial wave vector for the next free
¯ight.

The orientation of the wave vector after collision is obtained by generating two
more random numbers r2 and r3, distributed uniformly between 0 and 1. We note
that the probability that the polar angle µ, and the azimuthal angle u of the wave
vector ki with respect to any convenient directions, will be contained in the intervals
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dµ and du is proportional to sin µ dµ du. µ and u can, therefore, be chosen with the
random numbers r2 and r3 as

cos µ = 1 - 2r2 (9)

u = 2pr3 (10)

The distribution function of the electrons can be obtained from the results of
these computations. For this purpose the entire k space is subdivided into a large
number of cells and the time the electron spends in a particular cell of the k space is
logged and the value is normalized by the total time. This gives the probability of the
electron being in that cell, and hence the distribution function. In arriving at this
calculation our argument is based on the ergodic theorem which states that the
ensemble average for a particular variable is the same as the time average of the
same variable for a single particle, provided it is observed over a su�ciently long
time. The distribution function thus obtained is shown in Fig. 2 for CdS at 77 K for
applied electric ®elds of 5 and 10 kV cm- 1 for zero ionized impurity concentration.

The average velocity can be obtained from displacement and time by dividing the
total displacement along the ®eld direction by the total time.

vz = ( /m*) å
i

kz0tci + (eE / ) (t2
ci /2)) å

i

tci( (11)

Monte Carlo calculation in II±VI compound semiconductors 209

Figure 2. The distribution function for CdS at 77 K for applied electric ®elds of 5 and
10kVcm- 1 for zero ionized impurity concentration. (1) 5kVcm- 1; (2) 10 kVcm- 1.
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The average velocity can also be obtained from the energy and momentum by
using the relation (Nag 1980)

vd = - 1 å (Ef - Ei)/ å (kfz - kiz) (12)

where Ei and Ef are, respectively, the energy after a collision and before the next
collision. kiz and kfz are the corresponding components of the wave vector in the ®eld
direction.

It may be noted that calculation of velocity by this method is not possible at low
®elds as the unbalanced part of the random velocities could be comparable to the
drift velocity. To avoid this di�culty, low ®eld mobility is evaluated in the Monte
Carlo simulation indirectly through the di�usion constant by using the Einstein
relation. It is to be noted that the velocity values obtained by using the above two
methods agree exactly with each other.

4.1. Convergence and termination of the simulation

In any simulation procedure for a stochastic process, the convergence of the
estimator value and its con®dence limit at the termination of the simulation proce-
dure, pose the single most important question to be answered. Usually and almost
tentatively, it is said that the simulation procedure should cover a large number of
events. But how large should this number be? With modern day high speed proces-
sors, one can go on calculating the electron trajectories for say 100 000 events, i.e.
100000 real collisions. But then the question remains, how much do we gain in terms
of our con®dence in the estimator value, the average velocity in this case, by extend-
ing the simulation beyond a certain point? There are several interesting aspects
involved in this question, insight about which can be gained only by going through
the experience of simulating the particular process. We discuss some of the more
important of these points below.

We know that the total scattering rate ST of the electron is a function of energy,
ST(E) . Since we are not in a position to generate a random number which exactly
matches this distribution of ST(E) over energy, we have to introduce a new ®ctitious
`self-scattering’ such that the total scattering rate, including this `self-scattering’ is
constant and equal to the Rees’ parameter G. This enables us to proceed with the
simulation by generating uniformly distributed random numbers.

We note that, in general, the total scattering rate ST(E) is simply a function of the
electron energy, S(E) , and G should be larger than the largest value of ST(E) . We
can, therefore, set an arbitrary large value of G for the simulation. This, however,
increases the number of self-scatterings, resulting in an unnecessary increase in the
computation time. It has been observed during our calculations that the computa-
tion time increases almost linearly with the value of G. A suitable choice for Gis then
the maximum value of ST(E) in the region of energies that are expected to be
sampled during the simulation. Often ST(E) is an increasing function of E, particu-
larly in the high energy range, due to the contribution of acoustic phonon scattering.
In such a case, one can take G= ST(EM) , where EM is the maximum electron energy
with negligible probability of being achieved by the electron during the simulation.
This is illustrated in Fig. 1 in which we have plotted the variation of the total
scattering rate with energy in CdS at 77 K for Ni = 1 ´ 10

15
cm- 3

. Em is the max-
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imum energy that may be reached by the electron during the simulation and the
value of the Rees’ parameter is taken to be equal to ST(EM) .

It must be observed, however, that the range of energy visited by the electron
during the simulation is not known at the beginning, when G is to be chosen.
Therefore, an estimate must be made for EM keeping in mind that EM cannot be
taken as too large, if one is to prevent a waste of computer time by self-scattering
events.

In our scheme, we ®rst have a trial run for a particular situation. We also
introduce the concept of `missed collision’, which is a complementary concept of
`self-collision’ and occurs when Gis too small. A small value of Gforces the electron
to continue in its simulated motion without undergoing a collision when, in fact, it
should have undergone a collision by then. We say that the electron has a missed
collision whenever its energy is larger than EM, when Ghas been chosen such that
G= ST(EM) . In our test procedure we keep a log of the minimum, the maximum, the
average and the standard deviation of the values of electron energy and the total
scattering rate. We also keep a record of the number of missed collisions for the
particular choice of G. If the number of missed collision is more than 1 in 104 real
collisions, we increase the value of Guntil the number of missed collision is less than
1 in 104 real collisions. This ends the test run and, from the energy and scattering rate
records, we choose Gfor the actual simulation in such a way that it satis®es both the
following conditions

G> ST(EM + 2dE)

G> ST max + 2dST

where dE and dST are, respectively, the standard deviation of energy and total
scattering rate and EM and ST max are, respectively, their maximum values.

Having ®xed the choice of Gfor a particular situation from the test run, we begin
our simulation procedure keeping a record of the missed collisions and the max-
imum, minimum and standard deviation values of the energy and total scattering
rate. Whenever a missed collision occurs, the simulation stops automatically after
printing all the results in an output ®le. The current value of the seed of the random
number generator is also preserved. If the estimator value, the drift velocity, has not
shown su�cient convergence at this point, the simulation is extended further with a
10% increase in the value of G and by taking the preserved seed of the random
number generator as the new seed.

An important point needs be noted in this context. Theoretically, the value of the
drift velocity should not depend upon the value of Gprovided a very large number of
events (electron trajectories) have been considered. It has, however, been observed
that in an actual simulation, the ®nal value of the drift velocity shows a very weak
dependence upon the choice of G. In our calculation it is observed that the electron
mobility in CdS at 77K for an applied electric ®eld of 10 kV cm- 1 and zero ionized
impurity concentration varies by about 2% when the Rees’ parameter Gchanges by
two orders of magnitude, provided there is no missed collision in that range of G.
The simulation was carried for 100 000 real collisions for each value of G.

The convergence of the estimator value poses another problem in this simulated
study, because essentially we are studying a problem that is stochastic in nature. The
problem becomes accentuated because of the slow rate of convergence of the esti-
mator value. Di�erent authors have used di�erent convergence tests. Some of these,
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based on the testing of two individual events, could be quite misleading particularly
when elastic collisions are involved. To apply a test for convergence, we have, ®rst of
all, considered only a real collision as an event; self scatterings have been left out as
`non-events’ since they do not change the momentum or energy of the moving
electron. Then, the entire history of events has been subdivided into a number of
sub-histories. A sub-history, in our case, consists of 1000 real collisions. The esti-
mator value is supposed to have converged when the average and the standard
deviation of the estimator value for ten such sub histories di�er by less than 1%
from the corresponding quantities for the immediately preceding ten sub histories.
Based on observations for the simulation, it is found that convergence is obtained
normally between 50000 to 100000 real collisions depending upon the applied elec-
tric ®eld and, more importantly, upon the material chosen. It is observed that con-
vergence is rather slow for II±VI compound semiconductors, particularly CdS.

5. Results and discussions

The model for Monte Carlo simulation described earlier is implemented in C.
The software incorporates a data table containing the various physical parameters of
the materials, shown in Table 1. Formulations for computation of di�erent band
properties, such as overlap integral, ¶g/¶E etc are included in the program. Also
included are scattering rate computation routines for various scattering processes.
To run the simulation, the name of the material, the lattice temperature, the impurity
concentration, the applied electric ®eld and which of the scattering processes are to
be considered (by default all the processes are assumed to be operative) and the
simulation parameter G, need be supplied. The simulation is found to converge
after between 50 and 100 000 real scatterings depending upon the applied electric
®eld and the material considered. The simulation has been performed under ®elds
ranging from 1 kVcm- 1

to 50kV cm- 1
depending upon the particular semiconductor

and lattice temperature. The materials investigated are ZnO, ZnS, CdS, CdSe and
CdTe. The calculated results agree to within 5% to 10% of the available experi-
mental data and with calculations based on analytical techniques, such as the calcu-
lations using a displaced Maxwellian distribution function. As an example we note
that for cadmium telluride at 77 K, the mobility obtained by Monte Carlo simulation
is 2192.5 cm

2
V- 1

s-
1

while that obtained by solving the Boltzmann equation is
2122 cm

2
V- 1

s-
1

at a ®eld of 7 kV cm- 1
(Mukhopadhyay and Bhattacharya 1984).

The experimental value of the mobility obtained by Canali et al. at this ®eld is
2143 cm V- 1 s- 1 (Canali et al. 1971). At a ®eld of 8.5 kV cm- 1, the corresponding
values are 2214.4, 2202.5 and 2330 cm

2
V- 1

s-
1
, respectively.
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q s1 ´ 10- 5
µD E1

Material
m*

m0
·0 ·a g cm- 3 (cms- 1) (K) K

2
m (eV)

ZnO 0.32 8.50 4.59 5.66 5.0 851 0.074 10
ZnS 0.28 8.90 5.14 4.08 5.0 507 0.074 10
CdS 0.15 9.19 5.24 4.80 4.3 440 0.037 12.8
CdSe 0.13 9.25 6.40 5.81 5.0 304 0.026 10
CdTe 0.10 9.60 7.21 6.06 3.0 242 0.068 18

Table 1. Material parameters used for numerical calculation of mobility values.
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Monte Carlo calculation in II±VI compound semiconductors 213

Figure 3. Variation of the electron mobility with the applied electric ®eld for several II±VI
compound semiconductors like ZnO, ZnS, CdS, CdSe and CdTe for an ionized impur-
ity concentration of 1015 cm- 3. (1) ZnO; (2) ZnS; (3) CdTe; (4) CdS; (5) CdSe.

Figure 4. Variation of the normalized values of the low-®eld electron mobility at 77 K in the
various II±VI compound semiconductors with the ionized impurity concentration. (1)
CdS; (2) ZnO; (3) CdSe; (4) ZnS; (5) CdTe.
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In Fig. 3, we have plotted the variation of the electron mobility with the applied
electric ®eld for several II±VI compound semiconductors like ZnO, ZnS, CdS, CdSe
and CdTe for an ionized impurity concentration of 1015 cm- 3 in each case. It is found
that the mobility decreases monotonically with the applied electric ®eld in all these
semiconductors, as in elemental or in III-V compound semiconductors.

Figure 4 shows the variation with the ionized impurity concentration of the low-
®eld electron mobility in the di�erent semiconductors at 77 K. In this ®gure the low-
®eld mobility values have been normalized by their corresponding values for a small
ionized impurity concentration of 10

14
cm- 3

. It is found that for all the semiconduc-
tors considered here, the mobility values decrease with the ionized impurity concen-
tration, slowly at ®rst and then drastically for impurity concentrations in excess of
3 ´ 10

15
cm- 3

.

5.1. Conclusions

It has been generally described in the literature that the Rees’ constant Gshould
be chosen larger than the total scattering rate. But nothing de®nite has been pre-
scribed that can guide one to choose Gproperly. The problem becomes all the more
important because one has to choose the value of Gbefore the simulation procedure
begins. Usually, Gis chosen arbitrarily large, which often leads to a large number of
self-scatterings and a waste of computer time.

The concept of `missed collisions’, as has been introduced here, gives a quanti-
tative estimate of Gand leads to its proper choice. We conclude that Gshould be just
as large so as not to allow any `missed collisions’; any larger value of Gthan this only
increases the computation time without having any considerable e�ect on the simu-
lation process. The `missed collisions’ on the other hand, a�ect the simulation pro-
cess and change the estimator value appreciably.

The fact that the convergence rate depends upon the semiconducting material
chosen has neither been appreciated nor been explicitly stated in the literature. Our
studies on various semiconductors show that the rate of convergence is much faster
in some materials than in others. It is also found that the convergence is slower for
higher ionized impurity concentration. This is because ionized impurity scatterings,
being essentially elastic, randomize the distribution function and delay the conver-
gence.
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