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Abstract

Electrochemical machining (ECM) is one of the non-conventional machining processes which is mostly used to
machine difficult-to-machine materials such as super alloys, Ti-alloys, stainless steel, alloy steel etc. The major requirement
of the process is that work piece should be electrically conducting in nature. A large number of parameters influence
material removal rate (MRR) and surface roughness (SR) of parts produced by ECM. Usually, tool makers use thumb rules
and machine manuals to set optimal parameters for the process. In this work, response surface methodology is adopted to
study the effect of four important parameters such as current, voltage, flow rate of electrolyte and inter-electrode gap on
MRR and SR. Statistically validated regression equation are developed relating response like MRR and SR with input
parameters. Finally, a non-dominated sorted genetic algorithm is used to find out the optimal process parameters that
simultaneously maximize MRR and minimize SR. The set of Pareto solutions provide flexibility to the tool makers to
choose the best setting depending on applications.

© 2013 The Authors. Published by Elsevier Ltd. Open access under CC BY-NC-ND license.
Selection and peer-review under responsibility of Institute of Technology, Nirma University, Ahmedabad.

Keywords: Electrochemical machining (ECM); Material Removal Rare (MRR); Surface Roughness (SR); Response Surface Methodology (RSM); Non-
dominated Sorted Genetic Algorithm (NSGA)

1. Introduction

According to Faraday’s law of electrolysis, if an electrode and work piece are placed in an electrolyte bath and a
potential difference is applied, metal molecules from anode ionize to lose electrons and break free of the work piece, and
travel through the electrolyte to cathode.

Mathematically, m = Ite / F (€8]
where, m = weight (g) of a material

I = current (A)

t = time (sec)

& = gram equivalent weight of material

F = Faraday*s constant of proportionality (=96500 coulomb)

Practically, ECM parts are subjected to less amount of thermal stress (as the operating temperature is low) or
mechanical stress (as ideally no contact occur between tool and work piece during machining) but in real practice sparks
occur which is to be avoided to minimize the tool wear. ECM process is primarily used for manufacturing components of
complex shape used in aerospace and defense industries, offshore petroleum industries and medical engineering.
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Electrochemical drilling, electrochemical deburring, electrochemical grinding and electrochemical polishing are some
modifications of electrochemical machining. Due to complexity of the ECM process, it is difficult to control all the
machining parameters at a time to achieve desired optimal responses. A different set of input parameters need to be selected
depending upon the responses to be optimized. Acharya et al. [1] have optimized MRR, tool life and geometrical inaccuracy
subjected to temperature, choking and passivity constraint in electrochemical machining process using goal programming
approach. Jain and Jain [2] have optimized three most important process parameters such as tool feed rate, electrolyte flow
velocity, and applied voltage to minimize geometrically inaccuracy subjected to temperature, choking, and passivity
constraints using real-coded genetic algorithms. Asokan et al. [3] have used grey relational analysis for simultaneous
optimization of MRR and SR. Chakradhar and Venu Gopal [4] have also used grey relational analysis to optimize MRR,
SR, overcut and cylindricity error considering electrolyte concentration, feed rate, applied voltage as input parameters, each
of three levels. All the methods need weight estimation for each response for simultaneous optimization of multiple
responses. Normally, weights are extracted from the experts, sometimes producing erroneous optimal values. To alleviate
such problems, the current paper adopts a non-dominated sorted genetic algorithm (NSGA 1I) to produce set of Pareto
optimal solution. All the solution in the Pareto front are optimal solutions; however, its application to a particular situation
depends on the users.
2. Experimental procedure
A. Experimental Setup

Experiments were conducted on the electrochemical machining set up supplied by Metatech industries India shown in
Figure 1. The ECM setup consists of three parts called machining chamber, control panel and electrolyte circulation system.
In the machining chamber, work piece is fixed and the cathode (tool) is attached to a driving lead screw which is controlled
by a servo feed mechanism. To avoid short circuits, there is a current sensing circuit interfaced between the tool and the
stepper motor controller circuit which is used to reverse the downward motion of the tool immediately in case current
exceeds the input limit. The necessary process parameters like current, voltage, flow rate and IEG can be varied through the
control panel. The electrolyte is pneumatically pumped through a reservoir.

Figure . Electrochemical Machining Setup

B. Selection of work piece, tool material and electrolyte

Cylindrical blank of 20 mm diameter and 40 mm height made of hardened steel which is a high carbon alloy steel with
high degree of hardness with compressive strength and abrasion resistance is selected as work piece. Tool is made of copper.
10% NaCl along with 0.2% H,O, is chosen as electrolyte such that no deposition occurs on the cathode. Unwanted
machining due to stray current can be avoided on application of epoxy powder resin coating on the tool except the base of
the tool.
C. Selection of the machining parameters and their levels

In this experiment, four process parameters such as current, applied voltage, flow rate, inter-electrode gap (IEG) are
considered as input parameters. The gap between the two electrodes (tool and work piece) is called IEG. As the IEG
decreases, current density increases and vice versa. The actual values and coded values of parameters are given in Table 1.
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To run the experiment smoothly, the parametric levels for any chosen factor (X) need to be coded using the equation 1.
Coded Value (X;) = %m )

2
where, coded value for X; is -2, -1, 0, 1, and 2, X, and X,,;, is maximum and minimum value of actual variable and X'is the

actual value of corresponding variable.

Table . Electrochemical machining process parameters and their levels

Process parameter (unit) | Symbols Codes

-2 -1 0 1 2
Current (A) A 200 220 240 260 280
Voltage (V) B 20 24 28 32 36
Flow rate (m’/min) C 5 6 7 8 9
IEG (mm) D 0.1 0.2 0.3 0.4 0.5

D. Response Surface Methodology

The experimental design is based on second order central composite rotatable design. Central composite design (CCD)
is chosen over other designs as it is insensitive to missing data and used for estimating a quadratic model. A total of 31
numbers of experiments are conducted consisting of 16 orthogonal points, 8 axial points and 7 centre points. A quadratic
model is given in equation 3.

Y=Bo+ X, BiXi+ 20 BuXP + i LB:X:X; + € 3
where, Y :response values corresponds to input variables Xi

X,-2 - square terms of parameters

X.X; - interaction terms of parameters

Lo, b, Bi, - unknown regression coefficients
€ error

The experiments are conducted as per the experimental layout shown in Table 2. The responses such as MRR and SR are
obtained calculating weight loss before and after machining using a precision electronic balance (least count 0.001 g) and
Talysurf respectively.

Table . Experimental layout

Machining parameters Response parameters

Expt. No. | Current (A) | Voltage (V) | Flow rate (m/sec) | IEG (mm) MRR (mg/min) SR (um)

1 220 24 6 0.2 2.575 2
2 260 24 6 0.2 2.85 23
3 220 32 6 0.2 2.67 2.1
4 260 32 6 0.2 2.96 2.5
5 220 24 8 0.2 2.57 2.1
6 260 24 8 0.2 2.7 2.1
7 220 32 8 0.2 2.65 2.2
8 260 32 8 0.2 2.91 2.3
9 220 24 6 0.4 2.65 2.1
10 260 24 6 0.4 2.87 2.3
11 220 32 6 0.4 2.82 2.1
12 260 32 6 0.4 3.1 25
13 220 24 8 0.4 2.57 2.1
14 260 24 8 0.4 2.62 2
15 220 32 8 0.4 2.52 2.1
16 260 32 8 0.4 2.71 2.1
17 200 28 7 0.3 2.5 2.1
18 280 28 7 0.3 3.05 25
19 240 20 7 03 2.51 2
20 240 36 7 0.3 2.71 2.2142
21 240 28 5 0.3 2.9483 2.3118
22 240 28 9 0.3 2.75 2.1
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23 240 28 7 0.1 2.655 2.21
24 240 28 7 0.5 2.64 2.1
25 240 28 7 0.3 2.625 2.1429
26 240 28 7 0.3 2.59 2.1
27 240 28 7 0.3 2.67 2.2
28 240 28 7 0.3 2.61 2.18
29 240 28 7 0.3 2.69 2.16
30 240 28 7 0.3 2.64 2.15
31 240 28 7 0.3 2.74 2.12

3. Results and discussions

An analysis of variance (ANOVA) was conducted on responses such as MRR and SR shown in
respectively. The insignificant parameters are removed from the model. The ANOVA for MRR indicates coefficient of
determination is adequate since obtained R’, Adj. R? and predicted R’ values are 90.17%, 87.17% and 80.37% respectively.
Similarly, obtained R’, Adj. R’ and predicted R’ values are 97.51%, 95.85% and 92.95% respectively for the response SR. It
is to be noted that lack of fit is not significant in both cases. The normality plots for residuals shown in Figure 2 and 3
respectively for MRR and SR shows that residuals lie around the mid-line.

Table 3. ANOVA for MRR

Source Sum of Squares df Mean Square F Value p-value ( Prob. >F)
Model 0.656168 7 0.093738 30.12652 <0.0001 significant
A-current 0.325501 1 0.325501 104.6126 <0.0001
B-voltage 0.074259 1 0.074259 23.86619 <0.0001
C-flow rate 0.112285 1 0.112285 36.08736 <0.0001
D-IEG 0.000126 1 0.000126 0.040508 0.8423
CxD 0.039502 1 0.039502 12.69539 0.0017
4 0.033108 1 0.033108 10.64051 0.0034
c 0.079589 1 0.079589 25.57898 <0.0001
Residual 0.071564 23 0.003111
Lack of Fit 0.055571 17 0.003269 1.226387 0.4273 not significant
Pure Error 0.015993 6 0.002665
Cor Total 0.727733 30
Table 4. ANOVA for SR
Source Sum of Squares df Mean Square F Value p-value ( Prob>F)
Model 0.536942 12 0.044745 58.75605 <0.0001 significant
A-current 0.18375 1 0.18375 241.287 <0.0001
B-voltage 0.073527 1 0.073527 96.55019 <0.0001
C-flow rate 0.072997 1 0.072997 95.8537 <0.0001
D-IEG 0.011267 1 0.011267 14.79456 0.0012
AxB 0.015625 1 0.015625 20.5176 0.0003
AxC 0.105625 1 0.105625 138.699 <0.0001
AxD 0.005625 1 0.005625 7.386338 0.0141
BxD 0.005625 1 0.005625 7.386338 0.0141
CxD 0.015625 1 0.015625 20.5176 0.0003
A’ 0.036807 1 0.036807 48.33261 <0.0001
B’ 0.004557 1 0.004557 5.983413 0.0249
c’ 0.004269 1 0.004269 5.60518 0.0293
Residual 0.013708 18 0.000762
Lack of Fit 0.006759 12 0.000563 0.486281 0.8644 not significant
Pure Error 0.006949 6 0.001158
Cor Total 0.55065 30
R Normal Plot of Residuals
Normal Plot of R idual:
: g ] o
- = E - &5
5 2 s 4 #

Intemally Studentized Residuals

Figure 2. Normal Plot of Residuals for MRR

Tables 3 and 4

Figure 3. Normal Plot of Residuals for SR
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Figure 4 shows the surface plot for MRR in relation to the process parameters such as current and voltage. It shows that
on increasing voltage from lower level to higher level, MRR increases. Similarly, on increasing current, MRR increases.
However, increase of current causes rapid increase in MRR as compared to increase in voltage. Figure 5 shows the surface
plot for SR in relation to the process parameters such as current and flow rate. Figure shows that increasing flow rate, SR
increases for lower current setting but decreases for higher current setting. Increasing current value, SR increases suddenly
for lower value of flow rate. Figure 6 shows the surface plot for SR in relation to the process parameters such as current and
IEG. It shows that there is not that much variation in SR value for increasing IEG value for lower value of current but for
higher value of current, decrease in SR is observed on increasing IEG value. Figure 7 shows the surface plot for MRR in
relation to the process parameters such as flow rate and IEG. With increase in flow rate from lower level to higher level,
MRR decreases for higher IEG value but for lower level of IEG value, MRR decreases up to a limit and then increases
while increasing flow rate.

From RSM, empirical relationship between response and factors in coded forms are given as follows:

MRR=2.65+0.12%4+0.056xB-0.068xC-.002292xD-0.050x CxD+0.034x4°+0.052x C* )
SR=2.15+0.087%A4+0.055%B-0.055%C-0.022x D+0.031xAxB-0.08 1 xAxC-0.019xAxD-0.019%BxD-0.031xCxD
+0.036x4° 5)

Objective of the experiment is to maximize MRR and minimize SR simultaneously. Here, eq-4 is the optimization function
for MRR which is to be maximized and eq-5 is the optimization function for SR which is to be minimized.
Where, A,B,C,D are the symbols used for current, voltage, flow rate and IEG respectively.

Unlike single objective optimization in which a single optimal solution is obtained, a set of optimal solutions is
obtained in case of multi-objective optimization known as pareto-optimal solution. Each of the pareto-optimal solution is
equally good. Depending on one’s requirement and according to the problem environment, corresponding input values for
factors are taken to achieve a suitable solution. Real-world problems require simultaneous optimization of several
incommensurable and often conflicting objectives. Often, there is no single optimal solution; rather there is a set of
alternative solutions. These solutions are optimal in the wider sense that no other solutions in the search space are superior
to another when all objectives are considered. They are known as pareto-optimal solutions. The image of the efficient set in
the objective space is called non-dominated set. For example, consider a minimization problem and two decision vectors a,
b € X, the concept of pareto optimality can be defined as follows: a is said to dominate b if:
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i={1,2,3,.....n} : fi(a) < fi(h) and
Jj=A1,2,3,.....n} : fifa) <fi(b)

Conditions which a solution should satisfy to become dominant are; (i) any two solutions of X must be non-dominated
with respect to each other, (ii) any solution not belonging to X is dominated by at least one member of X. All the objective
function vectors, which are not dominated by any other objective function vector of a set of Pareto-optimal solutions are
called non-dominated set with respect to that set of Pareto-optimal solutions. There are two goals in a multi-objective
optimization: (i) convergence to the Pareto-optimal set; and (ii) maintenance of diversity and distribution in solutions. Non-
dominated Sorting Genetic Algorithm II (NSGA II) is a multi-objective genetic algorithm based on the concept of non-
dominated sorting [5-6]. NSGA 1II algorithm is based on both non-dominated sorting and crowding sorting to obtain the
required non-dominated set. This algorithm can be used for constrained optimization problems with binary coding and real
parameters. The appropriate objective function in terms of selected variables is coded in the algorithm and a non-dominated
set out of the entire population after a specific number of generations is generated.

These empirical equations (4 and 5) between the responses and the input parameters are used for multi-objective
optimization in MATLAB environment. Here, an initial population size of 60 is taken and optimization is carried out by
setting simple crossover and bitwise mutation with a crossover probability Pc=0.8, migration interval of 20, migration
fraction of 0.2 and pareto fraction of 0.35. According to the algorithm, ranking and sorting of solutions are done and the
final pareto-optimal setting is shown in the Table 5. It should be noted that all the solutions are equally good and any set of
input parameters can be taken to achieve the corresponding response values depending upon manufacturer’s requirement.

Table 5. Solutions based on Pareto optimal setting

. Response parameters Corresponding machining parameters

S1 No MRR (mg/min) SR (um) Current (A) Voltage (V) Flow rate (nm/sec) IEG (mm)

1 2.749828 1.673698 275.2101 20.71278 8.999219 0.482568
2 3.198721 2.101709 279.5522 23.32491 8.976085 0.126695
3 2.769919 1.680615 276.4584 20.9672 8.998464 0.481128
4 3.255515 2.23568 279.7239 25.89591 8.96866 0.106567
5 3.230397 2.172791 279.6177 24.35276 8.951081 0.104636
6 3.166659 1.99901 278.3403 20.9497 8.985216 0.11248
7 3.376665 2.536274 279.6874 34.40102 8.96704 0.103662
8 3.09228 1.940367 279.0597 20.95621 8.947892 0.18764
9 3.319106 2.445868 279.372 33.67126 8.975588 0.148523
10 3.15048 1.997471 279.0422 21.16344 8.950338 0.132481
11 3.194073 2.088415 279.1198 22.93647 8.977205 0.120738
12 2.867542 1.739993 278.8144 21.08739 8.992992 0.415406
13 3.011759 1.871321 278.6615 21.14723 8.979709 0.270875
14 3.21116 2.153828 279.5567 24.33508 8.948781 0.122361
15 2.973877 1.832867 279.2298 21.18863 8.983008 0.316355
16 3.397741 2.586133 279.8118 35.98911 8.944807 0.101202
17 3.184038 2.032683 279.515 21.62172 8.972013 0.116242
18 3.338062 2.483721 279.2952 33.02396 8.941836 0.112169
19 2.83488 1.71268 279.1855 21.36481 8.994856 0.455965
20 3.397873 2.586134 279.8125 35.99204 8.945248 0.101223
21 2.897818 1.761571 279.2571 21.03519 8.986945 0.38992

4. Conclusions
In the present paper, MRR and SR is estimated experimentally for electrochemical machining using hardened steel as
work piece. A central composite design of response surface methodology is used for experimental plan. Empirical equations
for MRR and SR in terms of four important ECM parameters such as current, voltage, flow rate and IEG are obtained. The
equations are tested for statistical validity. Response plots are analyzed to study the effect of various parameters on
responses. Finally, NSGA 1II is used to obtain pareto-optimal solutions for simultaneous maximization of MRR and
minimization of SR. Validation of optimum results can be done by doing electrochemical machining for the corresponding
input parameters.
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