Neighborhoods of certain subclasses of analytic functions of complex order with negative coefficients

B. Srutha Keerthi ${ }^{\text {a }}$, A. Gangadharan ${ }^{\text {a }}$, H.M. Srivastava ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Department of Applied Mathematics, Sri Venkateswara College of Engineering, Sriperumbudur, Pennalur 602105, Tamilnadu, India
${ }^{\mathrm{b}}$ Department of Mathematics and Statistics, University of Victoria, Victoria, British Columbia V8W 3P4, Canada

Received 26 April 2006; received in revised form 10 April 2007; accepted 11 April 2007

Abstract

By making use of the familiar concept of neighborhoods of analytic functions, the authors prove several inclusion relations associated with the (n, δ)-neighborhoods of certain subclasses of analytic functions of complex order, which are introduced here by means of the Ruscheweyh derivatives. (c) 2007 Elsevier Ltd. All rights reserved.

Keywords: Analytic functions; Ruscheweyh derivatives; Starlike functions; Convex functions; (n, δ)-neighborhoods; Inclusion relations

1. Introduction and definitions

Let $\mathcal{A}(n)$ denote the class of functions f of the form:

$$
\begin{equation*}
f(z)=z-\sum_{k=n+1}^{\infty} a_{k} z^{k} \quad\left(a_{k} \geqq 0 ; k \in \mathbb{N} \backslash\{1, \ldots, n\} ; n \in \mathbb{N} ; \mathbb{N}:=\{1,2,3, \ldots\}\right), \tag{1.1}
\end{equation*}
$$

which are analytic in the open unit disk

$$
\mathbb{U}:=\{z: z \in \mathbb{C} \text { and }|z|<1\} .
$$

Following the earlier investigations by Goodman [1] and Ruscheweyh [2], we define the (n, δ)-neighborhood of a function $f \in \mathcal{A}(n)$ by (see also [3-5] and [6])

$$
\begin{equation*}
N_{n, \delta}(f):=\left\{g: g \in \mathcal{A}(n), g(z)=z-\sum_{k=n+1}^{\infty} b_{k} z^{k} \text { and } \sum_{k=n+1}^{\infty} k\left|a_{k}-b_{k}\right| \leqq \delta\right\} . \tag{1.2}
\end{equation*}
$$

In particular, for the identify function

$$
\begin{equation*}
e(z)=z, \tag{1.3}
\end{equation*}
$$

[^0]we immediately have
\[

$$
\begin{equation*}
N_{n, \delta}(e):=\left\{g: g \in \mathcal{A}(n), g(z)=z-\sum_{k=n+1}^{\infty} b_{k} z^{k} \text { and } \sum_{k=n+1}^{\infty} k\left|b_{k}\right| \leqq \delta\right\} \tag{1.4}
\end{equation*}
$$

\]

The above concept of (n, δ)-neighborhoods was extended and applied recently to families of analytically multivalent functions by Altintaş et al. [7], and to families of meromorphically multivalent functions by Liu and Srivastava ([8] and [9]) (see also the more recent works [10] and [11]). The main object of the present paper is to investigate the (n, δ)-neighborhoods of several subclasses of $\mathcal{A}(n)$ of normalized analytic functions in \mathbb{U} with negative and missing coefficients, which are introduced here by making use of the Ruscheweyh derivative operator defined by (1.11) or (1.12) below.

First of all, we say that a function $f \in \mathcal{A}(n)$ is starlike of complex order $\gamma(\gamma \in \mathbb{C} \backslash\{0\})$; that is, $f \in \mathcal{S}_{n}^{\star}(\gamma)$, if it also satisfies the following inequality:

$$
\begin{equation*}
\mathfrak{R}\left(1+\frac{1}{\gamma}\left[\frac{z f^{\prime}(z)}{f(z)}-1\right]\right)>0 \quad(z \in \mathbb{U} ; \gamma \in \mathbb{C} \backslash\{0\}) \tag{1.5}
\end{equation*}
$$

Furthermore, a function $f \in \mathcal{A}(n)$ is said to be convex of complex order $\gamma(\gamma \in \mathbb{C} \backslash\{0\})$; that is, $f \in \mathcal{C}_{n}(\gamma)$ if it also satisfies the following inequality:

$$
\begin{equation*}
\mathfrak{R}\left(1+\frac{1}{\gamma}\left[\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right]\right)>0 \quad(z \in \mathbb{U} ; \gamma \in \mathbb{C} \backslash\{0\}) \tag{1.6}
\end{equation*}
$$

The classes $\mathcal{S}_{n}^{\star}(\gamma)$ and $\mathcal{C}_{n}(\gamma)$ stem essentially from the classes of starlike and convex functions of complex order, which were considered earlier by Nasr and Aouf [12] and Wiatrowski [13], respectively (see also [14-16] and [17]).

Let $\mathcal{S}_{n}(\gamma, \alpha, \mu, \beta)$ denote the subclass of the function class $\mathcal{A}(n)$ consisting of functions $f(z)$ which satisfy the following inequality:

$$
\begin{align*}
& \left|\frac{1}{\gamma}\left(\frac{\alpha \mu z^{3} f^{\prime \prime \prime}(z)+(2 \alpha \mu+\alpha-\mu) z^{2} f^{\prime \prime}(z)+z f^{\prime}(z)}{\alpha \mu z^{2} f^{\prime \prime}(z)+(\alpha-\mu) z f^{\prime}(z)+(1-\alpha+\mu) f(z)}-1\right)\right|<\beta \\
& \quad(z \in \mathbb{U} ; \gamma \in \mathbb{C} \backslash\{0\} ; 0 \leqq \mu \leqq \alpha ; 0<\beta \leqq 1) \tag{1.7}
\end{align*}
$$

Suppose also that $\mathcal{R}_{n}(\gamma, \alpha, \mu, \beta)$ denotes the subclass of the function class $\mathcal{A}(n)$ consisting of functions $f(z)$ which satisfy the following inequality:

$$
\begin{align*}
& \left|\frac{1}{\gamma}\left(\alpha \mu z^{2} f^{\prime \prime \prime}(z)+(2 \alpha \mu+\alpha-\mu) z f^{\prime \prime}(z)+f^{\prime}(z)-1\right)\right|<\beta \\
& \quad(z \in \mathbb{U} ; \gamma \in \mathbb{C} \backslash\{0\} ; 0 \leqq \mu \leqq \alpha ; 0<\beta \leqq 1) \tag{1.8}
\end{align*}
$$

The classes $\mathcal{S}_{n}(\gamma, \alpha, \mu, \beta)$ and $\mathcal{R}_{n}(\gamma, \alpha, \mu, \beta)$ were studied recently by Orhan and Kamali [17].
Next, for the functions $f_{j}(z)(j=1,2)$ given by

$$
\begin{equation*}
f_{j}(z)=z+\sum_{k=2}^{\infty} a_{k, j} z^{k} \quad(j=1,2) \tag{1.9}
\end{equation*}
$$

we denote by $\left(f_{1} \star f_{2}\right)(z)$ the Hadamard product (or convolution) of $f_{1}(z)$ and $f_{2}(z)$, defined by

$$
\begin{equation*}
\left(f_{1} \star f_{2}\right)(z):=z+\sum_{k=2}^{\infty} a_{k, 1} a_{k, 2} z^{k}=:\left(f_{2} \star f_{1}\right)(z) . \tag{1.10}
\end{equation*}
$$

Thus the Ruscheweyh derivative operator

$$
D^{\lambda}: \mathcal{A} \rightarrow \mathcal{A} \quad(\mathcal{A}:=\mathcal{A}(1))
$$

is defined by

$$
\begin{equation*}
D^{\lambda} f(z):=\frac{z}{(1-z)^{\lambda+1}} \star f(z) \quad(\lambda>-1 ; f \in \mathcal{A}) \tag{1.11}
\end{equation*}
$$

or, equivalently, by

$$
\begin{equation*}
D^{\lambda} f(z):=z-\sum_{k=2}^{\infty}\binom{\lambda+k-1}{k-1} a_{k} z^{k} \quad(\lambda>-1 ; f \in \mathcal{A}) \tag{1.12}
\end{equation*}
$$

for a function $f \in \mathcal{A}$ of the form (1.1). Here, and in what follows, we make use of the following standard notation for a binomial coefficient:

$$
\begin{equation*}
\binom{\kappa}{n}:=\frac{\kappa(\kappa-1) \cdots(\kappa-n+1)}{n!} \quad\left(\kappa \in \mathbb{C} ; n \in \mathbb{N}_{0}:=\mathbb{N} \cup\{0\}\right) . \tag{1.13}
\end{equation*}
$$

In particular, we have

$$
\begin{equation*}
D^{n} f(z)=\frac{z\left(z^{n-1} f(z)\right)^{(n)}}{n!} \quad\left(n \in \mathbb{N}_{0}\right) \tag{1.14}
\end{equation*}
$$

Finally, in terms of the Ruscheweyh derivative operator $D^{\lambda}(\lambda>-1)$ defined by (1.11) or (1.12) above, let $\mathcal{S}_{n}(\gamma, \lambda, \alpha, \mu, \beta)$ denote the subclass of the function class $\mathcal{A}(n)$ consisting of functions $f(z)$ which satisfy the following inequality:

$$
\begin{align*}
& \left|\frac{1}{\gamma}\left(\frac{\alpha \mu z^{3}\left(D^{\lambda} f(z)\right)^{\prime \prime \prime}+(2 \alpha \mu+\alpha-\mu) z^{2}\left(D^{\lambda} f(z)\right)^{\prime \prime}+z\left(D^{\lambda} f(z)\right)^{\prime}}{\alpha \mu z^{2}\left(D^{\lambda} f(z)\right)^{\prime \prime}+(\alpha-\mu) z\left(D^{\lambda} f(z)\right)^{\prime}+(1-\alpha+\mu) D^{\lambda} f(z)}-1\right)\right|<\beta \\
& \quad(z \in \mathbb{U} ; \gamma \in \mathbb{C} \backslash\{0\} ; \lambda>-1 ; 0<\beta \leqq 1 ; 0 \leqq \mu \leqq \alpha) \tag{1.15}
\end{align*}
$$

Also, let $\mathcal{R}_{n}(\gamma, \lambda, \alpha, \mu, \beta)$ denote the subclass of the function class $\mathcal{A}(n)$ consisting of functions $f(z)$ which satisfy the following inequality:

$$
\begin{align*}
& \left|\frac{1}{\gamma}\left(\alpha \mu z^{2}\left(D^{\lambda} f(z)\right)^{\prime \prime \prime}+(2 \alpha \mu+\alpha-\mu) z\left(D^{\lambda} f(z)\right)^{\prime \prime}+\left(D^{\lambda} f(z)\right)^{\prime}-1\right)\right|<\beta \\
& \quad(z \in \mathbb{U} ; \gamma \in \mathbb{C} \backslash\{0\} ; \lambda>-1 ; 0<\beta \leqq 1 ; 0 \leqq \mu \leqq \alpha) \tag{1.16}
\end{align*}
$$

Various further subclasses of the function class $\mathcal{S}_{n}(\gamma, \lambda, \alpha, \mu, \beta)$ with

$$
\gamma=1 \quad \text { and } \quad \alpha=\mu=0
$$

were studied in many earlier works (cf., e.g., [18] and [19]; see also the references cited in each of these earlier works). Clearly, in these cases of (for example) the class $\mathcal{S}_{n}(\gamma, \lambda, \alpha, \mu, \beta)$, we have the following relationships:

$$
\begin{equation*}
\mathcal{S}_{n}(\gamma, 0,0,0,1) \subset \mathcal{S}_{n}^{\star}(\gamma) \quad \text { and } \quad \mathcal{S}_{n}(\gamma, 0,1,0,1) \subset \mathcal{C}_{n}(\gamma) \quad(n \in \mathbb{N} ; \gamma \in \mathbb{C} \backslash\{0\}) \tag{1.17}
\end{equation*}
$$

2. Inclusion relations involving the (n, δ)-neighborhood $N_{n, \delta}(e)$

In our investigation of the inclusion relations involving the (n, δ)-neighborhood $N_{n, \delta}(e)$, we shall require the following lemmas.

Lemma 1. Let $f \in \mathcal{A}(n)$ be defined by (1.1). Then f is in the class $\mathcal{S}_{n}(\gamma, \lambda, \alpha, \mu, \beta)$ if and only if

$$
\begin{equation*}
\sum_{k=n+1}^{\infty}\binom{\lambda+k-1}{k-1} \eta(k) a_{k} \leqq \beta|\gamma|, \tag{2.1}
\end{equation*}
$$

where

$$
\begin{aligned}
\eta=\eta(k): & \left(\alpha \mu k^{3}+(\alpha-\mu-2 \alpha \mu+\alpha \mu \beta|\gamma|) k^{2}\right. \\
& +(\alpha \mu-2 \alpha-2 \mu+1+(\alpha-\mu-\alpha \mu) \beta|\gamma|) k+(1-\alpha+\mu)(\beta|\gamma|-1)) .
\end{aligned}
$$

Proof. We first suppose that $f \in \mathcal{S}_{n}(\gamma, \lambda, \alpha, \mu, \beta)$. Then, by appealing to the condition (1.15), we readily obtain

$$
\begin{equation*}
\mathfrak{R}\left(\frac{\alpha \mu z^{3}\left(D^{\lambda} f(z)\right)^{\prime \prime \prime}+(2 \alpha \mu+\alpha-\mu) z^{2}\left(D^{\lambda} f(z)\right)^{\prime \prime}+z\left(D^{\lambda} f(z)\right)^{\prime}}{\alpha \mu z^{2}\left(D^{\lambda} f(z)\right)^{\prime \prime}+(\alpha-\mu) z\left(D^{\lambda} f(z)\right)^{\prime}+(1-\alpha+\mu) D^{\lambda} f(z)}-1\right)>-\beta|\gamma| \quad(z \in \mathbb{U}) \tag{2.2}
\end{equation*}
$$

or, equivalently,

$$
\begin{align*}
& \mathfrak{R}\left(\frac{-\sum_{k=n+1}^{\infty}\binom{\lambda+k-1}{k-1}\left[\alpha \mu k^{3}+(\alpha-\mu-2 \alpha \mu) k^{2}+(\alpha \mu-2 \alpha+2 \mu+1) k-(1-\alpha+\mu)\right] a_{k} z^{k}}{z-\sum_{k=n+1}^{\infty}\binom{\lambda+k-1}{k-1}\left[\alpha \mu k^{2}+(\alpha-\mu-\alpha \mu) k+(1-\alpha+\mu)\right] a_{k} z^{k}}\right) \\
& \quad>-\beta|\gamma| \quad(z \in \mathbb{U}), \tag{2.3}
\end{align*}
$$

where we have made use of (1.12) and the definition (1.1). We now choose values of z on the real axis and let $z \rightarrow 1-$ through real values. Then the inequality (2.3) immediately yields the desired condition (2.1).

Conversely, by applying the hypothesis (2.1) and letting $|z|=1$, we find that

$$
\begin{align*}
& \left|\frac{\alpha \mu z^{3}\left(D^{\lambda} f(z)\right)^{\prime \prime \prime}+(2 \alpha \mu+\alpha-\mu) z^{2}\left(D^{\lambda} f(z)\right)^{\prime \prime \prime}+z\left(D^{\lambda} f(z)\right)^{\prime}}{\alpha \mu z^{2}\left(D^{\lambda} f(z)\right)^{\prime \prime}+(\alpha-\mu) z\left(D^{\lambda} f(z)\right)^{\prime}+(1-\alpha+\mu) D^{\lambda} f(z)}-1\right| \\
& =\left|\frac{\left\lvert\, \sum_{k=n+1}^{\infty}\binom{\lambda+k-1}{k-1}\left[\alpha \mu k^{3}+(\alpha-\mu-2 \alpha \mu) k^{2}+(\alpha \mu-2 \alpha+2 \mu+1) k-(1-\alpha+\mu)\right] a_{k} z^{k}\right.}{1-\sum_{k=n+1}^{\infty}\binom{\lambda+k-1}{k-1}\left[\alpha \mu k^{2}+(\alpha-\mu-\alpha \mu) k+(1-\alpha+\mu)\right] a_{k} z^{k}}\right| \\
& \quad \leqq \frac{\beta|r|\left[1-\sum_{k=n+1}^{\infty}\binom{\lambda+k-1}{k-1}\left[\alpha \mu k^{2}+(\alpha-\mu-\alpha \mu) k+(1-\alpha+\mu)\right] a_{k}\right]}{1-\sum_{k=n+1}^{\infty}\binom{\lambda+k-1}{k-1}\left[\alpha \mu k^{2}+(\alpha-\mu-\alpha \mu) k+(1-\alpha+\mu)\right] a_{k}} \\
& \leqq \beta|\gamma| . \tag{2.4}
\end{align*}
$$

Hence, by the maximum modulus principle, we have

$$
f \in \mathcal{S}_{n}(\gamma, \lambda, \alpha, \mu, \beta),
$$

which evidently completes the proof of Lemma 1.
Similarly, we can prove the following result.
Lemma 2. Let the function $f \in \mathcal{A}(n)$ be defined by (1.1). Then f is in the class $\mathcal{R}_{n}(\gamma, \lambda, \alpha, \mu, \beta)$ if only if

$$
\begin{equation*}
\sum_{k=n+1}^{\infty}\binom{\lambda+k-1}{k-1}\left[\alpha \mu k^{3}+(\alpha-\mu-\alpha \mu) k^{2}+(1-\alpha+\mu) k\right] a_{k} \leqq \beta|\gamma| . \tag{2.5}
\end{equation*}
$$

Remark 1. A special case of Lemma 1 when

$$
n=1, \quad \mu=\alpha=0, \quad \gamma=1 \quad \text { and } \quad \beta=1-c \quad(0 \leqq c<1)
$$

was given by Ahuja [20]. Furthermore, in Lemma 1 with

$$
n=1, \quad \mu=\alpha=0, \quad \gamma=1 \quad \text { and } \quad \beta=1-c \quad(0 \leqq c<1),
$$

if we set

$$
\lambda=0 \quad \text { and } \quad \lambda=1,
$$

we obtain the relatively more familiar results of Silverman [21].

Our first main result is given by Theorem 1 below.
Theorem 1. If

$$
\begin{equation*}
\delta:=\frac{(n+1) \beta|\gamma|}{\binom{\lambda+n}{n} \rho}, \tag{2.6}
\end{equation*}
$$

then

$$
\begin{equation*}
\mathcal{S}_{n}(\gamma, \lambda, \alpha, \mu, \beta) \subset N_{n, \delta}(e), \tag{2.7}
\end{equation*}
$$

where

$$
\begin{align*}
\rho:= & {\left[\alpha \mu(n+1)^{3}+(\alpha \mu \beta|\gamma|+\alpha-\mu-2 \alpha \mu)(n+1)^{2}\right.} \\
& +((\alpha-\mu-\alpha \mu) \beta|\gamma|+1-2 \alpha+2 \mu+\alpha \mu)(n+1) \\
& +(1-\alpha+\mu)(\beta|\gamma|-1)] . \tag{2.8}
\end{align*}
$$

Proof. For a function $f \in \mathcal{S}_{n}(\gamma, \lambda, \alpha, \mu, \beta)$ of the form (1.1) and for ρ defined already by (2.8), Lemma 1 immediately yields

$$
\binom{\lambda+n}{n} \rho \sum_{k=n+1}^{\infty} a_{k} \leqq \beta|\gamma|,
$$

so that

$$
\begin{equation*}
\sum_{k=n+1}^{\infty} a_{k} \leqq \frac{\beta|\gamma|}{\binom{\lambda+n}{n} \rho} . \tag{2.9}
\end{equation*}
$$

On the other hand, we also find from (2.1) that

$$
\binom{\lambda+n}{n} \tau \sum_{k=n+1}^{\infty} k a_{k} \leqq \beta|\gamma|
$$

where

$$
\begin{align*}
\tau= & {\left[\alpha \mu(n+1)^{2}+(\alpha \mu \beta|\gamma|+\alpha-\mu-2 \alpha \mu)(n+1)+((\alpha-\mu-\alpha \mu) \beta|\gamma|+1-2 \alpha+2 \mu+\alpha \mu)\right.} \\
& \left.+\left(\frac{(1-\alpha+\mu)(\beta|\gamma|-1)}{n+1}\right)\right], \tag{2.10}
\end{align*}
$$

that is, that

$$
\begin{equation*}
\sum_{k=n+1}^{\infty} k a_{k} \leqq \frac{\beta|\gamma|(n+1)}{\binom{\lambda+n}{n} \rho}:=\delta, \tag{2.11}
\end{equation*}
$$

which, in view of the definition (1.4), proves Theorem 1.
Similarly, by applying Lemma 2 instead of Lemma 1, we can prove Theorem 2 below.
Theorem 2. If

$$
\begin{equation*}
\delta:=\frac{\beta|\gamma|}{\binom{\lambda+n}{n}\left[\alpha \mu(n+1)^{2}+(\alpha-\mu-\alpha \mu)(n+1)+(1-\alpha+\mu)\right]}, \tag{2.12}
\end{equation*}
$$

then

$$
\mathcal{R}_{n}(\gamma, \lambda, \alpha, \mu, \beta) \subset N_{n, \delta}(e)
$$

3. Neighborhood properties for the function classes $\mathcal{S}_{n}^{(b)}(\gamma, \lambda, \alpha, \mu, \beta)$ and $\mathcal{R}_{n}^{(b)}(\gamma, \lambda, \alpha, \mu, \beta)$

In this section, we determine the neighborhood for each of the function classes

$$
\mathcal{S}_{n}^{(b)}(\gamma, \lambda, \alpha, \mu, \beta) \quad \text { and } \quad \mathcal{R}_{n}^{(b)}(\gamma, \lambda, \alpha, \mu, \beta),
$$

which we define here as follows.
Definition 1. A function $f \in \mathcal{A}(n)$ is said to be in the class $\mathcal{S}_{n}^{(b)}(\gamma, \lambda, \alpha, \mu, \beta)$ if there exists a function $g \in \mathcal{S}_{n}(\gamma, \lambda, \alpha, \mu, \beta)$ such that the following inequality holds true:

$$
\begin{equation*}
\left|\frac{f(z)}{g(z)}-1\right|<1-b \quad(z \in \mathbb{U} ; 0 \leqq b<1) \tag{3.1}
\end{equation*}
$$

Definition 2. A function $f \in \mathcal{A}(n)$ is said to be in the class $\mathcal{R}_{n}^{(b)}(\gamma, \lambda, \alpha, \mu, \beta)$ if there exists a function $g \in \mathcal{R}_{n}(\gamma, \lambda, \alpha, \mu, \beta)$ such that the inequality (3.1) holds true.

Theorem 3. If $g \in \mathcal{S}_{n}(\gamma, \lambda, \alpha, \mu, \beta)$ and

$$
\begin{equation*}
b=1-\frac{\binom{\lambda+n}{n} \delta \rho}{(n+1)\left[\binom{\lambda+n}{n} \rho-\beta|\gamma|\right]}, \tag{3.2}
\end{equation*}
$$

then

$$
\begin{equation*}
N_{n, \delta}(g) \subset \mathcal{S}_{n}^{(b)}(\gamma, \lambda, \alpha, \mu, \beta), \tag{3.3}
\end{equation*}
$$

where ρ is given already by (2.8).
Proof. Assuming that $f \in N_{n, \delta}(g)$, we find from the definition (1.2) that

$$
\begin{equation*}
\sum_{k=n+1}^{\infty} k\left|a_{k}-b_{k}\right| \leqq \delta, \tag{3.4}
\end{equation*}
$$

which readily implies the following coefficient inequality:

$$
\begin{equation*}
\sum_{k=n+1}^{\infty}\left|a_{k}-b_{k}\right| \leqq \frac{\delta}{n+1} \quad(n \in \mathbb{N}) \tag{3.5}
\end{equation*}
$$

Since $g \in \mathcal{S}_{n}(\gamma, \lambda, \alpha, \mu, \beta)$, we have [cf. Eq. (2.9)].

$$
\begin{equation*}
\sum_{k=n+1}^{\infty} b_{k}=\frac{\beta|\gamma|}{\binom{\lambda+n}{n} \rho} \tag{3.6}
\end{equation*}
$$

so that

$$
\begin{align*}
\left|\frac{f(z)}{g(z)}-1\right| & <\frac{\sum_{k=n+1}^{\infty}\left|a_{k}-b_{k}\right|}{1-\sum_{k=n+1}^{\infty} b_{k}} \\
& \leqq \frac{\delta}{n+1} \cdot \frac{\binom{\lambda+n}{n} \delta \rho}{\left[\binom{\lambda+n}{n} \rho-\beta|\gamma|\right]}=: 1-b, \tag{3.7}
\end{align*}
$$

provided that b is given precisely by (3.2). Thus, by Definition 1 , we conclude that

$$
f \in \mathcal{S}_{n}^{(b)}(\gamma, \lambda, \alpha, \mu, \beta)
$$

for b given by (3.2). This evidently completes the proof of Theorem 3 .

The proof of Theorem 4 below is much akin to that of Theorem 3, and so the details involved are being omitted here.

Theorem 4. If $g \in \mathcal{R}_{n}(\gamma, \lambda, \alpha, \mu, \beta)$ and

$$
\begin{equation*}
b=1-\frac{\binom{\lambda+n}{n} \delta\left[\alpha \mu(n+1)^{3}+(\alpha-\mu-\alpha \mu)(n+1)^{2}+(1-\alpha+\mu)(n+1)\right]}{(n+1)\left[\binom{\lambda+n}{n}\left[\alpha \mu(n+1)^{3}+(\alpha-\mu-\alpha \mu)(n+1)^{2}+(1-\alpha+\mu)(n+1)\right]-\beta|\gamma|\right]}, \tag{3.8}
\end{equation*}
$$

then

$$
\begin{equation*}
N_{n, \delta}(g) \subset \mathcal{R}_{n}^{(b)}(\gamma, \lambda, \alpha, \mu, \beta) \tag{3.9}
\end{equation*}
$$

Remark 2. A special case of Theorem 3 when $\alpha=\mu=0$ was proven recently by Murugusundaramoorthy and Srivastava [16, p. 6, Theorem 3].

Acknowledgements

The present investigation was supported, in part, by the Natural Sciences and Engineering Research Council of Canada under Grant OGP0007353.

References

[1] A.W. Goodman, Univalent functions and nonanalytic curves, Proc. Amer. Math. Soc. 8 (1957) 598-601.
[2] S. Ruscheweyh, Neighborhoods of univalent functions, Proc. Amer. Math. Soc. 81 (1981) 521-527.
[3] O.P. Ahuja, M. Nunokawa, Neighborhoods of analytic functions defined by Ruscheweyh derivatives, Math. Japon. 51 (2003) 487-492.
[4] O. Altintaş, S. Owa, Neighborhoods of certain analytic functions with negative coefficients, Internat. J. Math. Math. Sci. 19 (1996) $797-800$.
[5] O. Altintaş, Ö. Özkan, H.M. Srivastava, Neighborhoods of a class of analytic functions with negative coefficients, Appl. Math. Lett. 13 (3) (2000) 63-67.
[6] H. Silverman, Neighborhoods of classes of analytic functions, Far East J. Math. Sci. 3 (1995) 165-169.
[7] O. Altintaş, Ö. Özkan, H.M. Srivastava, Neighborhoods of a certain family of multivalent functions with negative coefficients, Comput. Math. Appl. 47 (2004) 1667-1672.
[8] J.-L. Liu, H.M. Srivastava, Classes of meromorphically multivalent functions associated with a generalized hypergeometric function, Math. Comput. Modelling 39 (2004) 21-34.
[9] J.-L. Liu, H.M. Srivastava, Subclasses of meromorphically multivalent functions associated with a certain linear operator, Math. Comput. Modelling 39 (2004) 35-44.
[10] R.K. Raina, H.M. Srivastava, Inclusion and neighborhood properties of some analytic and multivalent functions, J. Inequal. Pure Appl. Math. 7 (1) (2006) 1-6 (Article 5, electronic).
[11] H.M. Srivastava, J. Patel, Some subclasses of multivalent functions involving a certain linear operator, J. Math. Anal. Appl. 310 (2005) 209-228.
[12] M.A. Nasr, M.K. Aouf, Starlike function of complex order, J. Natur. Sci. Math. 25 (1985) 1-12.
[13] P. Wiatrowski, On the coefficients of some family of holomorphic functions, Zeszyty Nauk. Uniw. Łódz Nauk. Mat.-Przyrod. (Ser. 2) 39 (1970) 75-85.
[14] O. Altintaş, Ö. Özkan, H.M. Srivastava, Majorization by starlike functions of complex order, Complex Variables Theory Appl. 46 (2001) 207-218.
[15] O. Altintaş, H.M. Srivastava, Some majorization problems associated with p-valently starlike and convex functions of complex order, East Asian Math. J. 17 (2001) 175-183.
[16] G. Murugusundaramoorthy, H.M. Srivastava, Neighborhoods of certain classes of analytic functions of complex order, J. Inequal. Pure Appl. Math. 5 (2) (2004) 1-8 (Article 24, electronic).
[17] H. Orhan, M. Kamali, Starlike, convex and close-to convex functions of complex order, Appl. Math. Comput. 135 (2003) $251-262$.
[18] P.L. Duren, Univalent Functions, in: A Series of Comprehensive Studies in Mathematics, vol. 259, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1983.
[19] H.M. Srivastava, S. Owa (Eds.), Current Topics in Analytic Function Theory, World Scientific Publishing Company, Singapore, New Jersey, London, Hong Kong, 1992.
[20] O.P. Ahuja, Hadamard products of analytic functions defined by Ruscheweyh derivaties, in: H.M. Srivastava, S. Owa (Eds.), Current Topics in Analytic Function Theory, World Scientific Publishing Company, Singapore, New Jersey, London, Hong Kong, 1992, pp. 13-28.
[21] H. Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc. 51 (1975) 109-116.

[^0]: * Corresponding author. Tel.: +1 250472 5692; fax: +1 2507218962.

 E-mail addresses: laya@svce.ac.in (B.S. Keerthi), ganga@svce.ac.in (A. Gangadharan), harimsri@math.uvic.ca (H.M. Srivastava).

