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Abstract

By making use of the familiar concept of neighborhoods of analytic functions, the authors prove several inclusion relations

associated with the (n, δ)-neighborhoods of certain subclasses of analytic functions of complex order, which are introduced here

by means of the Ruscheweyh derivatives.
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1. Introduction and definitions

Let A(n) denote the class of functions f of the form:

f (z) = z −

∞
∑

k=n+1

ak zk
(

ak ≧ 0; k ∈ N \ {1, . . . , n}; n ∈ N; N := {1, 2, 3, . . .}
)

, (1.1)

which are analytic in the open unit disk

U := {z : z ∈ C and |z| < 1} .

Following the earlier investigations by Goodman [1] and Ruscheweyh [2], we define the (n, δ)-neighborhood of a

function f ∈ A(n) by (see also [3–5] and [6])

Nn,δ( f ) :=

{

g : g ∈ A(n), g(z) = z −

∞
∑

k=n+1

bk zk and
∞
∑

k=n+1

k|ak − bk | ≦ δ

}

. (1.2)

In particular, for the identify function

e(z) = z, (1.3)
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we immediately have

Nn,δ(e) :=

{

g : g ∈ A(n), g(z) = z −

∞
∑

k=n+1

bk zk and
∞
∑

k=n+1

k|bk | ≦ δ

}

. (1.4)

The above concept of (n, δ)-neighborhoods was extended and applied recently to families of analytically

multivalent functions by Altintaş et al. [7], and to families of meromorphically multivalent functions by Liu and

Srivastava ([8] and [9]) (see also the more recent works [10] and [11]). The main object of the present paper is to

investigate the (n, δ)-neighborhoods of several subclasses of A(n) of normalized analytic functions in U with negative

and missing coefficients, which are introduced here by making use of the Ruscheweyh derivative operator defined by

(1.11) or (1.12) below.
First of all, we say that a function f ∈ A(n) is starlike of complex order γ (γ ∈ C \ {0}); that is, f ∈ S⋆

n(γ ), if it

also satisfies the following inequality:

R

(

1 +
1

γ

[

z f ′(z)

f (z)
− 1

])

> 0 (z ∈ U; γ ∈ C \ {0}). (1.5)

Furthermore, a function f ∈ A(n) is said to be convex of complex order γ (γ ∈ C \ {0}); that is, f ∈ Cn(γ ) if it also

satisfies the following inequality:

R

(

1 +
1

γ

[

z f ′′(z)

f ′(z)

])

> 0 (z ∈ U; γ ∈ C \ {0}). (1.6)

The classes S⋆
n(γ ) and Cn(γ ) stem essentially from the classes of starlike and convex functions of complex order,

which were considered earlier by Nasr and Aouf [12] and Wiatrowski [13], respectively (see also [14–16] and [17]).
Let Sn(γ, α, µ, β) denote the subclass of the function class A(n) consisting of functions f (z) which satisfy the

following inequality:
∣

∣

∣

∣

1

γ

(

αµz3 f ′′′(z) + (2αµ + α − µ)z2 f ′′(z) + z f ′(z)

αµz2 f ′′(z) + (α − µ)z f ′(z) + (1 − α + µ) f (z)
− 1

)∣

∣

∣

∣

< β

(z ∈ U; γ ∈ C \ {0} ; 0 ≦ µ ≦ α; 0 < β ≦ 1). (1.7)

Suppose also that Rn(γ, α, µ, β) denotes the subclass of the function class A(n) consisting of functions f (z) which

satisfy the following inequality:
∣

∣

∣

∣

1

γ

(

αµz2 f ′′′(z) + (2αµ + α − µ)z f ′′(z) + f ′(z) − 1
)

∣

∣

∣

∣

< β

(z ∈ U; γ ∈ C \ {0} ; 0 ≦ µ ≦ α; 0 < β ≦ 1). (1.8)

The classes Sn(γ, α, µ, β) and Rn(γ, α, µ, β) were studied recently by Orhan and Kamali [17].
Next, for the functions f j (z) ( j = 1, 2) given by

f j (z) = z +

∞
∑

k=2

ak, j z
k ( j = 1, 2), (1.9)

we denote by ( f1 ⋆ f2)(z) the Hadamard product (or convolution) of f1(z) and f2(z), defined by

( f1 ⋆ f2)(z) := z +

∞
∑

k=2

ak,1ak,2zk =: ( f2 ⋆ f1)(z). (1.10)

Thus the Ruscheweyh derivative operator

Dλ : A → A
(

A := A(1)
)

is defined by

Dλ f (z) :=
z

(1 − z)λ+1
⋆ f (z) (λ > −1; f ∈ A) (1.11)
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or, equivalently, by

Dλ f (z) := z −

∞
∑

k=2

(

λ + k − 1

k − 1

)

ak zk (λ > −1; f ∈ A) (1.12)

for a function f ∈ A of the form (1.1). Here, and in what follows, we make use of the following standard notation for

a binomial coefficient:

(κ

n

)

:=
κ(κ − 1) · · · (κ − n + 1)

n!
(κ ∈ C; n ∈ N0 := N ∪ {0}). (1.13)

In particular, we have

Dn f (z) =
z
(

zn−1 f (z)
)(n)

n!
(n ∈ N0). (1.14)

Finally, in terms of the Ruscheweyh derivative operator Dλ (λ > −1) defined by (1.11) or (1.12) above, let

Sn(γ, λ, α, µ, β) denote the subclass of the function class A(n) consisting of functions f (z) which satisfy the

following inequality:
∣

∣

∣

∣

∣

1

γ

(

αµz3
(

Dλ f (z)
)′′′

+ (2αµ + α − µ)z2
(

Dλ f (z)
)′′

+ z
(

Dλ f (z)
)′

αµz2
(

Dλ f (z)
)′′

+ (α − µ)z
(

Dλ f (z)
)′

+ (1 − α + µ)Dλ f (z)
− 1

)∣

∣

∣

∣

∣

< β

(z ∈ U; γ ∈ C \ {0} ; λ > −1; 0 < β ≦ 1; 0 ≦ µ ≦ α). (1.15)

Also, let Rn(γ, λ, α, µ, β) denote the subclass of the function class A(n) consisting of functions f (z) which satisfy

the following inequality:
∣

∣

∣

∣

1

γ

(

αµz2
(

Dλ f (z)
)′′′

+ (2αµ + α − µ)z
(

Dλ f (z)
)′′

+
(

Dλ f (z)
)′

− 1
)

∣

∣

∣

∣

< β

(

z ∈ U; γ ∈ C \ {0} ; λ > −1; 0 < β ≦ 1; 0 ≦ µ ≦ α
)

. (1.16)

Various further subclasses of the function class Sn(γ, λ, α, µ, β) with

γ = 1 and α = µ = 0

were studied in many earlier works (cf., e.g., [18] and [19]; see also the references cited in each of these earlier works).

Clearly, in these cases of (for example) the class Sn(γ, λ, α, µ, β), we have the following relationships:

Sn(γ, 0, 0, 0, 1) ⊂ S
⋆
n(γ ) and Sn(γ, 0, 1, 0, 1) ⊂ Cn(γ ) (n ∈ N; γ ∈ C \ {0}) . (1.17)

2. Inclusion relations involving the (n, δ)-neighborhood Nn,δ(e)

In our investigation of the inclusion relations involving the (n, δ)-neighborhood Nn,δ(e), we shall require the

following lemmas.

Lemma 1. Let f ∈ A(n) be defined by (1.1). Then f is in the class Sn(γ, λ, α, µ, β) if and only if

∞
∑

k=n+1

(

λ + k − 1

k − 1

)

η(k)ak ≦ β|γ |, (2.1)

where

η = η(k) :=
(

αµk3 + (α − µ − 2αµ + αµβ|γ |)k2

+ (αµ − 2α − 2µ + 1 + (α − µ − αµ)β|γ |) k + (1 − α + µ)(β|γ | − 1)

)

.
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Proof. We first suppose that f ∈ Sn(γ, λ, α, µ, β). Then, by appealing to the condition (1.15), we readily obtain

R

(

αµz3
(

Dλ f (z)
)′′′

+ (2αµ + α − µ)z2
(

Dλ f (z)
)′′

+ z
(

Dλ f (z)
)′

αµz2
(

Dλ f (z)
)′′

+ (α − µ)z
(

Dλ f (z)
)′

+ (1 − α + µ)Dλ f (z)
− 1

)

> −β|γ | (z ∈ U) (2.2)

or, equivalently,

R











−
∞
∑

k=n+1

(

λ+k−1
k−1

)

[

αµk3 + (α − µ − 2αµ)k2 + (αµ − 2α + 2µ + 1)k − (1 − α + µ)
]

ak zk

z −
∞
∑

k=n+1

(

λ+k−1
k−1

)

[

αµk2 + (α − µ − αµ)k + (1 − α + µ)
]

ak zk











> −β|γ | (z ∈ U), (2.3)

where we have made use of (1.12) and the definition (1.1). We now choose values of z on the real axis and let z → 1−

through real values. Then the inequality (2.3) immediately yields the desired condition (2.1).

Conversely, by applying the hypothesis (2.1) and letting |z| = 1, we find that
∣

∣

∣

∣

∣

αµz3
(

Dλ f (z)
)′′′

+ (2αµ + α − µ)z2
(

Dλ f (z)
)′′′

+ z
(

Dλ f (z)
)′

αµz2
(

Dλ f (z)
)′′

+ (α − µ)z
(

Dλ f (z)
)′

+ (1 − α + µ)Dλ f (z)
− 1

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∞
∑

k=n+1

(

λ+k−1
k−1

)

[

αµk3 + (α − µ − 2αµ)k2 + (αµ − 2α + 2µ + 1)k − (1 − α + µ)
]

ak zk

1 −
∞
∑

k=n+1

(

λ+k−1
k−1

)

[

αµk2 + (α − µ − αµ)k + (1 − α + µ)
]

ak zk

∣

∣

∣

∣

∣

∣

∣

∣

∣

≦

β|r |

[

1 −
∞
∑

k=n+1

(

λ+k−1
k−1

)

[

αµk2 + (α − µ − αµ)k + (1 − α + µ)
]

ak

]

1 −
∞
∑

k=n+1

(

λ+k−1
k−1

)

[

αµk2 + (α − µ − αµ)k + (1 − α + µ)
]

ak

≦ β|γ |. (2.4)

Hence, by the maximum modulus principle, we have

f ∈ Sn(γ, λ, α, µ, β),

which evidently completes the proof of Lemma 1. �

Similarly, we can prove the following result.

Lemma 2. Let the function f ∈ A(n) be defined by (1.1). Then f is in the class Rn(γ, λ, α, µ, β) if only if

∞
∑

k=n+1

(

λ + k − 1

k − 1

)

[

αµk3 + (α − µ − αµ)k2 + (1 − α + µ)k
]

ak ≦ β|γ |. (2.5)

Remark 1. A special case of Lemma 1 when

n = 1, µ = α = 0, γ = 1 and β = 1 − c (0 ≦ c < 1)

was given by Ahuja [20]. Furthermore, in Lemma 1 with

n = 1, µ = α = 0, γ = 1 and β = 1 − c (0 ≦ c < 1),

if we set

λ = 0 and λ = 1,

we obtain the relatively more familiar results of Silverman [21].
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Our first main result is given by Theorem 1 below.

Theorem 1. If

δ :=
(n + 1)β|γ |
(

λ+n
n

)

ρ
, (2.6)

then

Sn(γ, λ, α, µ, β) ⊂ Nn,δ(e), (2.7)

where

ρ :=
[

αµ(n + 1)3 + (αµβ|γ | + α − µ − 2αµ)(n + 1)2

+
(

(α − µ − αµ)β|γ | + 1 − 2α + 2µ + αµ
)

(n + 1)

+ (1 − α + µ)(β|γ | − 1)

]

. (2.8)

Proof. For a function f ∈ Sn(γ, λ, α, µ, β) of the form (1.1) and for ρ defined already by (2.8), Lemma 1

immediately yields
(

λ + n

n

)

ρ

∞
∑

k=n+1

ak ≦ β|γ |,

so that

∞
∑

k=n+1

ak ≦
β|γ |

(

λ+n
n

)

ρ
. (2.9)

On the other hand, we also find from (2.1) that
(

λ + n

n

)

τ

∞
∑

k=n+1

kak ≦ β|γ |,

where

τ =

[

αµ(n + 1)2 + (αµβ|γ | + α − µ − 2αµ)(n + 1) + ((α − µ − αµ)β|γ | + 1 − 2α + 2µ + αµ)

+

(

(1 − α + µ)(β|γ | − 1)

n + 1

)]

, (2.10)

that is, that

∞
∑

k=n+1

kak ≦
β|γ |(n + 1)
(

λ+n
n

)

ρ
:= δ, (2.11)

which, in view of the definition (1.4), proves Theorem 1. �

Similarly, by applying Lemma 2 instead of Lemma 1, we can prove Theorem 2 below.

Theorem 2. If

δ :=
β|γ |

(

λ+n
n

)

[

αµ(n + 1)2 + (α − µ − αµ)(n + 1) + (1 − α + µ)
]

, (2.12)

then

Rn(γ, λ, α, µ, β) ⊂ Nn,δ(e).
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3. Neighborhood properties for the function classes S
(b)
n (γ, λ, α, µ, β) and R

(b)
n (γ, λ, α, µ, β)

In this section, we determine the neighborhood for each of the function classes

S
(b)
n (γ, λ, α, µ, β) and R

(b)
n (γ, λ, α, µ, β),

which we define here as follows.

Definition 1. A function f ∈ A(n) is said to be in the class S
(b)
n (γ, λ, α, µ, β) if there exists a function

g ∈ Sn(γ, λ, α, µ, β) such that the following inequality holds true:
∣

∣

∣

∣

f (z)

g(z)
− 1

∣

∣

∣

∣

< 1 − b (z ∈ U; 0 ≦ b < 1). (3.1)

Definition 2. A function f ∈ A(n) is said to be in the class R
(b)
n (γ, λ, α, µ, β) if there exists a function

g ∈ Rn(γ, λ, α, µ, β) such that the inequality (3.1) holds true.

Theorem 3. If g ∈ Sn(γ, λ, α, µ, β) and

b = 1 −

(

λ+n
n

)

δρ

(n + 1)

[(

λ+n
n

)

ρ − β|γ |
] , (3.2)

then

Nn,δ(g) ⊂ S
(b)
n (γ, λ, α, µ, β), (3.3)

where ρ is given already by (2.8).

Proof. Assuming that f ∈ Nn,δ(g), we find from the definition (1.2) that

∞
∑

k=n+1

k|ak − bk | ≦ δ, (3.4)

which readily implies the following coefficient inequality:

∞
∑

k=n+1

|ak − bk | ≦
δ

n + 1
(n ∈ N). (3.5)

Since g ∈ Sn(γ, λ, α, µ, β), we have [cf. Eq. (2.9)].

∞
∑

k=n+1

bk =
β|γ |

(

λ+n
n

)

ρ
, (3.6)

so that

∣

∣

∣

∣

f (z)

g(z)
− 1

∣

∣

∣

∣

<

∞
∑

k=n+1

|ak − bk |

1 −
∞
∑

k=n+1

bk

≦
δ

n + 1
·

(

λ+n
n

)

δρ
[(

λ+n
n

)

ρ − β|γ |
] =: 1 − b, (3.7)

provided that b is given precisely by (3.2). Thus, by Definition 1, we conclude that

f ∈ S
(b)
n (γ, λ, α, µ, β)

for b given by (3.2). This evidently completes the proof of Theorem 3. �
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The proof of Theorem 4 below is much akin to that of Theorem 3, and so the details involved are being omitted

here.

Theorem 4. If g ∈ Rn(γ, λ, α, µ, β) and

b = 1 −

(

λ+n
n

)

δ
[

αµ(n + 1)3 + (α − µ − αµ)(n + 1)2 + (1 − α + µ)(n + 1)
]

(n + 1)

[(

λ+n
n

)

[

αµ(n + 1)3 + (α − µ − αµ)(n + 1)2 + (1 − α + µ)(n + 1)
]

− β|γ |
] , (3.8)

then

Nn,δ(g) ⊂ R
(b)
n (γ, λ, α, µ, β). (3.9)

Remark 2. A special case of Theorem 3 when α = µ = 0 was proven recently by Murugusundaramoorthy and

Srivastava [16, p. 6, Theorem 3].
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[7] O. Altintaş, Ö. Özkan, H.M. Srivastava, Neighborhoods of a certain family of multivalent functions with negative coefficients, Comput. Math.

Appl. 47 (2004) 1667–1672.

[8] J.-L. Liu, H.M. Srivastava, Classes of meromorphically multivalent functions associated with a generalized hypergeometric function, Math.

Comput. Modelling 39 (2004) 21–34.

[9] J.-L. Liu, H.M. Srivastava, Subclasses of meromorphically multivalent functions associated with a certain linear operator, Math. Comput.

Modelling 39 (2004) 35–44.

[10] R.K. Raina, H.M. Srivastava, Inclusion and neighborhood properties of some analytic and multivalent functions, J. Inequal. Pure Appl. Math.

7 (1) (2006) 1–6 (Article 5, electronic).

[11] H.M. Srivastava, J. Patel, Some subclasses of multivalent functions involving a certain linear operator, J. Math. Anal. Appl. 310 (2005)

209–228.

[12] M.A. Nasr, M.K. Aouf, Starlike function of complex order, J. Natur. Sci. Math. 25 (1985) 1–12.

[13] P. Wiatrowski, On the coefficients of some family of holomorphic functions, Zeszyty Nauk. Uniw. Łódz Nauk. Mat.-Przyrod. (Ser. 2) 39
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