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Abstract

Many chemical and nonchemical processes exhibit integrating behavior. This

paper presents new approach for deriving parameters of proportional–inte-

gral–derivative controller for various types of integrating processes. In order

to obtain enhanced performance, the controller is augmented by a second

order filter. In the process of deriving controller and filter parameters, time

delay is approximated by second order Laguerre shift. Analytical tuning rules

are derived on the basis of the sensitivity of loop transfer function. With the

help of polynomial method, the poles are placed so as to minimize the over-

shoot in the servo response. A set point filter is also employed to mitigate the

overshoot and settling time in servo response. Besides, the set point filter is

able to decouple servo and regulatory responses. The proposed method is com-

pared with recently proposed methods. The evaluation is carried out in terms

of various performance indices. Investigation of evaluation results reveals that

the proposed method offers considerable improvement over the existing

methods.
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1 | INTRODUCTION

Applicability and tuning of proportional–integral–

derivative (PID) controller for different processes have

always been interesting topics among researchers. The

era of tuning methods started with the empirical rules pro-

posed by Zeigler1 and various advanced techniques such as

internal model control, gain and phase margin‐based

tuning, optimization‐based tuning, and minimum error

criterion are proposed in later years. Simultaneously, dif-

ferent forms of PID controller such as parallel form, series

form, and two degrees of freedom PID are proposed so as to

enhance the performance.

Designing a control loop for integrating (non‐self‐reg-

ulating) processes is quite interesting and even challeng-

ing when compared with that of inherently stable

processes. The complexity becomes high when a time

delay is associated with the process. Various forms of

such integrating processes are pure integrating process

with time delay (PIPTD), double integrating process with

time delay (DIPTD), integrating first order process with

time delay (IFOPTD), and IFOPTD with zero. The trans-

fer functions of these integrating processes are listed

below.

Gp sð Þ ¼
ke − sθ

s
; (1a)

G sð Þ ¼
ke − sθ

s2
; (1b)
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Gp sð Þ ¼
ke − sθ

s τsþ 1ð Þ
; (1c)

Gp sð Þ ¼
k 1þ szð Þe − sθ

s τsþ 1ð Þ
: (1d)

Many researchers have addressed the controller

design for integrating processes2-22 using various tech-

niques. Some of them used multicontrol schemes2,12

where multiple controllers (loops) are employed to deal

with servo and regulatory responses independently. Sev-

eral researchers11-13,17,19 have proposed internal model

control‐based controllers. Many researchers3,5,6,9,15,22

have proposed optimization techniques to calculate PI/

PID parameters. A closed loop test with proportional only

controller is proposed for integrating processes from

which PI/PID parameters are calculated.20,21

The authors would like to elaborate some of the

recent developments that motivated to come up with

present work. Ajmeri and Ali2 have proposed a parallel

control structure that is able to decouple servo and regu-

latory responses. However, multiloop control schemes

should employ multiple tuning parameters. This method

is found to be producing large deviations in disturbance

rejection when applied for DIPTD. In another recently

proposed work, Anil and Padma Sree7 have proposed a

very simple and effective control strategy. This method

employs conventional control loop with PID controller

associated with first order lead/lag filter. Though this

method is quite simple and effective, it could not elimi-

nate the overshoot in servo response in case of IFOPTD

with zero.

The objective of the present work is to design a simple

control loop that could give enhanced performance over

the existing methods. The proposed control structure is

a conventional control loop with set point filter. The pro-

posed method is able to reject the disturbances effectively

when applied for DIPTD and also could eliminate the

overshoot in the servo response of IFOPTD with zero.

In the process of deriving the proposed control structure,

the authors have tried many possible combinations and

finally arrived at the proposed PID controller with second

order filter. Eventually, the authors discovered that the

derived controller parameters are effective when time

delay is approximated by Laguerre shift. Analytical

tuning rules are provided that are derived on the basis

of maximum sensitivity (MS).

The paper is organized as follows: Section 2 deals with

the design of controller for various class of integrating pro-

cesses. Set point filtering is elaborated in Section 3. Section

4 presents the selection of tuning parameters; Section 5 is

dedicated for evaluation of present method with existing

methods followed by conclusion in Section 6.

2 | CONTROLLER DESIGN

2.1 | Control structure

The proposed control structure is presented in Figure 1.

Here, r is set point, F is set point filter, Gc is controller,

Gp is process, y is process output, and d is disturbance.

Servo and regulatory responses are derived as

y

r
¼

FGcGp

1þ GcGp

; (2)

y

d
¼

Gp

1þ GcGp

: (3)

The controller is assumed as a PID controller in asso-

ciated with a second order filter. The proposed PID con-

troller structure for PIPTD and other integrating

processes is as shown in Equations 4 and 5, respectively.

Gc sð Þ ¼
q

p
¼ kp þ

ki

s
þ kds

� �

a1sþ 1

b1sþ 1

� �2

; (4a)

q ¼ kds
2 þ kpsþ ki

� �

a1sþ 1ð Þ2; (4b)

p ¼ s b1sþ 1ð Þ2; (4c)

Gc sð Þ ¼
q

p
¼ kp þ

ki

s
þ kds

� �

a1sþ 1ð Þ2

b2s2 þ b1sþ 1

 !

; (5a)

where

q ¼ kds
2 þ kpsþ ki

� �

a1sþ 1ð Þ2; (5b)

p ¼ s b2s
2 þ b1sþ 1

� �

: (5c)

2.2 | Design of Gc for PIPTD.

The PIPTD process is represented as a ratio of two poly-

nomials as shown in Equation 6.
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Gp sð Þ ¼
k

s
e − sθ

; (6a)

where

b ¼ k; (6b)

a ¼ s: (6c)

By substituting Equations 4 and 6 in Equations 2

and 3,

y

r
¼

Fbqe − sθ

apþ bqe − sθ

¼
Fk kds

2 þ kpsþ ki
� �

a1sþ 1ð Þ2 e − sθ

s2 b1sþ 1ð Þ2 þ k kds2 þ kpsþ ki
� �

a1sþ 1ð Þ2e − sθ
; (7)

y

d
¼

bpe − sθ

apþ bqe − sθ

¼
k s b1sþ 1ð Þ2 e − sθ

s2 b1sþ 1ð Þ2 þ k kds2 þ kpsþ ki
� �

a1sþ 1ð Þ2e − sθ
:

(8)

The characteristic equation (CE), that is, the denomi-

nator polynomial of servo and regulatory responses is

shown in Equation 9.

CE ¼ apþ bqe − sθ

¼ s2 b1sþ 1ð Þ2

þ k kds
2 þ kpsþ ki

� �

a1sþ 1ð Þ2e − sθ

¼ 0: (9)

The present work considers the second‐order

Laguerre shift23 of the delay as shown in Equation 10.

e − sθ ¼
1− sθ

4

� �2

1þ sθ
4

� �2 : (10)

Considering a1 = 0.25θ and substituting Equation 10

in Equation 9

CE ¼ s2 b1sþ 1ð Þ2 þ k kds
2 þ kpsþ ki

� �

1−
sθ

4

� �2

¼ 0: (11)

On simplifying

CE ¼ kki c4s
4 þ c3s

3 þ c2s
2 þ c1 þ 1

� �

¼ 0; (12a)

where

c4 ¼
16b21 þ kkdθ

2

16kki
; (12b)

c3 ¼
kkpθ

2
− 8kkdθþ 32b1

16kki
; (12c)

c2 ¼
kkiθ

2
− 8kkpθþ 16kkd þ 16

16kki
; (12d)

c1 ¼
2kp − kiθ

2ki
: (12e)

In order to obtain a stable closed loop system, CE

must be solved to have poles on left hand side of s

plane. So, the CE is solved to have poles as shown in

Equation 13.

c4s
4 þ c3s

3 þ c2s
2 þ c1sþ 1

¼ λsþ 1ð Þ2 1þ 0:25θsð Þ2: (13)

From Equation 7, it is evident that the controller is

introducing two zeros in the servo response at −4/θ. To

suppress the overshoot caused by these zeros in the servo

response, two poles are placed at −4/θ as shown in Equa-

tion 13. The location of other poles is manipulated by the

tuning parameter λ. The controller parameters obtained

are listed below in Equation 14.

FIGURE 1 Proposed control structure
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kp ¼
32λþ 16θ

k 4λþ 3θð Þ2
; (14a)

ki ¼
16

k 4λþ 3θð Þ2
; (14b)

kd ¼
θ 8λ− θð Þ

k 4λþ 3θð Þ2
; (14c)

a1 ¼ 0:25θ; (14d)

b1 ¼
θ 4λ− θð Þ

16λþ 12θ
: (14e)

2.3 | Design of Gc for DIPTD and IFOPTD

The delay free process is assumed as a ratio of two poly-

nomials as shown in Equation 15.

Gp sð Þ ¼
f

g
e − sθ

; (15a)

where

f ¼ k; (15b)

g ¼ s τsþ cð Þ: (15c)

The process is DIPTD for τ = 1, c = 0 and IFOPTD for

τ > 0, c = 1.

Using Equations 2, 3, 5, and 15,

y

r
¼

Fqf e − sθ

pgþ qf e − sθ

¼
Fk kds

2 þ kpsþ ki
� �

a1sþ 1ð Þ2

s2 b2s2 þ b1sþ 1ð Þ τsþ cð Þ þ k kds2 þ kpsþ ki
� �

a1sþ 1ð Þ2e − sθ
e − sθ

;

(16)

y

d
¼

fpe − sθ

pgþ qf e − sθ

¼
ks b2s

2 þ b1sþ 1ð Þ

s2 b2s2 þ b1sþ 1ð Þ τsþ cð Þ þ k kds2 þ kpsþ ki
� �

a1sþ 1ð Þ2e − sθ
e − sθ

;

(17)

CE ¼ s2 b2s
2 þ b1sþ 1

� �

τsþ cð Þ

þ k kds
2 þ kpsþ ki

� �

a1sþ 1ð Þ2e − sθ

¼ 0:

(18)

Using Equation 10 in Equation 18 and considering

a1 = 0.25θ,

CE ¼ s2 b2s
2 þ b1sþ 1

� �

τsþ cð Þ

þ k kds
2 þ kpsþ ki

� �

1−
sθ

4

� �2

¼ 0:

(19)

Further simplification yields

CE ¼ kki c5s
5 þ c4s

4 þ c3s
3 þ c2s

2 þ c1sþ 1
� �

¼ 0; (20a)

where

c5 ¼
b2τ

kki
; (20b)

c4 ¼
kkdθ

2 þ 16b2cþ 16b1τ

16kki
; (20c)

c3 ¼
kkpθ

2
− 8kkdθþ 16b1cþ 16τ

16kki
; (20d)

c2 ¼
kkiθ

2
− 8kkpθþ 16kkd þ 16c

16kki
; (20e)

c1 ¼
2kkp − kkiθ

2kki
: (20f)

The desired CE is assumed as shown in Equation 21.

λsþ 1ð Þ3 1þ 0:25θsð Þ2 ¼ 0: (21)

Similar to the design of controller for PIPTD system,

the poles are accordingly placed to minimize the over-

shoot in servo response. Comparing Equations 20 and

21, the expressions for PID parameters are derived for

DIPTD and IFOPTD and presented in Equations 22 and

23, respectively.

kp ¼
48λþ 16θ

k 16λ3 þ 48λ2θþ 24θ2λþ 3θ3
� �; (22a)

ki ¼
16

k 16λ3 þ 48λ2θþ 24θ2λþ 3θ3
� �; (22b)

kd ¼
8 6λ2 þ 6λθþ θ2
� �

k 16λ3 þ 48λ2θþ 24θ2λþ 3θ3
� �; (22c)

a1 ¼ 0:25θ; (22d)
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b1 ¼
16λ3θ− 6θ3λ− θ4

32λ3 þ 96λ2θþ 48λθ2 þ 6θ3
� �; (22e)

b2 ¼
λ3θ2

16λ3 þ 48λ2θþ 24λθ2 þ 3θ3
; (22f)

2.4 | Design of Gc for IFOPTD with zero

Opposite to the method followed by Anil and Padma Sree,7

where the derivation of controller parameters is carried out

without considering the zero of the system, the proposed

method includes the zero in the process of deriving

controller parameters. The process is considered as

Gp sð Þ ¼
u

v
e − sθ ¼

k 1þ szð Þ

s τs± 1ð Þ
e − sθ

; (24a)

kp ¼
2τ 3λþ θð Þ θþ 4τð Þ2

k 32λ3τ2 − 16λ3θτ þ 2λ3θ2 þ 96λ2θτ2 þ 48λθ2τ2 þ 6λθ3τ þ 6τ2θ3 þ θ4τ
� �; (23a)

ki ¼
2τ θþ 4τð Þ2

k 32λ3τ2 − 16λ3θτ þ 2λ3θ2 þ 96λ2θτ2 þ 48λθ2τ2 þ 6λθ3τ þ 6τ2θ3 þ θ4τ
� �; (23b)

kd ¼
2 − 16λ3τ2 þ 8λ3θτ − λ3θ2 þ 48λ2τ3 − 24λ2θτ2 þ 3λ2θ2τ þ 48λθτ3 þ 8θ2τ3 þ θ3τ2
� �

k 32λ3τ2 − 16λ3θτ þ 2λ3θ2 þ 96λ2θτ2 þ 48λθ2τ2 þ 6λθ3τ þ 6τ2θ3 þ θ4τ
� � ; (23c)

b1 ¼
θ − 128λ3τ2 − 64λ3θτ þ 8λ3θ2 − 48λ2τθ2 þ 48λθ2τ2 þ 8θ3τ2 þ θ4τ
� �

8 32λ3τ2 − 16λ3θτ þ 2λ3θ2 þ 96λ2θτ2 þ 48λθ2τ2 þ 6λθ3τ þ 6τ2θ3 þ θ4τ
� �; (23e)

b2 ¼
λ3θ2 cθþ 4τð Þ2

8 32λ3τ2 − 16λ3θτ þ 2λ3θ2 þ 96λ2θτ2 þ 48λθ2τ2 þ 6λθ3τ þ 6τ2θ3 þ θ4τ
� �: (23f)

a1 ¼ 0:25θ; (23d)
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where

u ¼ k 1þ szð Þ; (24b)

v ¼ s τs± 1ð Þ: (24c)

(Wherever ± or ∓ symbol appears, the upper sign

corresponds to the IFOPTD with zero and the lower sign

corresponds to the integrating process with zero and

unstable pole)

Substituting Equations 5 and 24 in Equations 2 and 3,

CE ¼ s2 b2s
2 þ b1sþ 1

� �

τs± 1ð Þ

þ k kds
2 þ kpsþ ki

� �

1þ szð Þ a1sþ 1ð Þ2e − sθ

¼ 0:

(27)

Using Equation 10 in Equation 27 and considering

a1 = 0.25θ,

CE ¼ kki c5s
5 þ c4s

4 þ c3s
3 þ c2s

2 þ c1sþ 1
� �

¼ 0; (28a)

where

c5 ¼
kkdθ

2z þ 16b2τ

16kki
; (28b)

c4 ¼
kθ2 kd þ kpz
� �

− 8kkdθz þ 16b1τ ± 16b2

16kki
; (28c)

c3 ¼
± 16b1 þ 16τ − 8kθ kd þ kpz

� �

þ kθ2 kp þ kiz
� �

þ 16kkdz

16kki
;

(28d)

c2 ¼
16kkd − 8kθ kp þ kiz

� �

þ kkiθ
2 þ 16kkpz ± 16

16kki
;

(28e)

c1 ¼
2kp − kiθþ 2kiz

2ki
: (28f)

The desired CE is solved to have pole locations as

shown in Equation 29.

λsþ 1ð Þ4 1þ szð Þ ¼ 0: (29)

From Equation 25, it can be observed that a zero at

s = − 1/z is resulting in the servo response. So one of

the poles of desired CE is placed at s = − 1/z (assuming

z is positive) to compensate the overshoot and the

remaining poles are placed at −1/λ. The derived PID

parameters by comparing Equations 28 and 29 are shown

in Equation 30.

kp ¼
8 8λþ θð Þ 4τ ± θð Þ2

k 4λþ θð Þ3 16τ∓4λ± 3θð Þ
; (30a)

ki ¼
16 4τ ± θð Þ2

k 4λþ θð Þ3 16τ∓4λ± 3θð Þ
; (30b)

kd ¼
8 32λ4∓128λ3τ þ 192λ2τ2 þ 64λτ2θ± 8λτθ2 þ 6θ2τ2 ± θ3τ
� �

k 4λþ θð Þ3 16τ∓4λ± 3θð Þ
;

(30c)

y

r
¼

quFe − sθ

pvþ que − sθ
¼

Fk 1þ szð Þ kds
2 þ kpsþ ki

� �

a1sþ 1ð Þ2

s2 b2s2 þ b1sþ 1ð Þ τs± 1ð Þ þ k kds2 þ kpsþ ki
� �

1þ szð Þ a1sþ 1ð Þ2e − sθ
e − sθ

; (25)

y

d
¼

pue − sθ

pvþ que − sθ
e − sθ ¼

ks b2s
2 þ b1sþ 1ð Þ 1þ szð Þ

s2 b2s2 þ b1sþ 1ð Þ τs± 1ð Þ þ k kds2 þ kpsþ ki
� �

1þ szð Þ a1sþ 1ð Þ2e − sθ
e − sθ

; (26)
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a1 ¼ 0:25θ; (30d)

b1 ¼
8λτ ± 4λθ∓8λz − 6τθþ 32τz ± 6θz∓θ2

32τ∓8λ± 6θ
; (30e)

b2 ¼
z 8λτ ± 4λθ− 6τθ∓θ2
� �

32τ∓8λ± 6θ
: (30f)

If z holds a negative value, the desired CE can be

assumed to follow a trajectory as given in Equation 31.

λsþ 1ð Þ5 ¼ 0: (31)

PID parameters can be derived by comparing

Equations 28 and 31.

3 | SET POINT FILTERING

The controller introduces zeros in the servo response

(Equation 2), which may cause overshoot. There are two

ways to address this problem. Overshoot can be mini-

mized either by set point weighting5,10,18 or by set point

filtering.3,9,19 The present work has employed set point

filtering and proposed a new design. The proposed filter

F is designed to cancel the zeros introduced by the PID

parameters in servo response. For instance, the servo

response of PIPTD is shown in Equation 32 (using Equa-

tions 7, 12, and 13).

y

r
¼

F
kd

ki
s2 þ

kp

ki
sþ 1

� �

e − sθ

λsþ 1ð Þ2
: (32)

A section of set point filter is selected as shown in

Equation 33 to cancel the poles and zeros introduced by

controller.

F1 ¼
λsþ 1ð Þ2

kd

ki
s2 þ

kp

ki
sþ 1

� �: (33)

Another section of controller introduces new tuning

parameter to manipulate servo response as shown in

Equation 34.

F2 ¼
1

psþ 1ð Þ2
: (34)

And finally, the set point filter for PIPTD is assumed

as shown in 35.

F ¼ F1F2 ¼
λsþ 1ð Þ2

kd

ki
s2 þ

kp

ki
sþ 1

� �

1

psþ 1ð Þ2
: (35)

Using Equations 32 and 35, the servo response for

PIPTD can be derived as shown in Equation 36.

y

r
¼

e − sθ

psþ 1ð Þ2
: (36)

Similarly, the proposed set point filter for DIPTD and

IFOPTD is shown in Equation 37.

F ¼
λsþ 1ð Þ3

kd

ki
s2 þ

kp

ki
sþ 1

� �

1

psþ 1ð Þ2
: (37)

The proposed set point filter for IFOPTD with zero is

shown in Equation 38.

F ¼
λsþ 1ð Þ4

kd

ki
s2 þ

kp

ki
sþ 1

� �

a1sþ 1ð Þ2

1

psþ 1ð Þ2
: (38)

p is a new variable with which the servo response can

be manipulated. However, interestingly, p does not affect

the stability of closed loop system. The only parameter

that directly relates to the internal stability of the closed

loop system is λ. The selection of λ is very crucial and is

presented in Section 4.

4 | SELECTION OF λ AND p

Selection of λ is highly crucial as it is directly related to

the stability of the closed loop system. The selected λ

should be able to result a stable controller as well as

closed loop control system. Recently proposed works2,7

adopted MS‐based tuning as it is a good measure of

robust stability.

The sensitivity (S) of a control structure is mathemat-

ically defined as shown in Equation 39.

S ¼
1

1þ L

�

�

�

�

�

�

�

�

; (39)

where L is loop transfer function. Hence, for the proposed

scheme,

L ¼ GCG: (40)

MS is defined as the maximum possible value of S. In

other words, it can be interpreted as the inverse of the

MEDARAMETLA AND M 7 of 18



shortest possible distance of the Nyquist plot of loop

transfer function to the critical point. The lower the MS

value the higher the robust stability. According to well‐

known thumb rule, it is suggested to select MS between

1.2 and 2 as a compromise between speed of response

and robust stability. However, for integrating and unsta-

ble processes, it is not always feasible to achieve faster

responses with lower MS values. In fact, it is sometimes

not possible to obtain MS values below 2 for required

speed of response. So the researchers adopt MS values

above 2 also, especially for integrating and unstable

processes.

The proposed method also derived MS‐based tuning

rules by investigating MS profiles of normalized pro-

cesses. Figure 2 shows the variation of MS with λ for

various integrating processes. Using the curve fitting

tool, the MS profiles are captured into mathematical

expressions and these details are presented in Table 1.

For clear understanding, tuning rules are summarized

below.

For a required value of MS, select the value of λ using

Table 1 and calculate the controller parameters.

Tune the set point filter parameter p between 0.5θ and

3θ for achieving required servo response.

5 | SIMULATION ANALYSIS AND
COMPARISON

This section is compose of performance evaluation of

the proposed method against recently proposed control

strategies. Mathematical description of various perfor-

mance indices is mentioned below through

Equations 41–44.

Integral absolute error IAEð Þ ¼ ∫
∞

0
ej j dt; (41)

Integral square error ISEð Þ ¼ ∫
∞

0
e2 dt; (42)

Integral time absolute error ITAEð Þ ¼ ∫
∞

0
t ej j dt: (43)

ISE‐optimized control system eliminates large errors

quickly but could result a low amplitude oscillations.

IAE‐optimized control adds no weight to error and results

less sustained oscillations when compared with ISE. But

the speed of response is less to that of ISE. ITAE‐optimized

control loop results good settling time as time‐weighted

error is considered.

It is also essential that the smoothness of variations in

control signal should be taken into account in order to

ensure the safety of final control element. Total variation

(TV) is a measure of smoothness of control signal, which

is defined as shown in Equation 44.

TV ¼ ∑∞
i¼0 uiþ1 − uij j; (44)

where ui is process input at ith instant. A sample period

of 0.1 s is considered in the present analysis. Settling time

(ts) is the time taken by the response to enter and settle

(a) (b)

(d)(c)

FIGURE 2 Variation of MS for (a) pure integrating process with time delay, (b) double integrating process with time delay, (c) integrating

first order process with time delay, and (d) integrating first order process with time delay with zero
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within a specified error band. Simulation results are com-

pared with the recently proposed methods by Anil and

Padma Sree7 and/or Ajmeri and Ali.2

Example 1. A PIPTD is considered in this exam-

ple as shown in Equation 45. Bottom level control

of a distillation column and level control of a tank

with a motor fixed at outlet are the best examples

of this class.

G sð Þ ¼
0:05

s
e − 5s

: (45)

The controller parameters derived for this process by

Anil and Padma Sree7 and Ajmeri and Ali2 are pre-

sented in Table 2. For fair comparison with those

methods, proposed method also considered an MS value

of 2. The value of λ is calculated as 6.71 using Table 1.

Derived controller parameters are presented in Table 3.

Set point filter parameter p is considered as 3.3. A unit

step change in set point at t = 0s and a unit step distur-

bance is considered at t = 100s. Nominal response is

shown in Figure 3. Performance analysis is presented in

Table 4.

For perturbed response analysis, +20% perturbation

in process gain and time delay are introduced. Response

is shown in Figure 4. Performance evaluation is presented

in Table 5.

Under nominal conditions, the overall performance

of all the methods is more or less similar but the

method of Anil and Padma Sree7 has marginally per-

formed well among the three. Under perturbed condi-

tions, also, all the methods performed similarly. But

the proposed method is less oscillatory when compared

with others and able to provide marginally better

response. This is evident from the evaluation presented

in Table 5.

Example 2. A wide range of processes behave as

double integrating processes. Best examples are

current‐controlled DC motor, fermentation reac-

tors, and the takeoff dynamics of a space craft. A

DIPTD as shown in Equation 46 is considered

for analysis.

G sð Þ ¼
1

s2
e − s

: (46)

The controller parameters of the other methods2,7

and proposed method are shown in Tables 2 and 3,

respectively. An MS value of 2 is considered for fair

comparison with other methods, and λ is derived asT
A
B
L
E
1

P
ro
p
o
se
d
tu
n
in
g
gu

id
el
in
es

fo
r
va
ri
o
u
s
in
te
gr
at
in
g
p
ro
ce
ss
es

P
ro
c
e
ss

R
a
n
g
e

o
f
θ
/τ

R
a
n
g
e
o
f

M
S

λ
R
2

P
IP
T
D

—
1
.3
–
2
.5

0
:
4
1
9
2
M
S
2
−
1
:
4
0
1
M
S
þ
2
:
4
8

M
S
−
0
:
9
9
0
4

�
�

θ
0
.9
9
7
5

D
IP
T
D

—
1
.3
–
2
.5

λ
¼

2
:
4
3
8

M
S
−
1
:
0
1
6

�
�

θ
1

IF
O
P
T
D

0
.1
–
0
.5

1
.3
–
2
.5

θ
1
1
7
:
3
−
1
2
2
:
6

θ τ

�
�

−
1
9
8
:
7
M
S
þ
9
1
:
0
8

θ τ

�
�

2
þ
1
4
3
:
9

θ τ

�
�

M
S
þ
1
3
1
:
7
M
S
2
−
8
6
:
7
7

θ τ

�
�

2
M
S
−
5
5
:
1
4

θ τ

�
�

M
S
2
−
3
9
:
6
1
M
S
3
þ
2
0
:
7
5
M
S
2

θ τ

�
�

2
þ
6
:
6
8

θ τ

�
�

M
S
3
þ
4
:
5
3
2
M
S
4

�
�

0
.9
9
9
2

0
.5
–
1
.2

1
.5
–
3

θ
2
7
:
7
−
1
0
:
6
2

θ τ

�
�

−
3
4
:
5
M
S
þ
1
1
:
1
2

θ τ

�
�

2
þ
3
:
3
3
2

θ τ

�
�

M
S
þ
1
8
:
6
4
M
S
2
−
9
:
0
9
2

θ τ

�
�

2
M
S
þ
2
:
1
5
7

θ τ

�
�

M
S
2
−
4
:
9
9
1
M
S
3
þ
1
:
8
9
5
M
S
2

θ τ

�
�

2
−
0
:
7
6
3
3

θ τ

�
�

M
S
3
þ
0
:
5
5
0
5
M
S
4

�
�

0
.9
9
8
7

IF
O
P
T
D

w
it
h
ze
ro

0
.1
–
0
.5

1
.5
–
2
.5

θ
2
0
2
:
8
−
1
9
2
:
8

θ τ

�
�

−
3
5
1
:
5
M
S
þ
1
4
5
:
6

θ τ

�
�

2
þ
2
2
7
:
2

θ τ

�
�

M
S
þ
2
3
3
M
S
2
−
1
3
6
:
9

θ τ

�
�

2
M
S
−
8
6
:
8
1

θ τ

�
�

M
S
2
−
6
9
:
3
8
M
S
3
þ
3
2
:
2
1
M
S
2

θ τ

�
�

2
þ
1
0
:
5
2

θ τ

�
�

M
S
3
þ
7
:
8
1
7

�
�

0
.9
9
7
5

N
o
te
.
P
IP
T
D

=
p
u
re

in
te
gr
at
in
g
p
ro
ce
ss

w
it
h
ti
m
e
d
el
ay
;
D
IP
T
D

=
d
o
u
b
le

in
te
gr
at
in
g
p
ro
ce
ss

w
it
h
ti
m
e
d
el
ay
;
IF
O
P
T
D

=
in
te
gr
at
in
g
fi
rs
t
o
rd
er

p
ro
ce
ss

w
it
h
ti
m
e
d
el
ay
;
M
S
=

m
ax
im

u
m

se
n
si
ti
vi
ty
.

MEDARAMETLA AND M 9 of 18



2.4776 using Table 1. p is tuned to 1.7. A unit set point

change is considered at t = 0s, and a unit disturbance is

considered at t = 50s. The nominal response is shown in

Figure 5. From Figure 5 and the performance evaluation

presented in Table 4, it can be understood that the pro-

posed method has shown substantial improvement in

rejecting disturbance when compared with the other

methods.

A +20% perturbation in process gain and time

delay are considered for analyzing robust stability.

The response is shown in Figure 6. Calculated perfor-

mance indices are presented in Table 5. Once again, it

is observed that the proposed method is very

much superior to the other two methods in rejecting

the disturbance.

Example 3. The drying processes in paper indus-

try and continuous stirred tank reactor (CSTR)

with exothermic reaction are relevant examples

of IFOPTD. An IFOPTD is considered as shown

in Equation 47.

Gp sð Þ ¼
0:2

s 4sþ 1ð Þ
e − s

: (47)

TABLE 2 Controller parameters for various strategies

Process Method kp ki kd α β MS

0:05
e − 5s

s

Anil‐Padma Sree

Ajmeri‐Ali

3.727 0.1968 7.0440 — — 2

2.9933 0 7.1189 — — 2

3.3209 0.1614 5.8796 — —

e − s

s2
Anil‐Padma Sree

Ajmeri‐Ali

0.1378 0.0142 0.5265 1.0761 1.0392 2

0.0293 0 0.3129 — — 2

0.0414 0.0018 0.3246 — —

0:2e − s

s 4sþ 1ð Þ

Anil‐Padma Sree

Ajmeri‐Ali

5.7422 0.9724 11.2082 0.6320 0.4915 2

3.1949 0 9.6792 — — 2

3.67 0.3521 9.0902 — —

10sþ 1ð Þe − s

s 2sþ 1ð Þ

Anil‐Padma Sreea 1.1601 0.2251 1.4452 — — 2.35

0:5 1− 0:5sð Þe − 0:7s

s 0:4sþ 1ð Þ 0:1sþ 1ð Þ 0:5sþ 1ð Þ

Anil‐Padma Sree 1.003 0.1572 0.6592 1.1608 0.5490 2.81

Jacketed CSTR Anil‐Padma Sreeb 695,400 135,940 1,457,697 — — 3.52

Note. MS = maximum sensitivity.

aPID filter:
0:5214sþ 1

2:674s2 þ 10:2674sþ 1
.

bPID filter:
0:5095sþ 1

144:7116s2 þ 766:2641sþ 1
.

TABLE 3 Controller parameters of proposed method for various processes

Process kp ki kd a1 b1 b2 MS

0:05
e − 5s

s

3.3671 0.1828 2.7808 1.25 0.6525 — 2

e − s

s2
0.2247 0.0266 0.7021 0.25 0.1894 0.0253 2

0:2e − s

s 4sþ 1ð Þ

7.6401 1.1477 14.309 0.25 0.1799 0.024 2

10sþ 1ð Þe − s

s 2sþ 1ð Þ

1.37 0.2866 1.6359 0.25 10.1367 1.3672 2.35

0:5 1− 0:5sð Þe − 0:7s

s 0:4sþ 1ð Þ 0:1sþ 1ð Þ 0:5sþ 1ð Þ

1.0978 0.1576 1.0447 0.32 0.2941 0.0490 2.81

Jacketed CSTR 818,880 168,150 160,460 0.25 766.1607 65.52 3.52

Note. MS = maximum sensitivity; CSTR = continuous stirred tank reactor.
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The value of λ is derived as 1.8857, which corre-

sponds to a MS value of 2 and the derived controller

parameters are presented in Table 3. p is tuned to 1.

The controller parameters of other methods are pre-

sented in Table 2. A unit set point change is forced at

t = 0s and a unit step disturbance is forced at t = 30s.

A perturbation of +20% magnitude is imposed on pro-

cess gain and time delay. Nominal response is presented

in Figure 7. Perturbed response is presented in Figure 8.

Obtained performance indices are listed in Tables 4 and

5. The proposed method has shown overall superiority

though the method proposed by Anil and Padma

Sree7and has resulted better TV in nominal servo

response and better settling time in perturbed regulatory

response.

Example 4. In this example, an IFOPTD having

a zero is considered as shown in 48. This
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FIGURE 3 (a) Nominal response and (b) control signal for the nominal response of Example 1

TABLE 4 Performance comparison under nominal conditions

Process Method

Servo response Regulatory response

IAE TV OS ts IAE TV OS ts

0:05
e − 5s

s

Proposed

Anil‐Padma Sree

Ajmeri‐Ali

11.6 5.92 0 25.1 5.47 3.455 0.303 52.3

11.41 6.36 0.001 27.62 5.08 3.16 0.303 50.13

9.06 8.56 0 22.9 6.2 2.8425 0.33 55.25

e − s

s2
Proposed

Anil‐Padma Sree

Ajmeri‐Ali

6.1 0.22 0 13.78 37.53 3.15 4.077 23.4

5.962 0.193 0.01 12.06 70.58 3.39 7.033 24.87

10.67 0.0714 0 29.85 543.63 3.1042 20.26 65.88

0:2e − s

s 4sþ 1ð Þ

Proposed

Anil‐Padma Sree

Ajmeri‐Ali

4.00 11.33 0 8.57 0.87 1.8733 0.124 18.15

4.57 8.21 0.1 14.4 1.11 3.15 0.174 19.48

4.594 8.38 0 13.1 2.842 2.8342 0.259 28.93

10sþ 1ð Þe − s

s 2sþ 1ð Þ

Proposed

Anil‐Padma Sree

2.602 0.252 0 5.85 14.00 3.01 4.47 12.28

4.338 0.396 0.514 12.27 17.18 3.15 5.04 13.01

0:5 1− 0:5sð Þe − 0:7s

s 0:4sþ 1ð Þ 0:1sþ 1ð Þ 0:5sþ 1ð Þ

Proposed

Anil‐Padma Sree

4.419 2.21 0.01 9.48 6.444 3.777 0.967 18.77

4.094 2.42 0.02 9.12 6.484 3.637 1.061 17.52

Jacketed CSTR Proposed

Anil‐Padma Sree

6.024 3665 0.0034 — 0 28.5 0.0014 —

8.244 7667 1.009 — 0.01606 26.26 0.0021 —

Note. CSTR = continuous stirred tank reactor; IAE = integral absolute error; TV = total variation; OS = over shoot.
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problem is studied by Shamsuzzoha21 and Anil

and Padma Sree.7 The later method has shown

better performance when compared with the

former one.

Gp sð Þ ¼
10sþ 1

s 2sþ 1ð Þ
e − s

: (48)

In the process of deriving the controller parameters, the

method of Anil and Padma Sree7 has considered the pro-

cess without zero and derived controller parameters. Later,

a filter is added to the controller so as to cancel the zero of

the process. But the proposed method, as explained in

Section 2.4, derived the controller parameters without

neglecting the zero of the process. λ is calculated as 1.07

using Table 1 for a MS value of 2.35 for fair comparison. p

is tuned to 0.8. The controller parameters are presented

in Tables 2 and 3. A unit set point change is considered at

t = 0s, and a unit disturbance is induced at t = 25 s. Nomi-

nal response is shown in Figure 9. The proposed method is

superior to the method of Anil and Padma Sree.7 The pro-

posed method is able to eliminate overshoot in servo

response unlike the method proposed by Anil and Padma

Sree.7 The disturbance rejection is also effective when

compared with that of the other method. Conclusively,

from Figure 9 and Table 4, the proposed method is

superior to the method proposed by Anil and Padma Sree.7
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FIGURE 4 (a) Perturbed response and (b) control signal for perturbed response of Example 1

TABLE 5 Performance comparison under perturbed conditions

Perturbed process Method

Servo response Regulatory response

IAE TV OS ts IAE TV OS ts

0:06
e − 6s

s

Proposed

Anil‐Padma Sree

Ajmeri‐Ali

12.94 8.9492 0.123 52.03 5.468 5.342 0.401 61.35

13.05 10.74 0.118 52.02 5.302 5.586 0.403 61.60

13.03 13.94 0.261 53.01 6.244 4.8722 0.432 64.34

1:2e − 1:2s

s2
Proposed

Anil‐Padma Sree

Ajmeri‐Ali

6.180 0.293 0.004 14.90 37.64 4.15 4.27 23.81

6.074 0.242 0.010 14.23 71.04 4.177 7.354 26.04

10.75 0.082 0.002 32.02 545.7 3.754 19.9 66.61

0:24e − 1:2s

s 4sþ 1ð Þ

Proposed

Anil‐Padma Sree

Ajmeri‐Ali

4.005 18.33 0.001 9.92 0.871 3.275 0.142 18.74

4.052 10.8 0.042 14.34 1.055 4.063 0.199 14.42

4.595 12.05 0 18.88 2.84 3.826 0.289 19.81

1:2 10sþ 1ð Þe − 1:2s

s 2sþ 1ð Þ

Proposed

Anil‐Padma Sree

2.828 0.377 0.06 11.48 19.32 5.4 5.91 15.343

4.833 0.681 0.81 18.22 27.48 6.21 6.55 19.72

0:6 1− 0:5sð Þe − 0:84s

s 0:4sþ 1ð Þ 0:1sþ 1ð Þ 0:5sþ 1ð Þ

Proposed

Anil‐Padma Sree

4.494 3.968 0.039 18.23 6.447 6.610 1.211 20.99

4.407 4.135 0.078 20.43 6.635 6.563 1.111 23.51

Note. IAE = integral absolute error; TV = total variation.
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To analyze the robust performance, a +20% change in

the process gain and time delay are considered. Perturbed

response is shown in Figure 10. The evaluation in terms

of various performance indices is presented in Table 5.

It is observed that the proposed method offers superior

performance

Example 5. In practical, many processes are of

higher order. Practitioners calculate reduced order

model in order to derive a control strategy. In this

example, one such kind of a higher order process

as shown in Equation 49 is considered. This

process is reduced to an IFOPTD7 as presented in

Equation 50 and then the controller parameters

are derived.

G sð Þ ¼
0:5 1− 0:5sð Þ

s 0:4sþ 1ð Þ 0:1sþ 1ð Þ 0:5sþ 1ð Þ
e − 0:7s

; (49)

G sð Þ ¼
0:5183

s 1:1609sþ 1ð Þ
e − 1:2799s

: (50)
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FIGURE 5 Example 2: (a) nominal servo response, (b) control signal for nominal servo response, (c) nominal regulatory response, and (d)

control signal for nominal regulatory response
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FIGURE 6 Example 2: (a) perturbed servo response, (b) control signal for perturbed servo response, (c) perturbed regulatory response, and

(d) control signal for perturbed regulatory response
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This example is discussed by Jin and Liu11 and Anil

and Padma Sree.7 Comparatively, the later one is found

to be a better method. Both the abovementioned

methods considered an MS value of 2.81, and, for the

sake of fair comparison, the proposed method also

considered the same MS value that is observed at

λ = 1.895. The respective controller parameters are

mentioned in Tables 2 and 3. p is tuned to 0.9. A set

point change is considered at t = 0s with unity

magnitude, and unit disturbance is considered at

t = 40s. For analyzing robust stability, +20% change in

process gain and time delay are considered. Nominal
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FIGURE 7 (a) Nominal response and (b) control signal for nominal response of Example 3
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FIGURE 8 (a) Perturbed response and (b) control signal for perturbed response of Example 3
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and perturbed responses are presented in Figures 11

and 12, respectively. Performance evaluation is pre-

sented in Tables 4 and 5. The proposed method is able

to perform marginally well when compared with the

other method.

Example 6. A jacketed CSTR with irreversible

exothermic reaction is considered in this

example. The governing nonlinear differential

equations7 of CSTR are shown in Equations 51

and 52.
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FIGURE 9 Example 4: (a) nominal servo response, (b) control signal for nominal servo response, (c) nominal regulatory response, and (d)

control signal for nominal regulatory response
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FIGURE 10 Example 4: (a) perturbed servo response, (b) control signal for perturbed servo response, (c) perturbed regulatory response,

and (d) control signal for perturbed regulatory response
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dCA

dt
¼

F

V
CA0 − CAð Þ− k0CAe

− Ea
RT

; (51)

dT

dt
¼

F

V
T0 − Tð Þ þ

− ΔHk0CAð Þ

ρCp

e
− Ea
RT

þ
UA

VρCp

T j − T
� �

:

(52)

The parameters of CSTR are described in Table 6.

The nonlinear differential equations are linearized

around the operating point CA = 3.734 kmol/m3,

T = 344 K, and Tj = 317.4 K. The obtained transfer func-

tion relation between jacket temperature and the reactor

temperature with a measurement delay of 1 s is shown in

Equation 53.
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FIGURE 11 Nominal response of Example 5
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FIGURE 12 Perturbed response of Example 5

TABLE 6 Details of various parameters for jacketed continuous

stirred tank reactor

Parameter Value

Volume, V 1 m3

Feed flow rate, F 0.00065 m3/s

Feed temperature, T0 300 K

Feed concentration, CA0 7.5 kmol/m3

Overall heat transfer coefficient, UA 1.4 kJ/s K

Specific heat, Cp 1.4 kJ/kg K

Heat of reaction, −ΔH 50000 kJ/kmol

Universal gas law constant, R 8.345 kJ/kmol K

Activation energy, E 69000 kJ/kmol

Frequency factor, k0 1.8 × 107s−1

Density, ρ 850 kg/m3

16 of 18 MEDARAMETLA AND M



T sð Þ

T j sð Þ
¼

6:83×10 − 4 766:0752sþ 1ð Þ

s 1112:099s− 1ð Þ
e − s

: (53)

The derived controller parameters are shown in

Tables 2 and 3. The controller parameters for the pro-

posed method are obtained using Equation 30. The

value of λ is selected as 1.0925 to get a MS value of

3.52 for fair comparison with other method. p is consid-

ered as 1. To analyze the servo performance, the set

point is changed from 344 K to 346 K. The response is

presented in Figure 13. The evaluation is presented in

Table 4. The proposed method is able to provide sub-

stantial improvement over the other method. The pro-

posed method is able to reduce the overshoot

considerably when compared with the other method.

Moreover, examining the control signal (jacket tempera-

ture) reveals that the proposed method is able to restrict

the jacket temperature about 2,100 K. The other method

shoots up to 3,350 K, which is about 60% higher than

the proposed method.

The regulatory response analysis is considered by

decreasing the jacket temperature from 317.4 K to

310 K. The response and the performance evaluation is
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FIGURE 13 (a) Nominal servo response and (b) control signal for nominal servo response of Example 6
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FIGURE 14 Nominal regulatory response of Example 6
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presented in Figure 14 and Table 4, respectively. The

proposed method is able to deliver overall superior

performance, whereas the other method has shown

marginally better TV.

6 | CONCLUSION

A new control technique is proposed for various classes of

integrating processes associated with time delay. A PID

controller augmented by a second order filter is employed

in the control loop. The controller parameters are derived

in terms of the process parameters using polynomial

method. Analytical tuning guidelines are proposed,

which are derived by investigating the variation of MS

with respect to tuning parameter. The overshoot in the

servo response is reduced in two stages. Some of the zeros

introduced by the controller are eventually cancelled by

desired CE. The overshoot due to other zeros is taken care

by set point filtering. Bench marking examples including

higher order and nonlinear processes are considered. The

performance appraisal of proposed method is tested

against existing methods, and it is proved that the pro-

posed method is able to deliver enhanced performance.
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