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a b s t r a c t

Renormalization group (RG) flows of the bosonic nonlinear σ -model are governed,

perturbatively, at different orders of α′, by perturbatively evaluated β-functions. In regions

where α′

R2c
≪ 1 ( 1

R2c
represents the curvature scale), the flow equations at various orders in

α′ can be thought of as approximating the full, non-perturbative RG flow. On the other hand,

taking a different viewpoint, we may consider the above-mentioned RG flow equations as

viable geometric flows in their own right, without any reference to the RG aspect. Looked

at as purely geometric flows where higher order terms appear, we no longer have the

perturbative restrictions (small curvatures). In this paper, we perform our analysis from

both these perspectives using specific target manifolds such as S2, H2, unwarped S2 × H2

and simple warped products.

We analyse and solve the higher order RG flow equations within the appropriate

perturbative domains and find the corrections arising due to the inclusion of higher order

terms. Such corrections, within the perturbative regime, are shown to be small and they

provide an estimate of the error that arises when higher orders are ignored.

We also investigate higher order geometric flows on the samemanifolds and figure out

generic features of geometric evolution, the appearance of singularities and solitons. The

aim, in this context, is to demonstrate the role of higher order terms in modifying the flow.

One interesting aspect of our analysis is that, separable solutions of the higher order flow

equations for simple warped spacetimes (of the kind used in bulk-brane models with a

single extra dimension), correspond to constant curvature anti de Sitter (AdS) spacetimes,

modulo an overall flow parameter dependent scale factor. The functional form of this scale

factor (that we obtain) changes on the inclusion of successive higher order terms in the

flow.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction and overview

In the 1980s, Friedan [1] first analysed renormalization group (henceforth referred to as RG) flows for nonlinearσ -models
and showed how one could arrive at the vacuum Einstein equations Rij = 0, if one assumed quantum conformal (Weyl)
invariance, thereby equating the metric β-functions to zero. This became a crucial result in the context of string theory and
a route towards connecting/obtaining Einstein’s general relativity with/from string theory. Several authors, subsequently
proved important generalizations [2] (particularly in the context of heterotic string theory),which provided further evidence
for the above-mentioned connection. The fact that general relativity (modulo some additions) does emerge from string
theory, from the requirement of quantum conformal invariance, is more or less an accepted fact, today.

Around the same time in the 1980s, Hamilton [3], in the context of mathematics, proposed Ricci flow equations, with a
largely different motivation, primarily related to the geometrization conjecture of Thurston, which involves the topological
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classification of three manifolds. More recently, Perelman’s work [4] on Ricci flows and its utility in proving the Poincare
conjecture have drawn many researchers to revisit such geometric flows [5].

It is well known that the Ricci flow equations are the same (modulo a proper scaling of the flow parameter) as the first
order RG flow equations of the nonlinear σ -model. However, one needs to keep in mind the fact that the RG flow equations
are obtained from the perturbative evaluation of theβ-function and thus, they approximate the full, non-perturbative (and as

yet unknown) flow in the small curvature regime (i.e. α′

R2c
≪ 1, where 1

R2c
is related to the curvature scale) [6]. On the other

hand, from a different perspective, the same equations can be thought of as geometric flows where higher order terms are
consistently included. We shall perform our analysis from both these points of view, in this article.

Recently, various aspects (eg. irreversibility, gradient flow) of σ -model RG flows (with and without the dilaton and
Kalb–Ramond field), at the lowest order have been investigated from a mathematical/geometrical perspective [7]. The
connection between RG and geometric flows have been nicely discussed in [8,9]. In particular, Carfora [8] makes a valid
point about the connection through the following statement in his article: ‘the structure of Ricci flow singularities suggests

a natural way for extending, beyond the weak coupling regime, the embedding of the Ricci flow into the renormalization group

flow’.

Going beyond the lowest order, the authors in [10–12] have analysed second order RG flows in some detail by looking at
gradient flow aspects, monotonicity etc. Earlier, Tseytlin [13], claimed to have proved the monotonicity of the σ -model RG
flow to all orders in α′ though some important objections (at the second order level) regarding monotonicity were pointed
out in [11].

In our work here, we revisit 2nd order flows for various simple target manifolds and also analyse further higher order
flows. We first treat the flow equations as geometric flows in their own right, and figure out the consequences thereof
by looking for general solutions, solitons, singularities etc. Subsequently, we point out the behaviour of the flows in the
perturbative, RG flow domain and investigate the effect of including the higher order terms.

It is important to mention the classes of manifolds we consider in our discussion. These are essentially of two kinds—
unwarped ones and warped product varieties. In the former case, we consider the simplest toy examples, namely, the two-
sphere and two dimensional hyperbolic space. We look at the higher order flow equations and find exact solutions, from
whichwe can arrive at useful conclusions.We also investigate an unwarpedproduct briefly. Later,we look atwarpedproduct
manifolds where the generic line element is assumed to be that of a bulk spacetime in a braneworld model with one extra
dimension [14]. For all the manifolds under consideration gradient flow and monotonicity, up to second order in α′, holds
without any problems [11].

Thus, our main focus in this work is two-fold:

• Obtaining the perturbative corrections that arise due to the inclusion of higher order terms in the RG flow equations.

• Studying the general geometric evolution, solitons, singularities etc. which arise when we treat the RG flow equations at
various orders, as genuine geometric flows in their own right, without reference to the perturbative RG aspect.

2. The RG flow equations at various orders

The RG flow equations for the background metric coupling gij, in bosonic nonlinear sigma-models are given by

∂gij

∂λ
= −βij (1)

where, βij are the beta functions, usually obtained order by order, perturbatively. In a field theory context, the parameter λ
is related to the momentum cut-off scale Λ. Cut-off independence of the theory at length scales larger than inverse Λ gives
rise to the above RG flow equation.

As mentioned earlier, the βij is usually obtained at various orders—i.e. as a series in the parameter α′ (proportional to the
inverse of the string tension). More specifically, we may write,

βij = α′β(1)
ij + α′2β(2)

ij + α′3β(3)
ij + α′4β(4)

ij + O(α′5) (2)

where the various terms in the R.H.S. of the above equation, for the metric nonlinear σ -model, are given by:

β
(1)
ij = Rij (3)

β
(2)
ij = 1

2
RiklmRj

klm (4)

β
(3)
ij = 1

8
∇pRiklm∇pRj

klm − 1

16
∇iRklmp∇jR

klmp + 1

2
RklmpRi

mlrRj
kp

r
− 3

8
RikljR

ksprRl
spr (5)
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β
(4)
ij = − 1

16
R1 + 1

48
R2 − 1

16

[

1

2
+ ζ (3)

]

R3 + 1

4
[1 + ζ (3)]R4

+ 1

16

[

13

3
− 3ζ (3)

]

R5 + 1

8

[

2

3
− ζ (3)

]

R6 + 1

4

[

8

3
+ ζ (3)

]

R7 + 1

4

[

−1

3
+ ζ (3)

]

R8

+ 1

12
R9 + 1

12
R10 − 1

6
R11 + 1

16

[

4

3
+ ζ (3)

]

R12 − 1

4

[

4

3
+ ζ (3)

]

R13 + higher derivatives (6)

with R1 to R13 representing various combinations of Riemann tensors (for explicit expressions see [15]). The above

expressions are valid, in the RG flow context, only if α′

R2c
≪ 1 (where 1

R2c
is the curvature scale).

We rescale the flow parameter λ → λα′/2 to bring the leading order term of Eq. (1) in the form of a Ricci flow. Thus we
now have the modified flow equations as

∂g

∂λ
= −2Rc − α′Řc

(2) − 2α′2Řc
(3) − 2α′3Řc

(4)
. . . (7)

where Řc
(2)

is a symmetric 2 tensor defined as: Řc
(2) = RiklmRjabcg

kag lbgmc , Řc
(3) = 1

2
RklmpRi

mlrRj
kp

r
− 3

8
RikljR

ksprRl
spr+· · ·+· · ·

and Řc
(4) = β

(4)
ij or, in component form, we have,

∂gij

∂λ
= −2Rij − α′RiklmRj

klm − · · · . (8)

The above-mentioned higher order terms are fairly difficult to obtain and involve laborious calculations. We have quoted
the above results from articles in [2,15]. As far as we know, the terms beyond 4th order for the metric β-function are not
available in the literature. In the following, we will analyse the above flow equations both from the RG and geometric flow
perspectives. We also note that knowing the geometric flow does give us useful knowledge about the domain of validity of
the RG flow, which is the domain of low curvature.

It may be asked, whywe retain the coefficients in the RG flow equationswhile discussing higher order geometric flows. It
is true that these coefficients could be arbitrarywhen the RG flow aspect is ignored. However, the gradient andmonotonicity
aspects of the flow is largely governed by the explicit values of these coefficients. Hence, even though flows may be defined
with arbitrary coefficients we stick to the RG flow values in our analysis of the higher order geometric flows.

Wemention that we have done our analysis for both α′ > 0 and α′ < 0. In the σ -model context, α′ < 0 has no meaning
(recall that α′ is related to the inverse string tension). However, one may consider α′ < 0, while treating the equations as
those for geometric flows.

3. Higher order flows on surfaces

In this section, we explicitly solve the flow equations for 2nd, 3rd and 4th order flows, using S2, H2 and S2 × H2 as toy
examples. The intention here is to figure out the role of the higher order terms in changing the nature of the geometric flow.
Consider (M, g)whereM is the two dimensional surface (spherical or hyperbolic) and gM(λ) is the metric onM in the form:

gM(λ) = x2(λ) gcan
M . (9)

Here x2(λ) is the scale factor and gcan
M is either the canonical spherical or the hyperbolic metric, depending on the case

studied. We again rescale x2, λ as α′x′2 and λ′α′ respectively for α′ > 0. We also follow the same rescaling for α′ < 0 except
that, we change α′ to −|α′|. In order to distinguish, we will use the scale factor a(λ) and b(λ) for spherical and hyperbolic

surfaces, respectively. After rescaling, the general equation for x′2(λ′) is found to be:

dx′2

dλ′ = −2k − 2

x′2 − k
5

2

1

x′4 − 2



59

24
ζ (3) + 29

24



1

x′6 , for α′ > 0 (10)

dx′2

dλx′ = −2k + 2

x′2 − k
5

2

1

x′4 + 2



59

24
ζ (3) + 29

24



1

x′6 , for α′ < 0. (11)

Here k = ±1 stands for spherical (+) or hyperbolic (−) surfaces. The first term in the R.H.S corresponds to un-normalized
Ricci flow whereas the subsequent terms are for 2nd, 3rd and 4th order flows, respectively.

3.1. Geometric flow analysis

3.1.1. 2nd order flow on S2

Recall that the Ricci flow on the two-sphere gives rise to an ancient solution. Including the second order term leads to
the following proposition.
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(a) a′
0 = 1, λ′

s = 0.153, α′ > 0. (b) a′
0 = 1, α′ < 0, soliton.

(c) a′, (λ′)2 > 1, a′
0 = 6, α′ < 0. (d) a′, (λ′)2 < 1, a′

0 = 0.5, α′ < 0.

Fig. 1. a′2(λ′) vs λ′ for 2nd order flow.

Proposition 3.1. For 2nd order flow on the canonical two-sphere, with any choice of initial radius andα′ < 0we obtain a′
∞ = 1.

If α′ < 0 and a′
0 = 1 we obtain a soliton, while for α′ > 0 and with any a′

0, we obtain an ancient solution.

The fact that for α′ > 0 we get an ancient solution is shown in Fig. 1(top left). If we consider α′ < 0, which is essentially
backward 2nd order flow up to a scaling, we can see that the solution space is divided into two regions namely a2 < 1 and
a2 > 1. It is also useful to note that if we choose the initial condition a0 = 1 for α′ < 0 we get a soliton. The solution of the
flow equations for a2 > 1, a2 < 1 with α′ < 0 are given as:

a′(λ′)2 + ln(a′(λ′)2 − 1) − a′2
0 − ln(a′2

0 − 1) = −2λ′, for a′2(λ′) > 1 (12)

a′(λ′2) + ln(1 − a′(λ′)2) − a′2
0 − ln(1 − a′2

0 ) = −2λ′ for a′2(λ′) < 1. (13)

The proof of the proposition is evident through the plots (in Fig. 1) and also from the general expressions given above. Here
and henceforth, the values chosen while obtaining the graphs are representative. We have also checked things over the full,
respective ranges.

3.1.2. 3rd order flow on S2

Proposition 3.2. Inclusion of the 3rd order terms for the flow on the canonical two-sphere, with any choice of initial radius

(a′
0 ≥ 1) and α′ always gives rise to an ancient solution.

The solution of the flow equation, taken up to 3rd order, will be:

a′(λ′)2 ∓ 1

2
ln(4a′(λ′)4 ± 4a′(λ′)2 + 5) ∓ 3

4
tan−1 (2a′(λ′)2 ± 1)

2
= −2λ′ + C (14)

where C = a′2
0 ∓ 1

2
ln(4a′4

0 ± 4a′2
0 + 5) ∓ 3

4
tan−1 (2a′2

0
±1)

2
. The ± signs refer to α′ > 0 and α′ < 0 respectively.

From Eq. (14) and the figures the proposition can be proved without much difficulty. Fig. 2 illustrates the conclusions in
the proposition. Figures on the left and right are for α′ > 0 and α′ < 0 respectively.

3.1.3. 4th order flow on S2

Proposition 3.3. Inclusion of the 4th order terms in the flow on a canonical two-sphere, we observe the following behaviour:

• α′ > 0 and any choice of a′
0 gives rise to ancient solution.

• α′ < 0, a′
0 = 1.3048: soliton. For a′

0 ≠ 1.3048 we find, a′
∞ = const

• α′ < 0; a′
0 < 1.3048: immortal solution and, a′

0 > 1.3048: eternal solution.
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(a) a′
0 = 1, λ′

s = 0.0665. (b) a′
0 = 1, λ′

s = 0.152.

(c) a′
0 = 2, λ′

s = 0.288. (d) a′
0 = 2, λ′

s = 0.696.

Fig. 2. a′2(λ′) vs λ′ for 3rd order flow.

The solution of the flow equation with the fourth order term included is found to be,

a′2 + c1 ln[a′2 − η] − c2

2
ln[a′4 + βa′2 + δ] − 2c3 − βc2

2



δ − β2

4

tan−1





a′2 + β

2


δ − β2

4



 = −2λ′ + C (15)

where the constants are:

C = a′2
0 + c1 ln[a′2

0 − η] − c2

2
ln[a′4

0 + βa′2
0 + δ] − 2c3 − βc2

2



δ − β2

4

tan−1





a′2
0 + β

2


δ − β2

4



 (16)

c1 ≈ 0.7544 c2 ≈ −0.2456 c3 ≈ 1.3618 (17a)

η ≈ 1.7024 β ≈ 0.7024 δ ≈ 2.4457. (17b)

Fig. 3(a) shows the ancient solution, while Fig. 3(b) illustrates the ancient solution for a′
0 < 1.3048 (a′

∞ = constant). Fig. 3(c)
with a′

0 > 1.3048 (a′
∞ = constant) demonstrates the eternal solution.

3.1.4. 2nd order flow on H2

Proposition 3.4. 2nd order flow on hyperbolic space with α′ > 0 generates two kinds of final metrics depending on the initial

scale factors. For b′(λ′)2 > 1 it is expanding and for b′(λ′)2 < 1 it is converging. In both cases the scale factor asymptotically

tends to 1 in backward time (b′
−∞ = 1). For α′ < 0, we obtain an immortal solution.

When α′ > 0, the flow equation (k = −1), has two solutions for b′2(λ′) > 1 and b′2(λ′) < 1. These are given as:

b′(λ′)2 + ln(b′(λ′)2 − 1) − b′2
0 − ln(b′2

0 − 1) = 2λ′, for b′2(λ′) > 1 (18)

b′(λ′)2 + ln(1 − b′(λ′)2) − b′2
0 − ln(1 − b′2

0 ) = 2λ′ for b′2(λ′) < 1. (19)

It can be seen that b0 = 1 corresponds to a soliton. If we consider α′ < 0, which essentially produces an immortal solution,
we can see that it expands along the flow. The conclusions mentioned in the above proposition are demonstrated in Fig. 4.

3.1.5. 3rd order flow on H2

Proposition 3.5. Inclusion of the 3rd order terms in the flow on hyperbolic space, with any choice of initial radius (b′
0 ≥ 1) and

any choice of α′ gives rise to an immortal solution.
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(a) a′
0 = 1, λ′

s = 0.019. (b) a′
0 = 1, λ′

s = −0.0211.

(c) a′
0 = 3.

Fig. 3. a′2(λ′) vs λ′ for 4th order flow.

(a) b′(λ′)2 > 1, b′
0 = 8, α′ > 0. (b) b(λ)2 < 1, b′

0 = 0.5, α′ > 0.

(c) b′
0 = 1, α′ > 0, soliton. (d) b′

0 = 0.4, α′ < 0.

Fig. 4. b
′2(λ′) vs λ′ for 2nd order flow.

For α′ > 0 the solution turns out to be:

b′(λ′)2 ± 1

2
ln(4b′(λ′)4 ∓ 4b′(λ′)2 + 5) − 3

4
tan−1



2b′(λ′2) ∓ 1

2



−b′2
0 ∓ 1

2
ln(2b′4

0 ∓ 2b′2
0 + 5) + 3

4
tan−1



2b′2
0 ∓ 1

2



= 2λ′. (20)

The conclusion in Proposition 3.5 is shown in Fig. 5.
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(a) b′
0 = 0.4, α′ > 0. (b) b′

0 = 0.4, α′ < 0.

Fig. 5. b
′2(λ′) vs λ′ for 3rd order flow.

(a) b′
0 = 2, α′ > 0. (b) b′

0 = 1, α′ > 0.

(c) b′
0 = 1, α′ < 0.

Fig. 6. b′2(λ′) vs λ′ for 4th order flow.

3.1.6. 4th order flow on H
2

Proposition 3.6. Inclusion of the 4th order term in the flow on hyperbolic space, yields two cases:

(1a) for α′ > 0 and b
′2
0 ≤ 1 (except 1.3048, which corresponds to a soliton) we have an ancient solution and b′

−∞ = const.

(1b) for α′ > 0 and b
′2
0 > 1 we have an eternal solution and b′

−∞ = const.

(2) for α′ < 0 and any choice of b′
0 we have an expanding immortal solution.

The solution of this equation would be:

b′2 ± c1 ln[b′2 ∓ η] ∓ c2

2
ln


b′4 ± βa′2 + δ


− 2c3 − βc2

2



δ − β2

4

tan−1





b′2 ± β

2


δ − β2

4



 = 2λ′ + C (21)

where the constants are given in Eqs. (16) and (17). The upper and lower sign corresponds to the solution for α′ > 0 and
α′ < 0 respectively.

All the statements in Proposition 3.6 can be checked, as before, by solving the flowequations. The graphs in Fig. 6 illustrate
these facts clearly. Table 1 provides a comparison of the results for S

2 and H
2 at various orders.

3.1.7. Higher order flows on AgS
2

can ⊕ BgN
can

Wenowbriefly discuss flows on an unwarped productmanifold beforemoving on towarped products in the next section.
Let N be a manifold (surface) of genus g ≥ 2 and gN

can is a constant negative curvature (−1). From Eq. (10) we can write the
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Table 1

Comparison of flows on S
2 and H

2 at 2nd order and 4th order.

S
2 (K > 1) H

2 (K < 1)

(2nd) α′ > 0 a′
0 > 0, ancient solution

shrinking

b′
0 = 1, soliton

b′2
0 < 1, b′

−∞ = 1, converging

b′2
0 > 1, b′

−∞ = 1, expanding

(4th) α′ > 0 a′
0 > 0, ancient solution

shrinking

b′
0 ≤ 1, ancient, b′

−∞ = const .

b′
0 > 1, eternal, expanding

b′
0 = 1.3048, soliton

(2nd) α′ < 0 a′
0 = 1, soliton

a′2
0 < 1, a′

∞ = 1

a′2
0 > 1, a′

∞ = 1

b′
0 > 0 immortal, expanding

(4th) α′ < 0 a′
0 = 1.3048, soliton

a′2
0 > 1, a′

∞ = const .

a′2
0 < 1, a′

∞ = const .

any b′
0 , immortal solution

expanding

(a) (A0, B0) = (5, 3), α′ > 0, λ′
s = 1.6041. (b) (A0, B0) = (5, 3), α′ < 0.

(c) (A0, B0) = (5, 3), α′ > 0. (d) (A0, B0) = (5, 3), α′ < 0.

Fig. 7. (A(λ′), B(λ′)) vs λ for 2nd order flow ((a), (b)) and 3rd order flow ((c), (d)).

flow equations up to 4th order (note that they are decoupled equations because the product is unwarped):

dA

dλ′ = −2 − α′ 2

A
− α′2 5

2

1

A2
− 2α′3



59

24
ζ (3) + 29

24



1

A3
(22)

dB

dλ′ = 2 − α′ 2

B
+ α′2 5

2

1

B2
− 2α′3



59

24
ζ (3) + 29

24



1

B3
. (23)

In this case, for 2nd and 4th order flow we can have ancient as well as immortal solution depending on α′ (> 0 or < 0),
respectively. Here Fig. 7(a) and (b) show such examples (for 2nd order), of ancient and immortal solutions, respectively. We
can also see from Fig. 7(b) that the scale factor corresponding to S

2 approaches a constant for α′ < 0. The 3rd order flow is
neither ancient nor immortal but maintains the same profile with the rest of its class. This may be seen in Fig. 7(c) and (d)
for both choices of α′. Here the continuous and dashed lines represent the solutions for A(λ′) and B(λ′) respectively.

3.2. Perturbative RG flow domain

Finally, we look at the case where 1

x′2 ≪ 1 or x′2 ≫ 1. In this regime, the RG Flow assumption of small curvatures is
valid. We look at the behaviour of the flow equations (Eqs. (10) and (11)) at various orders, for spherical and hyperbolic
surfaces. To obtain the correction at various orders, we expand the solutions at various orders and try to understand the
characteristics of the RG flow within the above-mentioned limit. To achieve our goals we consider a power series in 1

x′2 .
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(a) α′ > 0. (b) α′ < 0.

Fig. 8. Spherical surface: the plots for δ at different orders, 2nd (continuous line), 3rd (dashed line), 4th (dotted line).

(a) α′ > 0. (b) α′ < 0.

Fig. 9. Hyperbolic surface: the plots for δ at different orders, 2nd (continuous line), 3rd (dashed line), 4th (dotted line).

Below, we show the expansion for α′ > 0 in the case of a spherical surface at 2nd and 3rd order respectively.

−2λ′ + C2 = a′2 + ln



1

a′2



− 1

a′2 + 1

2a′4 − 1

3a′6 + · · · (24a)

−2λ′ + C̃3 = a′2 + ln



1

a′2



+ 1

4a′2 − 3

4a′4 + 19

48a′6 + · · · . (24b)

The constant terms are C2 = ln(a′2
0 − 1) − a′2

0 and C̃3 = C + 3π
8

+ ln 4
2

where C comes from Eq. (14). The expansions for

α′ < 0 (spherical surface) and hyperbolic surface (both α′ < 0 and α′ > 0) can be obtained in a similar fashion though the
α′ < 0 case is not important in the σ -model context.

Eq. (24) can bewritten as−2λ′+C = a′2+δ where δ represents the corrections over the Ricci flowdue to the higher order
terms in the RG flow equation. We plot these δ at various order in Figs. 8 and 9. It is clear that within the RG flow domain
the curvature squared terms correspond to corrections which can be quantified order by order in perturbation theory.

4. Higher order flow on warped product manifolds

4.1. Geometric flow analysis

We now consider the behaviour of a five dimensional warped product manifold under the flow equation (1). The metric
on the manifold we consider can be written as,

ds2 = e2f (σ ,λ)ηµνdx
µdxν + r2(σ , λ)dσ 2 (25)

where ηµν = diag[−1, 1, 1, 1] is the Minkowski metric.
We will now show that a conformally AdS spacetime, is a solution to the flow up to order N = 4 in α′. Also we will prove

the following propositions

Proposition 4.1. The flow equation (1) with β taken up to O(α′4) has a solution of the form

g(λ) = Ω(λ)[e2kσ ηµνdx
µdxν + dσ 2] (26)

with Ω(λ = 0) = Ω0 and k is a constant. This is a conformally anti de Sitter (AdS) spacetime, similar to the bulk spacetime in

the Randall–Sundrum braneworld model [14].
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Proposition 4.2. For the solution in Eq. (26) the flow equation up to O(α′N) where N ≤ 4 can be reduced to an ODE for Ω(λ)
which (after suitable rescaling) is of the form

dΩ

dλ
=

N−1
−

n=0

anΩ
−n (27)

where an are constant coefficients.

Proposition 4.3. Given Ω(λ = 0) = Ω0 ≥ 0, the ODE equation (27) has a unique expanding solution ( dΩ

dλ
> 0), with a finite

time singularity in the past at λ = λs ≤ 0, for each N = 1, 3 (odd) and also for N = 2, 4 (even) for α′ < 0.

Proposition 4.4. For N = even with α′ > 0, Eq. (27) has 3distinct solutions.

• Ω > α′k2ξN : An eternal expanding solution without finite time singularities.

• Ω < α′k2ξN : A contracting solution ending in a singularity at finite λ = λs ≥ 0.
• Ω = α′k2ξN : A fixed point soliton solution.

with ξ2 = 1 and ξ4 ≈ 1.5636.

Next we prove these propositions by reducing the flow equation (1) to an ODE of the form Eq. (27) and then explicitly
solving the ODE.

4.1.1. Reduction to ODE

Using the metric of Eq. (25) in the flow equation (7) we get the following dynamical equations for f and r (up to 2nd
order)

ḟ = 1

r2

[

f ′′ + f ′2 − f ′r ′

r



+ 3f ′2
]

− α′

r4





f ′′ + f ′2 − f ′r ′

r

2

+ 3f ′4



(28)

ṙ = 4

r

[

f ′′ + f ′2 − f ′r ′

r

]

− 4α′

r3

[

f ′′ + f ′2 − f ′r ′

r

]2

(29)

where Ḟ = ∂F
∂λ

and F ′ = ∂F
∂σ

, for any function F . To solve the above equations we assume that f and r can be written in a
variable separable form as

f (σ , λ) = fσ (σ ) + fλ(λ); r(σ , λ) = rλ(λ) rσ (σ ). (30)

The rσ part can be absorbed into a redefinition of the σ coordinate and we essentially have r = r(λ). These simplify the
equations to give (up to 2nd order),

ḟλ = 1

r2
[(f ′′

σ + f ′2
σ ) + 3f ′2

σ ] − α′

r4
[(f ′′

σ + f ′2
σ )2 + 3f ′4

σ ] (31)

ṙ = 4

r
[f ′′

σ + f ′2
σ ] − 4α′

r3
[f ′′

σ + f ′2
σ ]2. (32)

Since the equations are now in a variable separable form, for consistency at the leading order we must have f ′′
σ + f ′2

σ =
const1 and (f ′′

σ + f ′2
σ )+ 3f ′2

σ = const2; i.e. f
′
σ = k = const . and fσ = kσ . Note that this condition comes only from the leading

order terms. The equations in λ become r2

e2fλ
˙(e2fλ) = ˙(r2), which gives e2fλ = r2 = Ω(λ) ≥ 0.

Thus we have a solution with the metric equation (26) which is conformal to the anti de Sitter metric, as stated in
Proposition 4.1. The Ricci and Kretschmann scalars, R = g ijRij and K = RijklR

ijkl respectively, for such a metric are given by

R = − 4

r2
[2f ′′ + 5f ′2] = −20k2

Ω
(33)

K = 8

r4
[2(f ′′ + f ′2)2 + 3f ′4] = 40k4

Ω2
. (34)

Thus the curvature diverges and the manifolds become singular at Ω = 0.
Using the separable form for the functions in Eq. (5), we get (at third order),

β(3)
µµ = e2f

4r6
(−32f ′6

σ − 16f ′4
σ f ′′

σ − 12f ′2
σ f ′′2

σ − 14f ′′3
σ + 4f ′3

σ f (3)
σ + 8f ′

σ f
′′
σ f (3)

σ + f (3)
σ

2
)

β(3)
σσ = 1

r4
(−8f ′6

σ − 12f ′4
σ f ′′

σ + 3f ′2
σ f ′′2

σ − 3f ′′3
σ + 5f ′3

σ f (3)
σ + 6f ′

σ f
′′
σ f (3)

σ + f (3)
σ

2 + f ′2
σ f (4)

σ + f ′′
σ f (4)

σ ) (35)
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where F (n) = dnF
dσ n . But, from the separability at leading order, we already have f ′ = k and thus both the terms reduce

to e−2f r6β(3)
µµ = r4β(3)

σσ = −8k6. Similarly all higher derivative terms vanish at order 4 leaving e−2f r8β(4)
µµ = r6β(4)

σσ =
2(3 + 5ζ (3))k8.

This leads to the following ODE for Ω

1

8k2

dΩ

dλ
= 1 − α′k2

Ω
+ 2



α′k2

Ω

2

− 3 + 5ζ (3)

2



α′k2

Ω

3

. (36)

We can readily see that k = 0 is a fixed point of the flow. This corresponds to a 5 dimensional Minkowski space which is
thus, a soliton of the flow as is expected. For k ≠ 0 we rescale the variables using

Ω̄ = Ω

|α′|k2 ; λ̄ = 8λ

|α′| (37)

with Ω̄ ≥ 0 and the Eq. (36) becomes

dΩ̄

dλ̄
= 1 ∓ Ω̄−1 + 2Ω̄−2 ∓ 3 + 5ζ (3)

2
Ω̄−3. (38)

Here, the upper signs are for α′ > 0 and the lower ones for α′ < 0, a convention we shall adopt in all that follows. For
either case this equation is of the form of Eq. (27) in Proposition 4.2. Note that now a term of the form Ω̄n−1 corresponds to
O(α′n) in the original flow equation (1).

4.1.2. Solitons, solutions and singularities

We can solve Eq. (38) for all orders and obtain explicit solutions.
At N = 1 order, the flow is essentially an un-normalized Ricci flow independent of α′ with the solution

λ̄ + C1 = Ω̄. (39)

For N = 2 there exists a fixed point soliton for Ω̄ = ξ2 = 1 and when Ω̄ ≠ 1 we get

λ̄ + C2 = Ω̄ ± ln |Ω̄ ∓ 1|. (40)

Order N = 3 has no fixed points and the solution is

λ̄ + C3 = Ω̄ ± 1

2
ln |Ω̄2 ∓ Ω̄ + 2| − 3√

7
tan−1



2Ω̄ ∓ 1√
7



. (41)

The ODE at N = 4 has one fixed point at Ω̄ = ξ4 ≈ 1.5636. To obtain the solutions for Ω̄ ≠ ξ4 we use the following
factorization and partial fraction splittings

Ω̄3 − Ω̄2 + 2Ω̄ − 3 + 5ζ (3)

2
= (Ω̄ − ξ4)(Ω̄2 + βΩ̄ + γ ) (42a)

Ω̄2 − 2Ω̄ + 3+5ζ (3)

2

(Ω̄ − ξ4)(Ω̄2 + βΩ̄ + γ )
= a

Ω̄ − ξ4
− bΩ̄ + c

Ω̄2 + βΩ̄ + γ
(42b)

where the various parameters can be found approximately as

ξ4 ≈ 1.5636 β ≈ 0.5636 γ ≈ 2.8812 (43a)

a ≈ 0.6158 b ≈ −0.3841 c ≈ 1.7464. (43b)

In terms of these parameters the solution for N = 4 can be written as

λ̄ + C4 = Ω̄ ± a ln |Ω̄ ∓ ξ4| ∓ b

2
ln |Ω̄2 ± βΩ̄ + γ | − 2c − βb



4γ − β2
tan−1



2Ω̄ ± β


4γ − β2



. (44)

To compare these solutions, we plot all of them with the same initial condition Ω̄(λ̄ = 0) = Ω̄0 in Fig. 10.
It can be seen that the N = odd order solutions and the N = even solution for α′ < 0 begin at a finite time singularity

and continue to expand indefinitely. Whereas for N = even order and α′ > 0 we have 3 solutions — a soliton (Ω̄ = ξN ), an
eternal solution (Ω̄ > ξN ) and a solution with a finite time singularity (Ω̄ < ξN ).

The singularity time λ = λs such that Ω(λs) = 0 depends on Ω0. This behaviour can be seen in the Fig. 11.
We see from Fig. 11 that λ̄s ≤ 0 except for the case of order N = even and α′ > 0 in which case λ̄s starts from zero

and then increases up to infinity as Ω̄0 → ξN . Furthermore for α′ < 0 we always have λ̄
(4)
s < λ̄

(1)
s < λ̄

(2)
s < λ̄

(3)
s for the

respective orders of RG flow as seen in Fig. 11(b).
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(a) Ω̄0 = 0.5.

(b) Ω̄0 = 1.

(c) Ω̄0 = 1.5636.

(d) Ω̄0 = 4.

Fig. 10. Ω̄ vs λ̄ for various initial values of Ω̄0 at λ̄ = 0. The solutions at different orders are 1st (continuous line), 2nd (long dashed line), 3rd (short dashed

line) and 4th (dotted line). The figures on the left are for α′ > 0 and on the right are α′ < 0.

4.2. Perturbative RG flow domain

Considered as an RG flow equation, Eq. (38) is valid only in the region where 1/Ω̄ ≪ 1. Note that this regime does not
contain any solitons or singularities. To study the flow in that limit, we expand the solutions obtained at various orders
Eqs. (39)–(41) and (44) in the powers of 1/Ω̄ as follows

λ + C1 = Ω̄ (45a)

λ + C2 = Ω̄ ± ln Ω̄ −


1

Ω̄



∓ 1

2



1

Ω̄

2

− 1

3



1

Ω̄

3

+ · · · (45b)
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(a) α′ > 0. (b) α′ < 0.

Fig. 11. λ̄s vs Ω̄0 . The plots for different orders are 1st (continuous line), 2nd (long dashed line), 3rd (short dashed line) and 4th (dotted line).

(a) α′ > 0. (b) α′ < 0.

Fig. 12. δ vs Ω̄0 . The plots for ± ln Ω̄ (continuous line) and δ at different orders, 2nd (long dashed line), 3rd (short dashed line) and 4th (dotted line).

λ + C̃3 = Ω̄ ± ln Ω̄ +


1

Ω̄



± 3

2



1

Ω̄

2

+ 1

3



1

Ω̄

3

+ · · · (45c)

λ + C̃4 = Ω̄ ± ln Ω̄ +


1

Ω̄



∓ 0.7526



1

Ω̄

2

− 2.6699



1

Ω̄

3

+ · · · (45d)

where constant terms have been absorbed as C̃3 = C3 + 3π

2
√
7
and C̃4 = C4 + 1.74045.

We can write all of these as λ + C = Ω̄ + δ where δ represents the corrections over the Ricci flow due to the higher
order terms in the RG flow equation. We plot these δ over the Ricci flow obtained at various order in Fig. 12. We see that the
leading correction over the Ricci flow is ∼ ln Ω̄ , and other higher order corrections then vanish in the limit of large Ω̄ .

We can see that the 2nd order solution is correct up to ln Ω̄ term and the 3rd order up to 1/Ω̄ . We suspect, similarly,
that the 4th order solution will be correct till 1/Ω̄2, but this can be verified only if even higher order solutions are available.

5. Summary and conclusion

In this article we have investigated the higher order flows on various manifolds, from uniform homogeneous spaces to
warped manifolds. Let us summarize the work done and mention some future possibilities briefly.

We began with higher order geometric flows for the toy examples of the two-sphere and hyperbolic space in two
dimensions. It turns out that the results for the 1st order (Ricci) and 3rd order flows are similar in nature while the 2nd
and 4th order flows have similarities. There is a marked difference for flows with α′ > 0 and α′ < 0, which has been
pointed out. The existence of fixed points (solitons) have also been mentioned. We emphasize that these toy examples,
though simplistic, do provide us with pointers towards distinguishing between the specific effects that occur because of
the inclusion of higher order terms. As expected, the higher order terms do not resolve the lower order singularities though
there are definite changes in terms of the singularity ‘time’, initial condition dependences and the appearance of solitons.
Further, we discuss the perturbative RG flow domain. Here, we are able to quantify the corrections due to the presence of
the higher order terms.

Subsequently, we turned towards higher order flows in the context of warped product manifolds. This analysis is largely
inspired by the physics of warped extra dimensions and brane-bulk models. As claimed in Proposition 4.1 we show that the
conformally AdS spacetime in Eq. (26) is a solution of the RG flow up to order N = 4 in α′. While reducing the RG flow PDEs
to ODEs, assuming separability of the functions in the line element, we noted that the conformal AdS nature arises by using
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just the leading order terms. The higher order equations are then consistent, giving the conformal factor e2fλ = r2 = Ω . The
behaviour of Ω is then determined by the ODE and the order of the expansion of the beta functions.

It is then natural to conjecture that the conformally AdS metric equation (26) will solve the flow up to any order N . Note
that using only the leading order we get f ′

σ = k. Also since curvature is a function of derivatives of themetric, the β-function

at any order N will look like β(N)
µµ ∼ e2f A(N)(k)

r2N
and β(N)

σσ ∼ B(N)(k)

r2(N−1) , where A and B are functions of k, just like in Eq. (35). If

A(N)(k) = B(N)(k) then we can write e2f = r2 = Ω and thus get the conformally AdS solution. Then the ODE for Ω will
also be of the form of Eq. (27) for any order N . Thus we conjecture that both Propositions 4.1 and 4.2 hold for any order N .
Since explicit forms of the βij are not known for N > 4, we cannot explicitly check these conjectures presently. It will be
interesting to look for a proof using general principles.

Apart from theMinkowski spacetime,we have found another soliton solution to the flow at even ordersN = 2, 4. For this
solutionΩ = α′k2ξN and from Eq. (33) we see that R = −20/α′ξN . Thus the spacetime has curvature inversely proportional
to α′. In the context of RG flows, the existence of a soliton is a non-perturbative effect. Smaller values of α′ correspond
to larger curvatures and hence the perturbative expansion of the β functions in Eq. (2) fails. It is for this reason that the
solutions obtained at various orders showmarkedly different behaviour close to the fixed point value of Ω̄ = ξN . In regions
of low curvature, we have evaluated the higher order corrections to the RG flows—these corrections are small as long as we
are in the perturbative RG flow domain. However, they are useful in quantifying the RG flow behaviour at successive higher
orders. Moreover, the singularities and solitons which appear in the geometric flow analysis can serve as pointers to the
precise domain in which the σ -model RG flow equations are valid.

In a way, we have shown that the bulk spacetime used in the warped braneworld models naturally arise as solutions of
the flow equations (at least up to fourth order). Though this result assumes separability of the metric functions we are able
to demonstrate the uniqueness of AdS spacetime as a solution of the flow equations. The task of looking at non-separable
situations, which at the lowest order was discussed in our previous article [16] remains and will be taken up in future.

Further, the evolution of geometric quantities such as the Riemann and Ricci scalars in the context of higher order flows
will be an exercise worth pursuing, the primary motivation being to distinguish between the lowest order (Ricci) and these
higher order geometric flows.
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