
Journal of Discrete Algorithms 6 (2008) 20–27

www.elsevier.com/locate/jda

On minimum metric dimension of honeycomb networks

Paul Manuel a, Bharati Rajan b,∗, Indra Rajasingh b, Chris Monica M b,1

a Department of Information Science, Kuwait University, Kuwait 13060
b Department of Mathematics, Loyola College, Chennai, India 600 034

Received 22 November 2005; received in revised form 11 September 2006; accepted 13 September 2006

Available online 28 November 2006

Abstract

A minimum metric basis is a minimum set W of vertices of a graph G(V,E) such that for every pair of vertices u and v of G,

there exists a vertex w ∈ W with the condition that the length of a shortest path from u to w is different from the length of a shortest

path from v to w. The honeycomb and hexagonal networks are popular mesh-derived parallel architectures. Using the duality of

these networks we determine minimum metric bases for hexagonal and honeycomb networks.

 2006 Elsevier B.V. All rights reserved.
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1. Introduction and background

Multiprocessor interconnection networks are often required to connect thousands of homogeneously replicated

processor-memory pairs, each of which is called a processing node. Instead of using a shared memory, all synchro-

nization and communication between processing nodes for program execution is often done via message passing.

Design and use of multiprocessor interconnection networks have recently drawn considerable attention due to the

availability of inexpensive, powerful microprocessors and memory chips [2].

It is known that there exist three regular plane tessellations, composed of the same kind of regular polygons:

triangular, square, and hexagonal. They are the basis for the design of direct interconnection networks with highly

competitive overall performance. Grid connected computers and tori (Figs. 1(a) and (b)) are based on regular square

tessellations, and are popular and well-known models for parallel processing.

Built recursively using the hexagon tessellation [13], honeycomb networks (Fig. 1(c)) are widely used in computer

graphics [7], cellular phone base stations [9], image processing, and in chemistry as the representation of benzenoid

hydrocarbons. Honeycomb networks are better in terms of degree, diameter, total number of links, cost and the bisec-

tion width than mesh connected planar graphs. Stojmenovic [13] has studied the topological properties of honeycomb

networks, routing in honeycomb networks and honeycomb torus networks. Parhami [10] gave a unified formulation
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Fig. 1. Graphs obtained by regular plane tessellations.

for the honeycomb and the diamond networks. The embedding of honeycomb networks into trees, hypercubes and

other networks was suggested as an open problem in [13].

The triangular tessellation is used to define Hexagonal network (Fig. 1(d)) and this is widely studied in [2]. An

addressing scheme for hexagonal networks, and its corresponding routing and broadcasting algorithms were proposed

by Chen et al. [2].

2. An overview of the paper

A metric basis for a graph G(V,E) is a set W ⊆ V such that for each pair of vertices u and v of V � W , there

is a vertex w ∈ W such that d(u,w) �= d(v,w). A minimum metric basis is a metric basis of minimum cardinality.

The cardinality of a minimum metric basis of G is called minimum metric dimension and is denoted by md(G); the

members of a minimum metric basis are called landmarks. The minimum metric dimension (MMD) problem is to find

a minimum metric basis.

The problem of finding the metric dimension of a graph was first studied by Harary and Melter [5]. Melter and

Tomescu [8] studied the metric dimension problem for grid graphs. Khuller et al. [6] describe the application of this

problem in the field of computer science and robotics. This problem has been studied for trees, multi-dimensional

grids [6], Petersen graphs [1], and Torus Networks [11]. Surprisingly, there is not much relevant work in the literature.

The algorithmic complexity status of MMD problem is not known to even simple graphs such as co-graphs, interval

graphs, Cayley graphs etc.

It is interesting to learn [6] that a graph has metric dimension 1 if and only if it is a path. The problem of computing

the metric dimension of trees is solved in linear time [6]. If G has p vertices then it is clear that 1 � md(G) � p − 1.

Also md(Kp) = p − 1, md(Cp) = 2, and md(Km,n) = m + n − 2, where Kp , Cp , and Km,n are the complete graph,

the cycle, and the complete bipartite graph respectively [5]. Garey and Johnson [3] proved that this problem is NP-

complete for general graphs by a reduction from 3-dimensional matching.

The aim of this paper is to find the minimum metric dimension of the honeycomb networks. Hexagonal network

HX(n) has a simple distance property like the two-dimensional grid. We first locate a minimum metric basis of HX(n).

By making use of the fact that honeycomb networks HC(n) and hexagonal networks HX(n) are dual networks, we

derive a minimum metric basis for HC(n). We prove that the minimum metric dimension of the honeycomb networks

of size n is 3.

3. Properties of honeycomb networks

Honeycomb networks can be built from hexagons in various ways. The honeycomb network HC(1) is a hexagon.

The honeycomb network HC(2) is obtained by adding six hexagons to the boundary edges of HC(1). Inductively,

honeycomb network HC(n) is obtained from HC(n − 1) by adding a layer of hexagons around the boundary of

HC(n − 1). For instance, Fig. 1(c) is HC(2). The parameter n of HC(n) is determined as the number of hexagons

between the centre and boundary of HC(n). The number of vertices and edges of HC(n) are 6n2 and 9n2 − 3n

respectively. The diameter is 4n − 1 [13].

In order to view the honeycomb HC(n) as a dual of the hexagonal network HX(n), let us recall the definition of

a dual graph. Let G be a planar graph. The dual of G, denoted by G⋆, is a graph whose vertex set is the set of faces

of G, where two vertices f ⋆ and g⋆ in G⋆ are joined by an edge e⋆ if the faces f and g are separated by the edge e.

Clearly the number of vertices of G⋆ is equal to the number of faces of G and the number of edges of G⋆ is equal to
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Fig. 2. The bounded dual is obtained by deleting the vertex v from the dual.

Fig. 3. (a) Bounded dual of HX(4) is HC(3). (b) HX(5) with corner vertices {α,β, γ,μ,σ,η}, centre vertex O and md(HX(n)) > 2.

the number of edges of G. Also any planar graph has exactly one unbounded face. The graph obtained from G⋆ by

deleting the vertex corresponding to the unbounded face is called a bounded dual of G. See Fig. 2.

Lemma 1. [4] The bounded dual of HX(n + 1) is HC(n).

Lemma 1 illustrates the dual relationship between HX(n) and HC(n). See Fig. 3(a).

Though a honeycomb is a bounded degree graph, measurement of distances between vertices is not straightforward.

Interestingly, its dual graph, the hexagonal network has a better geometrical structure which enables one to measure

easily the distance between any two points. We make use of this geometrical structure of HX(n) to find the MMD

of HX(n). From this we easily deduce MMD of HC(n).

4. Minimum metric dimension of hexagonal networks

We begin this section with some topological properties of HX(n). It has 3n2 − 3n + 1 vertices and 9n2 − 15n + 6

edges, where n is the number of vertices on one side of the hexagon [2]. The diameter is 2n− 2. There are six vertices

of degree three which we call as corner vertices. There is exactly one vertex v at distance n − 1 from each of the

corner vertices. This vertex is called the centre of HX(n) and is represented by O . See Fig. 3(b). We solve the MMD

problem for hexagonal networks and prove that the minimum metric dimension of hexagonal networks HX(n) is 3.

First we estimate the lower bound for md(HX(n)). To do this we need the following result of Khuller et al. [6].

Theorem 2. Let G be a graph with minimum metric dimension 2 and let {u,v} ⊂ V be a metric basis in G. Then the

following are true:

(a) There is a unique shortest path between u and v.

(b) The degree of each u and v is at most 3.
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Fig. 4. Coordinates of vertices in HX(5).

Lemma 3. Let G be a hexagonal network HX(n). Then md(G) > 2.

Proof. In view of Theorem 2, if {u,v} ⊂ V is a metric basis of HX(n), then each u and v is one of the corner vertices

since every other vertex of HX(n) is of degree 4 or 6. Since there are only six corner vertices, we can verify each

possible pair one by one. Now, {α,β} is not a metric basis, as x1 and x2 are equidistant from α and β; {α,γ } is not a

metric basis, as x3 and x4 are equidistant from α and γ . Similarly, considering the vertices x5 and x6 we conclude that

{α,μ} is not metric basis. See Fig. 3(b). The other possible pairs are ruled out by the symmetrical nature of HX(n).

Thus md(G) > 2. ✷

In order to exhibit a metric basis of cardinality three, we require the concept of neighborhood of a vertex. Let V be

the vertex set of HX(n). An r-neighborhood of v is defined by Nr(v) = {u ∈ V : d(u, v) = r}. It is easy to see that the

graph induced by vertices in Nr(v) is either a cycle of length 6(r − 1) or a section of the same cycle.

Stojmenovic [13] proposed a coordinate system for a honeycomb network. This was adapted by Nocetti et al. [9]

to assign coordinates to the vertices in the hexagonal network. In this scheme, three axes, X,Y and Z parallel to three

edge directions and at mutual angle of 120 degrees between any two of them are introduced, as indicated in Fig. 4.

We call lines parallel to the coordinate axes as X-lines, Y -lines and Z-lines. Here X = h and X = −k are two X-lines

on either side of the X-axis. Any vertex of HX(n) is assigned coordinates (x, y, z) in the above scheme. See Fig. 4.

We denote by PX , a segment of an X-line consisting of points (x, y, z), with x coordinate fixed. That is,

PX = {(x0, y, z)/y1 � y � y2, z1 � z � z2}. Similarly PY = {(x, y0, z)/x1 � x � x2, z1 � z � z2} and PZ =

{(x, y, z0)/x1 � x � x2, y1 � y � y2}.

Lemma 4. In any HX(n), we have Nr(α) = PY ◦ PZ , Nr(β) = PX ◦ PZ , Nr(γ ) = PX ◦ PY .

Proof. It follows from the structure of HX(n) that, Nr(α) is composed of a segment of a Y -line followed by a segment

of a Z-line. More precisely, for 1 � r � n − 1, we have

PY =
{

(r − s,−(n − 1) + r,−(n − 1) + s),0 � s � r
}

and

PZ =
{

(−t,−(n − 1) + r − t,−(n − 1) + r),1 � t � r
}

.

For n � r � 2n − 2,

PY =
{

((n − 1) − s,−(n − 1 − r),−(2n − 2 − r) + s),0 � s � n − 1
}

and

PZ =
{

(−t,−(n − 1 − r) − t,−(n − 1 − r)),1 � t � n − 1
}

.

Hence, for any r , Nr(α) = PY ◦ PZ . Similarly Nr(β) = PX ◦ PZ , Nr(γ ) = PX ◦ PY can be proved. See Figs. 5

and 6. ✷

Lemma 5. For any r1 and r2, Nr1(α) ∩ Nr2(β) is either empty or singleton or a line segment of a Z-line.
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Fig. 5. Nr (α), when r < n.

Fig. 6. Nr (β), when r < n.

Proof. By Lemma 4, Nr1(α) = PY ◦ PZ , and Nr2(β) = PX ◦ PZ . Thus Nr1(α)∩ Nr2(β) is either empty or a singleton

or a line segment of PZ . ✷

Corollary 6. Let u = (x1, y1, z1), v = (x2, y2, z2) be vertices of HX(n) such that x1 �= x2, y1 �= y2, z1 �= z2. Then

Nr1(α) ∩ Nr2(β) contains at most one of u and v.

Proof. Suppose both u,v ∈ Nr1(α)∩Nr2(β). By Lemma 5, Nr1(α)∩Nr2(β) is a line segment of PZ . This means that

z1 = z2, a contradiction. ✷

Theorem 7. {α,β, γ } is a metric basis for HX(n).

Proof. Let u = (x1, y1, z1), v = (x2, y2, z2) be any two vertices of HX(n).

Case 1 (x1 = x2): Then u,v ∈ PX . Hence d(u,α) �= d(v,α).

Case 2 (y1 = y2): Then u,v ∈ PY . Hence d(u,β) �= d(v,β).

Case 3 (z1 = z2): Then u,v ∈ PZ . Hence d(u, γ ) �= d(v, γ ).

Case 4 (x1 �= x2, y1 �= y2, z1 �= z2): Suppose that d(u,α) = d(v,α). Then u, v ∈ Nr1(α) for some r1. We claim that

d(u,β) �= d(v,β). Assume that d(u,β) = d(v,β). Then u, v ∈ Nr2(β) for some r2 and consequently u,

v ∈ Nr1(α) ∩ Nr2(β). This is a contradiction to Corollary 6. Thus d(u,β) �= d(v,β). ✷
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Fig. 7. Channels in HX(5).

5. Minimum metric dimension of honeycomb networks

In this section we prove that the minimum metric dimension of the honeycomb network is 3. We denote the strip

between two consecutive X-lines in HX(n) as an X-channel and denote it by CX . Similarly CY and CZ are defined.

See Fig. 7. An X-channel of HC(n) behaves in the same way as an X-line of HX(n). The reader may recall the

property that for any two vertices (x1, y1, z1) and (x2, y2, z2) of an X-line, x1 = x2. In the same way for any two

vertices (x1, y1, z1) and (x2, y2, z2) of an X-channel, x1 = x2. This is applicable for Y -channel and Z-channel too.

In what follows Nr(v) denotes an r-neighborhood of a vertex v of HC(n). The proofs of Lemmas 8 and 9 are

similar to those of Lemma 5 and Corollary 6 respectively and hence they are left to the readers.

Lemma 8. Nr(a) ⊂ CY ◦ CZ , Nr(b) ⊂ CX ◦ CZ , and Nr(c) ⊂ CX ◦ CY where a, b and c are honeycomb vertices as

shown in Fig. 7.

Lemma 9. For any r1 and r2, Nr1(a) ∩ Nr2(b) is either empty or singleton or a pair of adjacent vertices or line

segment of a Z-channel.

It follows, as in Theorem 7, that {a, b, c} is a metric basis for HC(n). Thus we have

Theorem 10. Let G be a honeycomb network HC(n). Then md(G) = 3.

6. Two hex derived networks

There are a number of open problems suggested for various interconnection networks. To quote Stojmenovic [12]:

‘Designing new architectures remains an area of intensive investigation given that there is no clear winner among

existing ones’.

In this section we introduce two new architectures using the hexagonal and honeycomb networks. See Fig. 8. It is

known that the bounded dual of HX(n) is HC(n − 1). The vertex corresponding to each face (a triangle) of HX(n) is

placed in the face itself. Then the vertex is joined to the three vertices of the triangle. The resulting graph is a planar

graph and it is called HDN1. This graph has 9n2 − 15n + 7 vertices and 27n2 − 51n + 24 edges. The diameter is

2n − 2.

The second architecture is obtained from the union of HX(n) and its bounded dual HC(n − 1) by joining each

honeycomb vertex with the three vertices of the corresponding face of HX(n). The resulting graph is non-planar and

it is called HDN2. This graph has 9n2 − 15n + 7 vertices and 36n2 − 72n + 36 edges. The diameter is 2n − 2.

These two architectures HDN1 and HDN2 have a few advantages over the hexagonal and honeycomb networks.

The vertex-edge ratio of HDN1 and HDN2 are the same as that of hexagonal and honeycomb networks. However,
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Fig. 8. The two hex derived networks.

Fig. 9. A graph containing a butterfly as an induced subgraph.

both these hexagonal and honeycomb networks are simulated by these hex derived networks with no extra cost. This

is possible since the hex derived networks contain hexagonal and honeycomb. HDN1 is planar and it accommodates

in a given space more processors and wires than hexagonal and honeycomb. We conjecture that the minimum metric

dimension of these hex derived networks HDN1 and HDN2 lies between 3 and 5. Thus we pose the following

Open Problem. Let G be HDN1 or HDN2. Then 3 � md(G) � 5.

7. Conclusion

It is interesting to note that if H be an induced subgraph of a graph G then md(H) need not be less than or equal

to md(G). For example the graph in Fig. 9 has metric dimension 3, but it has a two-dimensional butterfly as an induced

subgraph which has metric dimension 4.

However a symmetrical network such as hexagonal and honeycomb networks satisfy a nice hereditary property in

the sense that any sub hexagonal or a sub honeycomb network has the same minimum metric dimension as the parent

network. This result helps us to provide a lower bound for md(HX(n)). Higher dimensional hexagonal and honeycomb

networks, as well as the corresponding torii are interconnection networks for which the MMD problem is open.
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