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Abstract  Nonlocal two-qubit quantum gates are represented by canonical 

decomposition or equivalently by operator-Schmidt decomposition. The former 

decomposition results in geometrical representation such that all the two-qubit gates form 

tetrahedron within which perfect entanglers form a polyhedron. On the other hand, it is 

known from the later decomposition that Schmidt number of nonlocal gates can be either 

2 or 4. In this work, some aspects of later decomposition are investigated. It is shown that 

two gates differing by local operations possess same set of Schmidt coefficients. 

Employing geometrical method, it is established that Schmidt number 2 corresponds to 

controlled unitary gates. Further, all the edges of tetrahedron and polyhedron are 

characterized using Schmidt strength, a measure of operator entanglement. It is found that 

one edge of the tetrahedron possesses the maximum Schmidt strength, implying that all 

the gates in the edge are maximally entangled.  
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1 Introduction 

 

Entanglement is a nonlocal property of quantum states, playing central role in quantum 

information processing [1, 2]. For a two-qubit system, entanglement can be controlled by 

appropriate application of nonlocal quantum unitary operators (gates). It is then important 

to characterize and classify the nonlocal attributes of two-qubit gates. One important 

characterizing tool is local invariants of a gate, which are unaffected by local operations 

[3]. Zhang et al. studied quantum gates from geometrical perspective using canonical 

decomposition [4]. The local invariants and geometrical approach compliments each 

other, such that nonlocal two-qubit gates form an irreducible geometry of tetrahedron 

(known as Weyl chamber). Of all the gates, exactly half of them are perfect entanglers – 

capable of producing maximally entangled state when acting on some separable states. 

Geometrically, the perfect entanglers form a polyhedron within the Weyl chamber [4]. 

 Another useful representation of two-qubit operator is operator-Schmidt 

decomposition. In this representation, the number of non zero (Schmidt) coefficients sl of 

a gate is called as Schmidt number. It is known that local gates have Schmidt number 1 

and nonlocal gates have Schmidt number 2 or 4 [5, 6]. In this paper, geometrical method 

is employed to show that Schmidt number 2 belong to the controlled unitary gates; 

implying that controlled-NOT is the only perfect entangler possessing Schmidt number 2.  

Further, it is shown that gates possessing same local invariants must necessarily have the 

same set of sl.  

To capture the entangling capabilities of unitary operators, Zanardi introduced the 

notion of operator entanglement through linear entropy L(U). It is known that L(U) is 

related to the entangling power, which is defined as the average entanglement production 

of an operator [7, 8].  Another less studied measure of operator entanglement is the 

Schmidt strength ,)(UK Sch  which is defined as the Shannon entropy of 
2

ls   associated to 

a gate [5]. D. Collins et al. introduced a framework to measure the nonlocal content of a 

gate, in terms of resources (entangled and classical bits) required for implementation of 

the gate using double teleportation. Within this framework, SWAP and Double-CNOT 

are known to be maximally nonlocal gates [9, 10]. Here, we found that one edge of the 

tetrahedron, which includes SWAP and Double-CNOT, possesses the maximum Schmidt 

strength. It implies that all the gates in the edge are maximally entangled. This result 



 3 

naturally enquires if all the other gates in the edge are maximally nonlocal as well, in the 

sense of resources required for their implementation using double teleportation. 

 The paper is organized as follows. In the next section, canonical decomposition of 

two-qubit gates and associated geometry is briefed. From the operator-Schmidt 

decomposition, it is shown in Section 3 that gates differing by local operations must have 

same set of coefficients sl. A simple geometrical analysis is presented to show that 

Schmidt number 2 corresponds to controlled unitary gates. In Section 4, coefficients sl for 

all the edges of tetrahedron and polyhedron are computed, from which the Schmidt 

strength is analyzed. The paper is concluded with a discussion on the results presented. 

 

2   Canonical decomposition 

 

An arbitrary two-qubit gate U SU(4) can be written in the following form known as 

canonical decomposition [11, 12]: 
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where zyx ,,  are Pauli matrices and k1, k2  SU(2) SU(2). Two unitary operators 

U, U1 SU(4) are called locally equivalent if they differ only by local operations: U = 

k1U1k2. A class of gates differ from U only by local operations is referred as local 

equivalence class [U]. Makhlin and Zhang et al. have shown that the local equivalence 

class [U] can be characterized uniquely by local invariants which are calculated as 
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local invariants are defined as [3,4] 
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where B

T

B UUUM )( . Local invariants and a point [ 321 ,, ccc ] corresponding to the gate 

U are related as [4] 
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From this relation, for given local invariants ),( 21 GG  the point [ 321 ,, ccc ] in a 3-torus 

geometry (with period ) is identified. In other words, the gate U or its equivalence class 

[U] is characterized by the point [ 321 ,, ccc ] as well. The symmetry reduced 3-torus takes 

the form of tetrahedron (Weyl chamber). A two-qubit gate is called a perfect entangler if 

it produces a maximally entangled state when acting on some separable input state. 

Perfect entanglers constitute a polyhedron within the Weyl chamber as shown in Fig.1.  

 

 

 

 

 

  

 

 

 

 

  

 Fig. 1 Tetrahedron OA1A2A3 (Weyl chamber) is the geometrical representation of nonlocal two-

qubit gates. Polyhedron LMNPQA2 (shown in dashed lines) corresponds to the perfect entanglers. The thick 

lines represent the c1, c2 and c3 axes of the Weyl chamber. The points L, M, N, P, and Q are midpoints of 

the tetrahedron edges OA1, A2A1, A1A3, OA3, and OA2 respectively. The 

points ]0,0,2/[L , ]0,2/,2/[2A  and ]2/,2/,2/[3A  correspond to CNOT, Double-

CNOT and SWAP gates respectively  
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3   Operator-Schmidt decomposition 

An alternate representation to canonical decomposition is the operator-Schmidt 

decomposition using which an operator U can be expressed as  

   
l

lll BAsU              (4) 

where 0ls are called as Schmidt coefficients and Al (Bl) are orthonormal operator bases 

for system A (B) [5]. In this representation, the number of non-zero Schmidt coefficients 

of an operator is defined as Schmidt number. Leaving the local operations 1k  and 2k , 

nonlocal content of U as given in Eq. 1 can be rewritten in the operator-Schmidt 

decomposition as follows. Since yyxx , and zz commute each other, 

Eq. 1 can be written as  
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With this the nonlocal content of U can be expressed as [5] 
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 Rewriting the above expression as  

  )()()()( 4321 zzyyxx zzzIIzU          (5) 

where 
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         (6)           

We observe that Eq. 5 is in the Schmidt form such that 
lz  is recognized as Schmidt 

coefficients ls . Representing Eq. 5 in the Bell basis and using Eq. 2, after some algebra, 

local invariants are related to the above coefficients as   

     

2
4

1

2

1

l

l
zG ,                  (7a)  

   .242
4

1

4

1

4

12

l l

ll zzGG           (7b) 

This relation enables to compute local invariants of a gate from the operator-Schmidt 

decomposition as well. From the above relation, it is clear that any permutation of lz will 

leave the local invariants unaffected. We may note that Eq. 7 will retain its form under 

the transformations: llllll izzizzzz ,, . Further, the local invariants are 

unaltered if  ll izz  with two of the coefficients having same sign of transformation 

(to preserve the last term in Eq. 7b). Thus, local equivalence class of a gate can also be 

recognized from the coefficients lz . In other words, locally equivalent gates possess same 

set of Schmidt coefficients ls . However, the gates with same set of ls  need not be locally 

equivalent. 

  While local gates possess Schmidt number 1, nonlocal gates correspond to 

Schmidt number 2 or 4. It may be noted that the gates can not possess Schmidt number 3 

[5]. In what follows, we employ geometrical method to classify the nonlocal gates using 

Schmidt number. For Schmidt number 2 gates, if any one of the coefficients in Eq. 6 is 

zero for certain values of 21,cc  and 3c  then another coefficient also vanishes. The 

coefficients zl can be zero if (A) sum of the terms is zero or (B) individual terms are zero. 

Then the geometrical points for each vanishing coefficient are  
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   01z :     (A) ],,0[ 2c    or  ],,0[ 3c  (B) ],0,[ 1c      

   02z :     (A) ]0,,0[ 2c    or  ],0,0[ 3c    (B) ],0,[ 1c  

   03z :     (A) ],,0[ 2c  or  ],0,0[ 3c    (B) ]0,0,[ 1c      

   04z :     (A) ]0,,0[ 2c   or  ],,0[ 3c  (B) ]0,0,[ 1c . 

From these conditions, it is also clear that quantum gates can not have Schmidt number 3. 

For example, if z1 = 0 then z3 or z4 or z2 also vanishes. Hence, the possible gates with 

Schmidt number 2 are ],0,[ 1c , ],,0[ 2c , ],,0[ 3c , ]0,0,[ 1c , ]0,,0[ 2c  and ],0,0[ 3c . Since 

ic  are arbitrary here, they are conveniently denoted as  with 0 . From the 

geometry, it is known that if   ],,[ 321 ccc  is an element in a local equivalence class [U] 

then ],,[ kji ccc , ],,[ kji ccc , ],,[ kji ccc , and ],,[ kji ccc  are also in [U] 

where ),,( kji  is a permutation of )3,2,1( . Hence, the first three possible values of 

],,[ 321 ccc  corresponding to Schmidt number 2 are the permutations of ]0,,[ , and the 

remaining three values are the permutations of ]0,0,[ . Using ],,[ kji ccc  we 

identify ]0,,[  as ]0,0,[ . Therefore, we identify that the two lines ]0,0,[  and 

]0,0,[  correspond to the gates with Schmidt number 2. The line ]0,0,[  corresponds to 

the edge OA1 of the Weyl chamber (Fig. 1.), which is the well known controlled unitary 

gates; ]0,0,[  is the mirror image of ]0,0,[  and hence they are locally equivalent to 

each other. Therefore, it is clear that only controlled unitary gates ]0,0,[  with 

2/0  possess Schmidt number 2 and all other nonlocal gates possess Schmidt 

number 4. Hence, Schmidt number 2 class is a special case of nonlocal gates which are 

outnumbered by Schmidt number 4 gates. Since CNOT is the only perfect entangler in 

the controlled unitary family, it is the only perfect entangler with Schmidt number 2.  

   It is known that a gate with Schmidt number 2 can be written in the following 

form upto the local equivalence  

    
xx

piIIpU )1(                                      (8) 

where 10 p  [5].  Substituting )2/(sin 2
p  we have 
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Using Eq. 7 the local invariants of the above operator is computed as 2

1 cosG  and 

12 12 GG , which precisely correspond to the controlled unitary gates [4]. It is worth 

mentioning that p  and the geometrical parameter  have one-to-one correspondence in 

the defined range.  

 

4   Schmidt strength  

Since the Schmidt coefficients satisfy 
4

1

2 1
l

ls , 
2

ls  form a probability distribution. 

Exploiting this property, Schmidt strength is defined as the Shannon entropy of the 

distribution
2

ls : 
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which may recognized as a measure of entanglement of U [5]. It is easy to check that 

20 SchK , such that 0SchK  for local gates. In this section we compute Schmidt 

coefficients and hence Schmidt strength for six edges of tetrahedron (Weyl chamber) and 

nine edges of polyhedron (see Fig. 1). We may note that the geometry of all the edges are 

one parametric [13]. Subsequently, the Schmidt coefficients and Schmidt strength of the 

edges are also one parametric. By substituting geometrical points of the edges in Eq. 6, 

Schmidt coefficients sl are computed and presented in tables 1 and 2.  
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Table. 1 Schmidt coefficients for the edges of tetrahedron (Weyl chamber) 

Edge ],,[ 321 ccc  Range of  

parameter 
1s  2s  3s  

4s  

OA1 ]0,0,[  0  
2

cos  
2

sin  - - 
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2
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 It is known from our earlier studies on the Weyl chamber that the edges OA3 and 

A1A3 correspond to SWAP
α
 and its inverse respectively [13]. Although both the edges 

belong to different locally equivalence class, we observe from table 1 that they possess 

the same set of sl. Further, it is also interesting to note that 2/1ls for all the gates lie on 

the edge A2A3. Within the Weyl chamber the perfect entanglers form a polyhedron 

LMNPQA2 with four edges LQ, LM, A2M, and A2Q lie in the base (Fig. 1). We may note 

that the gates lie in the base are symmetric about the line LA2. Therefore, the edges LQ 

and LM are locally equivalent to each other, possessing same set of ls (table 2).  

Similarly the edges A2M and A2Q are also locally equivalent to each other, hence share 

their coefficients .ls We also note that the edges QP and MN possess same set of 

,ls though the edges are not locally equivalent to each other. 
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Table. 2 Schmidt coefficients for the edges of polyhedron 

Edge ],,[ 321 ccc  Range of 

parameter 
1s  2s  3s  

4s  

LQ 0,,
2
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1 2
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It is already shown that the edge OA1 represents controlled unitary gates 

possessing Schmidt number 2. In this case, the Schmidt strength SchK reduces to binary 

entropy such that 10 SchK  with CNOT possessing the maximal value. Figure 2 shows 

the Schmidt strength of OA1 and OA2 with respect to their parameter. Since the edges OA3  

and A1A3 possess same set of sl, the measure SchK assumes same form as shown in       
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Fig. 3(a). Another edge lying in the base is A2A1 for which SchK is shown in   Fig. 3(b). 

From Fig. 2 and Fig. 3, we observe that for the five edges of Weyl chamber the measure 

SchK is monotonic with the parameter. In other words, no two gates lying in a given edge 

possess the same Schmidt strength. It is known that two-qubit operators having four non-

vanishing Schmidt coefficients with the same amplitude must be maximally entangled 

[8]. Here we observe that all the gates in edge A2A3 possess equal Schmidt coefficients of 

1/2 and hence 2SchK . In other words, all the gates in the edge A2A3 (which include 

Double-CNOT and SWAP) are maximally entangled. It is interesting to note from the 

notion of entanglement of an operator that SWAP is maximally entangled, though it does 

not produce any entanglement when acting on a state. 

 

 

 

 

    

 

 

 

 

 

 

 

 

   

 

  

Fig.  2   Schmidt strength of OA1 (dashed line) and OA2 (solid line). The other half of OA1 is not 

shown on symmetry ground 
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Fig.  3 (a) & (b) Schmidt strengths of OA3 (A1A3) and A2A1 respectively 

 

 Since the polyhedron edges LQ and LM are locally equivalent to each other, they 

possess same form of Schmidt strength. Similarly, the edges A2M and A2Q also assume 

the same form of SchK (Fig. 4). The same figure shows SchK for LN and A2P as well. 

Figure 5(a) shows SchK  for QP which is same as that of MN. We note that the Schmidt 

strength for all the edges of polyhedron discussed so far are monotonic functions of their 

parameter. Therefore, no two gates lying in a given edge possess the same Schmidt 

strength. However, the edge PN is an exception for which SchK is not a monotonic 

function of parameter. For this edge, the measure is symmetric about its midpoint (Fig. 

5(b)). Further, we also observe that 21 SchK  for all the edges of polyhedron. 
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Fig. 4 (a) & (b) Schmidt strengths of A2Q (A2M), A2P and LQ (LM), LN respectively 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

Fig. 5 (a) & (b) Schmidt strengths of QP (MN) and PN respectively 
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5   Conclusion 

In this paper we have studied the operator-Schmidt decomposition of nonlocal two-qubit 

gates. It is shown that locally equivalent gates must necessarily possess same set of 

Schmidt coefficients sl. However, the vice-versa is not true. Employing geometrical 

approach, it is shown that controlled unitary gates (one edge of the Weyl chamber) only 

have Schmidt number 2 and all other gates possess Schmidt number 4. Hence CNOT is 

the only perfect entangler possessing Schmidt number 2. Thus, our approach 

compliments the Schmidt number classification of two-qubit gates [6]. 

Further, all the six edges of Weyl chamber and nine edges of polyhedron are 

characterized using Schmidt coefficients sl and Schmidt strength SchK – a measure of 

entanglement of two-qubit gate such that 20 SchK . It is found that except one edge of 

the Weyl chamber and polyhedron, for every edge the gates possess unique Schmidt 

strength. In addition, it is found for all the edges of polyhedron that 21 SchK . It 

remains to be checked if this range of SchK  is valid for all the perfect entanglers as well. 

It is found that 2SchK  for one edge (A2A3) of the Weyl chamber in which SWAP 

and Double-CNOT are the two members. In other words, all the gates lie in the edge A2A3 

are maximally entangled. It is worth mentioning that the notion of entanglement of a gate 

is radically different from entanglement production of a state upon action of the gate. For 

instance, SWAP is known to be a maximally entangled gate though it does not produce 

any entanglement on a state. D. Collins et al. introduced a framework to measure the 

nonlocal content of a gate, in terms of resources (entangled and classical bits) required to 

implement the gate through double teleportation. Within this framework, SWAP and 

Double-CNOT are known to be maximally nonlocal gates. It is then interesting to check 

if all the gates in the edge A2A3 are also maximally nonlocal. 
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